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Estrogens have been shown to elicit anticancer effects against estrogen recep-

tor a (ER)-positive breast cancer. We sought to determine the mechanism

underlying the therapeutic response. Response to 17b-estradiol was assessed
in ER+ breast cancer models with resistance to estrogen deprivation:

WHIM16 patient-derived xenografts, C7-2-HI and C4-HI murine mammary

adenocarcinomas, and long-term estrogen-deprived MCF-7 cells. As another

means to reactivate ER, the anti-estrogen fulvestrant was withdrawn from

fulvestrant-resistant MCF-7 cells. Transcriptional, growth, apoptosis, and

molecular alterations in response to ER reactivation were measured. 17b-
estradiol treatment and fulvestrant withdrawal induced transcriptional acti-

vation of ER, and cells adapted to estrogen deprivation or fulvestrant were

hypersensitive to 17b-estradiol. ER transcriptional response was followed by

an unfolded protein response and apoptosis. Such apoptosis was dependent

upon the unfolded protein response, p53, and JNK signaling. Anticancer

effects were most pronounced in models exhibiting genomic amplification of

the gene encoding ER (ESR1), suggesting that engagement of ER at high

levels is cytotoxic. These data indicate that long-term adaptation to estrogen

deprivation or ER inhibition alters sensitivity to ER reactivation. In such

adapted cells, 17b-estradiol treatment and anti-estrogen withdrawal hyperac-

tivate ER, which drives an unfolded protein response and subsequent growth

inhibition and apoptosis. 17b-estradiol treatment should be considered as a

therapeutic option for anti-estrogen-resistant disease, particularly in patients

with tumors harboring ESR1 amplification or ER overexpression. Further-

more, therapeutic strategies that enhance an unfolded protein response may

increase the therapeutic effects of ER reactivation.

1. Introduction

Breast cancer is the most commonly diagnosed

female cancer and the second-leading cause of

cancer-related death in women in the United States.

Due to the predominance of the estrogen receptor a
(ER)-positive/HER2-negative (ER+/HER2�) subtype

(~ 60% of cases), these tumors account for more
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recurrences and deaths than all other subtypes com-

bined. Adjuvant anti-estrogen therapies that antago-

nize ER directly (e.g., tamoxifen) or block estrogen

biosynthesis [e.g., aromatase inhibitors (AIs)] have

improved outcomes in patients with ER+ disease

(Sledge et al., 2014). However, resistance to anti-

estrogens is common: Within 15 years of initial

diagnosis, approximately 33% of patients treated

with adjuvant anti-estrogen therapy present with

recurrent disease (Early Breast Cancer Trialists’

Collaborative Group et al., 2011; Ferlay et al.,

2010).

Prior to the approval of the pioneer anti-estrogen

tamoxifen, estrogens (e.g., diethylstilbestrol) were

used to treat patients with breast cancer. In the

advanced/metastatic setting of treatment-na€ıve breast

cancer, estrogens provided response rates similar to

those obtained with tamoxifen, and diethylstilbestrol

provided longer overall survival than tamoxifen

(Ingle et al., 1981; Peethambaram et al., 1999; Ste-

wart et al., 1980). Clinical analyses showed that

longer duration of the postmenopausal period as

well as longer-term treatment with anti-estrogen ther-

apy was associated with enhanced therapeutic effects

of estrogens on breast tumors (Ellis et al., 2009;

Haddow et al., 1944; Lonning et al., 2001; Zucchini

et al., 2015). Similarly, withdrawal/cessation of anti-

estrogen therapy has shown antitumor effects, sug-

gesting that reactivation of ER may be therapeutic

(Agrawal et al., 2011; Canney et al., 1987; Howell

et al., 1992).

Preclinical work has shown that anti-estrogen-resis-

tant ER+ breast cancer cell lines and xenografts can

become sensitized to anti-estrogen withdrawal and

estrogen treatment (reviewed by Jordan et al., 2011).

However, preclinical studies to characterize the

mechanism(s) underlying therapeutic response to

estrogens have thus far been limited to derivatives of

two ER+ breast cancer cell lines. Evidence supports

mechanisms that include ER-driven upregulation of

genes involved in apoptosis, inflammation, and endo-

plasmic reticulum (EnR) stress (Ariazi et al., 2011;

Fan et al., 2018; Lewis et al., 2005; Obiorah et al.,

2014; Song et al., 2001). We evaluated multiple addi-

tional in vivo models of therapeutic response to

estrogen and further deciphered a cellular mechanism

underlying response to ER reactivation therapy.

Mechanistic understanding of how estrogens are

growth stimulatory in one context and growth inhi-

bitory in another will facilitate the development of

biomarkers predictive of therapeutic response and

reveal targetable pathways to enhance the anticancer

effects of ER reactivation.

2. Materials and methods

2.1. Cell culture

MCF-7 cells were obtained from American Type Cul-

ture Collection (ATCC; Manassas, VA, USA) and cul-

tured in DMEM/10% FBS (HyClone, GE Healthcare

Bio-Sciences, Pittsburgh, PA, USA). Fulvestrant-resis-

tant MCF-7 (FR) cells and long-term estrogen-de-

prived MCF-7 (LTED) cells were gifts from Matthew

Ellis (Baylor College of Medicine, Houston, TX, USA;

Sanchez et al., 2011). FR cells were maintained in

DMEM/10% FBS containing 1 lM fulvestrant (fulv;

Tocris, Bio-Techne Corp., Minneapolis, MN, USA).

LTED cells were maintained in phenol-red-free

DMEM with 10% dextran-coated charcoal-treated

FBS (DCC-FBS; HyClone) and were passaged using

phenol-red-free 0.25% trypsin plus 2.21 mM EDTA

(Corning, Tewksbury, MA, USA).

Cell lines were authenticated by STR genotyping at

the University of Vermont Cancer Center DNA Anal-

ysis Facility. Cell lines were confirmed to be negative

for mycoplasma and passaged for < 4 months before

experimentation. Cells were treated � 17b-estradiol
(E2; Sigma, St. Louis, MO, USA), estrogen–dendrimer

conjugate (EDC) (prepared as described in ref. Har-

rington et al., 2006), empty dendrimer, KIRA6 (Cay-

man Chemical, Ann Arbor, MI, USA), or PD-0332991

(palbociclib; Selleck Chemicals, Houston, TX, USA).

2.2. Immunoblotting

Immunoblotting of protein extracts from cells and frozen

tumor tissue was performed as previously described

(Shee et al., 2018). Cells were lysed, and tumors were

homogenized in cold RIPA buffer (50 mM Tris pH 7.4,

150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1%

SDS, 1 mM EDTA, 1 mM EGTA, 5 mM sodium

pyrophosphate, 50 mM NaF, 10 mM b-glycerophos-
phate) containing protease inhibitors (Halt Protease Inhi-

bitor Cocktail; Pierce, Thermo Fisher, Waltham, MA,

USA) and phosphatase inhibitor (1 mM Na3VO4; New

England Biolabs, Ipswich, MA, USA). Lysates were son-

icated for 15 s and centrifuged at 14 000 g for 10 min at

4 °C, and supernatant protein concentration was quanti-

fied by BCA assay (Pierce). Protein extracts were dena-

tured and reduced with NuPAGE (Life Technologies,

Carlsbad, CA, USA) containing 1.25% b-mercap-

toethanol (Sigma). SDS/PAGE-separated proteins were

transferred to nitrocellulose, and Ponceau S stain was

used to visually confirm even protein loading/transfer.

Blots were probed with primary antibodies against actin,
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vinculin, PARP, IRS-1, IGF-1Rb, NFjB p65, IjBa, P-
4EPB1T37/46, P-S6S240/244, P-p70S6KT389, IRE1a, PERK,

SAPK/JNK, P-SAPK/JNKT183/Y185, Ero1-La, PDI, Bip,

P-cJUNS73, Bim, CHOP, lamin A, P-ATF2T71, P-SEK/

MKK4S257 (Cell Signaling, Danvers, MA, USA), p53,

and ERa (Santa Cruz Biotechnology, Dallas, TX, USA).

Signal was detected with HRP-labeled secondary mouse

or rabbit antibodies (GE Healthcare, Pittsburg, PA,

USA) and ECL substrate (Pierce). Experiments were per-

formed at least twice; representative results are shown.

2.3. Nuclear/cytoplasmic protein extraction

Cells were pretreated as indicated and then reseeded in

60-mm dishes at 106 cells/dish. The next day, cells were

treated � 1 nM E2 for 4 or 24 h. Cells were then har-

vested using trypsin-EDTA and centrifuged at 500 g for

5 min. Cell pellets were washed with PBS; then, cytoplas-

mic and nuclear proteins were extracted using the NE-

PER kit (Thermo Fisher). Following isolation of nuclear

and cytoplasmic fractions, protein concentrations were

measured by BCA assay (Pierce), and proteins were

denatured, reduced, and analyzed by immunoblot.

2.4. Apoptosis assay

All treatment conditions were assayed in triplicate in

12-well plates: 2 9 104 cells/well were seeded, treated

as indicated for 4 days, and then assayed. Apoptosis

of adherent and nonadherent cells was measured by

flow cytometry using the ApoScreen Annexin V and

Propidium Iodide Kit (Southern Biotech, Birmingham,

AL, USA) as per manufacturer’s instructions.

2.5. Colony formation assay

Cells were seeded in triplicate in 6-well (104/well), 12-well

(0.5 9 104/well), or 96-well (103/well) plates and then

treated as indicated for up to 4 weeks. When the most

confluent well reached ~ 90% confluence, cells were fixed

and stained with 20% methanol/80% water/0.5% crystal

violet for 10 min and washed with water. Dried plates

were scanned, and stain intensity was quantified using

the ColonyArea plugin in IMAGEJ (Guzman et al., 2014).

2.6. Short-term growth assay

Cells were pretreated as indicated and then reseeded at

103 cells/well in triplicate in 96-well plates. Cells were

treated as indicated, and after 5 days, cells were fixed

and relative viable cell numbers were determined by

sulforhodamine B (SRB) staining as described (Vichai

and Kirtikara, 2006).

2.7. Senescence-associated b-galactosidase
assay

MCF-7 and FR cells were treated as indicated and then

reseeded in 6-well plates in triplicate at 1 week prior to

assay. Senescence-associated b-galactosidase staining was

performed as per manufacturer’s instructions (Cell Sig-

naling). Proportions of positively stained cells were

counted in three microscopic fields (4009 magnification).

2.8. Luciferase transcriptional reporter assay

Plasmids encoding firefly luciferase under the control

of promoters driven by an estrogen response element

(ERE; a gift from Dorraya El-Ashry, University of

Minnesota), an NFjB element (Addgene, Watertown,

MA, USA, catalog #49343), a p53 element (Addgene

catalog #16442), or a cJUN element (Addgene catalog

#40342) were cotransfected into cells along with a

plasmid encoding CMV-Renilla luciferase (Promega,

Madison, WI, USA, catalog #E2261) as a transfection

control. The next day, cells were treated as indicated,

and luciferase activities were subsequently measured

using the Dual-Luciferase Reporter Assay System

(Promega) as per manufacturer’s instructions. Firefly

values were normalized to Renilla controls.

2.9. RNA interference

Cells were transfected using Lipofectamine RNAi-

MAX (Life Technologies) and 20 lM siRNA targeting

ESR1 (ERa, Qiagen, Hilden, Germany, catalog

#SI02781401), ERN1 (IRE1a; Dharmacon, GE

Healthcare Bio-Sciences, catalog #L-004951-02-0005),

EIF2AK3 (PERK; Dharmacon catalog #L-004883-00-

0005), TP53 (p53; Dharmacon catalog #L-003329-00-

0005), or MAPK8 (JNK, Dharmacon catalog #L-

003514-00-0005). Cells were then reseeded into 12-well

plates (2 9 104 cells/well for apoptosis assays) and 6-

well plates (0.5–1 9 106 cells/wells for immunoblot-

ting). The next day, media was refreshed. At 2 days

post-transfection, cells were treated as indicated. After

4 days of treatment, cells were harvested for apoptosis

assay, or protein was harvested for immunoblot.

2.10. Mouse studies

Studies were approved by the Dartmouth College

IACUC. Female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ

(NSG) mice (4–5 weeks old; obtained from the Norris

Cotton Cancer Center Mouse Modeling Shared

Resource) were ovariectomized and implanted subcuta-

neously (s.c.) with ~ 8-mm3 fragments of serially
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transplanted WHIM16 patient-derived xenograft

(PDX) breast tumor tissue [obtained from the Wash-

ington University HAMLET Core (Puenpa et al.,

2013)]. Female BALB/cJ mice (4–5 weeks old; obtained

from Jackson Laboratory) were ovariectomized and

implanted s.c. with fragments of serially transplanted

C4-HI or C7-2-HI murine mammary adenocarcinoma

tissue [gifts from Claudia Lanari, Consejo Nacional de

Investigaciones Cient�ıficas y T�ecnicas, Buenos Aires,

Argentina (Kordon et al., 1991; Soldati et al., 2010;

Vanzulli et al., 2005)]. In all mice, tumor volume was

measured twice weekly using calipers (vol-

ume = width2 9 length/2). When tumors reached

~ 400 mm3, mice were randomized to receive sham sur-

gery or s.c. implantation with an E2 pellet (0.72 mg,

60-day release; Innovative Research of America, Sara-

sota, FL, USA). For molecular analyses, tumors were

harvested at the indicated time points and cut into

pieces for snap-freezing.

2.11. SNP microarrays

Genomic DNA was extracted from MCF-7 and FR cells

using the DNeasy Blood and Tissue Kit (Qiagen). DNA

was labeled and hybridized to Affymetrix (Santa Clara,

CA, USA) SNP 6.0 arrays, and arrays were scanned at

Coriell Institute for Medical Research (Camden, NJ,

USA) as per manufacturer’s instructions. GENOTYPING

CONSOLE software (Affymetrix) was used to analyze data,

generate copy number results (CNCHP files), and deter-

mine log2 copy number of each genomic region evalu-

ated. Data are deposited at NCBI Gene Expression

Omnibus (GEO) under accession # GSE121631.

2.12. Gene expression microarrays

Fulvestrant-resistant cells maintained in DMEM/10%

FBS + 1 lM fulv were treated with fulv withdrawal

(FW) for 0–14 days in triplicate in 100-mm dishes. RNA

was extracted in 2-day intervals using RiboZol (VWR,

Radnor, PA, USA). RNA was used for expression profil-

ing with Illumina (San Diego, CA, USA) HumanHT-12

v4 Expression BeadChips as per manufacturer’s instruc-

tions. Data were processed by stabilizing transformation

and robust spline normalization using the lumi package

in R software (https://www.r-project.org/). Data are

deposited at NCBI GEO under accession # GSE121379.

2.13. RNA sequencing

MCF-7 and LTED cells were treated with DMEM/

10% DCC-FBS for 3 days and then treated � 1 nM

E2 9 7 days in triplicate in 100-mm dishes. Mice

bearing WHIM16 or C7-2-HI tumors were

treated � E2 via s.c. pellet for 3 days, followed by

harvest and freezing of tumor fragments. RNA was

extracted using RNeasy Plus Mini Kit (Qiagen Cat

1062832) and QIAzol Lysis Reagent (Qiagen Cat

1023537). RNA quality was assessed on a fragment

analyzer (Advanced Analytical Technologies, Agilent,

Santa Clara, CA, USA), and RNA was quantified by

Qubit. In preparation for RNA sequencing (RNA-

seq), ribo-depleted libraries were prepared from 2.5 lg
of total RNA using the Globin-Zero Gold (catalog #

GZG1206; Illumina) and TruSeq Stranded Total RNA

(catalog # RS-122-2201; Illumina) workflows accord-

ing to manufacturer’s instructions. Each library was

uniquely barcoded, quantified by qPCR (catalog #

KK4824; Kapa Biosystems, Wilmington, MA, USA),

and pooled for sequencing on an Illumina NextSeq

500 (2 9 75-bp). Reads were checked for quality con-

trol using FASTQC (Andrews, 2010) and if necessary

were trimmed using Trimmomatic (Bolger et al., 2014)

to trim regions with phred Q > 30 (Ewing et al.,

1998). High-quality reads were then aligned to refer-

ence genome hg19 using STAR (Dobin et al., 2013).

Gene counts were normalized by frequency per kilo-

base million (Garber et al., 2011). Differential expres-

sion of genes was determined using the limma (Ritchie

et al., 2015) and DESeq2 (Love et al., 2014) packages

in the R environment (R Core Team, 2017), and multi-

ple testing correction was performed using the FDR

Benjamini–Hochberg method (Benjamini and Hoch-

berg, 1995). Genes were determined to be significantly

differentially expressed if FDR q ≤ 0.05 and absolute

log2 fold change ≥ 1. To determine significant gene

expression pathway enrichment between time points,

unsupervised sample-wise enrichment analysis of hall-

mark pathways using gene set variation analysis

(GSVA) (Hanzelmann et al., 2013) was performed in

R using default arguments with an adjusted P-value

significance threshold of 0.25 (Subramanian et al.,

2005). RNA-seq data were deposited at NCBI

Sequence Read Archive (SRA) under accession #:

PRJNA497539.

2.14. Proteasomal activity assay

Cells were plated in triplicate in 96-well plates at

5 9 103 cells/well and then treated as indicated. Live-

cell proteasomal activity was assayed using the Protea-

some-Glo Chymotrypsin-like Cell-based Assay (Pro-

mega) as per manufacturer’s instructions. Luciferase

activity was normalized to relative cell number as mea-

sured using an S3 Live Cell Analysis System (Incu-

Cyte, Essen BioScience, Ann Arbor, MI, USA).
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2.15. qPCR and RT-qPCR

Cells were seeded in 60-mm dishes and treated as indi-

cated in triplicate. For RT-qPCR analysis, RNA was

extracted using the RNeasy Plus Mini Kit (Qiagen)

and treated with DNase I; then, cDNA was synthe-

sized using the iScript cDNA Synthesis Kit (Bio-Rad,

Hercules, CA, USA). For genomic DNA analysis,

DNA was extracted using the DNeasy Blood and Tis-

sue Kit (Qiagen). Real-time qPCR was performed

using iQ SYBR Green Supermix (Bio-Rad) with the

following primers:

RT-qPCR primers:

Target

gene Forward primer Reverse primer

CDKN1A

(p21)

TGAGCCGCGACTGTGATG GTCTCGGTGAC
AAAGTCGAAGTT

BBC3

(PUMA)

ACCTCAACGCACAGTACGAG CCCATGATGAGA
TTGTACAGGA

PMAIP1

(NOXA)

AAGAAGGCGCGCAAGAAC TCCTGAGCAGAA
GAGTTTGGT

36B4 GTGTTCGACAATGGCAGCAT GACACCCTCCA
GGAAGCGA

Genomic DNA primers:

Target

gene Forward primer Reverse primer

Human

ESR1

CCATGACCCTCCACACC CTCGTTCCCTTG
GATCTGA

Human

ASXL1

CAGCTTCTCACTTGGCCTTC GCTCTGCACAGG
ACAGATCA

Mouse

Esr1

TTGAACTTGTCCCCTTGACC ACAGGTGGCGC
TCTGAAA

Mouse

Asxl1

AGATCACACTACCTC
CAAAGTGC

TCCAAAGGAGA
GGCTCACA

3. Results

3.1. Restoration of ER signaling in anti-estrogen-

resistant breast tumors and cancer cells elicits

therapeutic effects

ER+ breast tumors classically require estrogen-induced

ER signaling for growth; however, clinical studies

investigating estrogen therapies have demonstrated

that tumors growing in low-estrogen conditions may

be growth-inhibited by estrogen (Ellis et al., 2009). To

identify the mechanism underlying the anticancer

effects of estrogen in ER+ breast cancer, we first evalu-

ated three preclinical tumor models. WHIM16 patient-

derived xenografts (PDXs) were derived from a patient

treated with multiple lines of endocrine therapy and

chemotherapy. This patient experienced partial tumor

regression in response to E2 treatment, at which point

a skin metastasis was harvested for PDX development

(Puenpa et al., 2013). Ovariectomized NSG mice bear-

ing serially transplanted WHIM16 tumors were

treated � E2. E2 induced rapid and durable tumor

regression (Fig. 1A and Fig. S1A,B).

Long-term treatment of BALB/c mice with medrox-

yprogesterone acetate (MPA) induces the formation of

ER+ mammary adenocarcinomas, which were serially

transplanted until progestin-independent variants (e.g.,

C7-2-HI, C4-HI) were established (Kordon et al.,

1991; Soldati et al., 2010; Vanzulli et al., 2005). C7-2-

HI and C4-HI tumors were serially transplanted into

ovariectomized BALB/cJ mice. E2 treatment of C7-2-

HI tumor-bearing mice induced partial but durable

regression (Fig. 1B and Fig. S1C,D). In contrast, C4-

HI tumors were growth-inhibited by E2 treatment but

did not consistently regress (Fig. 1C and Fig. S1E,F).

To provide preclinical models more amenable to

genetic manipulation, we also evaluated two types of

anti-estrogen-resistant in vitro systems: (a) MCF-7 cells

with acquired resistance to the selective ER downregu-

lator fulv (FR) were developed by maintenance in

medium containing 1 lM fulv for > 1 year; (b) MCF-7

cells with acquired resistance to long-term estrogen

deprivation (LTED), which mimics the estrogen deple-

tion induced by AI therapy in patients, were developed

by maintenance in hormone-depleted medium for

> 1 year. Treatment with 1 nM E2 increased growth of

parental MCF-7 cells but suppressed growth of LTED

cells (Fig. 1D). Similarly, fulv treatment suppressed

growth of parental MCF-7 cells, while fulv withdrawal

(FW) suppressed growth of FR cells (Fig. 1E).

3.2. Estrogen-induced apoptosis is associated

with nuclear ER transcriptional activation

E2 induced ER transcriptional reporter activity and

apoptosis that peaked after 7 days of exposure in

LTED cells (Fig. 2A,B). FW from FR cells induced

apoptosis after ~ 13 days (Fig. 2C), which was pre-

ceded by elevated ER transcriptional activity that

increased by Day 7 and peaked near Day 11 following

FW (Fig. 2D). Proteins encoded by ER-inducible

genes (e.g., IRS-1, IGF-1R) were similarly increased

after 6–10 days of FW (Fig. S2). Apoptotic effects of

E2 and FW were confirmed by immunoblot analysis

of PARP cleavage (Fig. 2E). siRNA knockdown of
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ER prevented apoptosis induced by FW in FR cells

and by E2 in LTED cells (Fig. 2F,G and Fig. S3A,B),

confirming that ER is required for apoptotic effects of

FW and E2. Compared to parental MCF-7 controls,

fulv-withdrawn FR cells and hormone-deprived LTED

cells had higher ER protein levels (Fig. 2E and

Fig. S2), likely due to genomic amplification of the

gene encoding ER, ESR1 [Fig. 2H,I and ref. (Puenpa

et al., 2013)]. The WHIM16 PDX model also harbors

ESR1 amplification (Puenpa et al., 2013), and ESR1

amplification was detected in a primary breast tumor

from a patient with ER+ metastatic disease that

regressed in response to E2-based therapy (Kota et al.,

2017). Thus, excessive engagement of ER may promote

anticancer effects of estrogens. This concept is further

supported by observations from T47D breast cancer

cells with acquired resistance to fulv (T47D/FR),

which showed suppression of ER expression, and

growth was unaffected by FW (data not shown). C7-2-

HI tumors exhibited only slight amplification of ESR1

(mean � SD of 1.39-fold � 0.17-fold; P = 0.036 com-

pared to liver control) while C4-HI tumors did not,

potentially contributing to the difference in sensitivity

to E2 (Fig. 1B,C and Fig. S1C–F) and suggesting that

ESR1 amplification may not be required for therapeu-

tic response to E2.

In ER transcriptional reporter activity assays,

LTED cells showed hypersensitivity to E2 compared

to parental MCF-7 cells (Fig. 2B), concurrent with

prior observations (Miller et al., 2011; Song et al.,

2001). While MCF-7 and LTED cells were growth-

stimulated by 1 pM E2, higher doses (10 pM to 1 nM)

Fig. 1. Estrogen-independent tumors and cells exhibit therapeutic sensitivity to ER reactivation via E2 treatment or anti-estrogen withdrawal.

(A–C) Ovariectomized NSG (A) or BALB/cJ (B, C) mice were implanted s.c. with ~ 8-mm3 fragments of serially transplanted WHIM16

patient-derived xenografts (A), C7-2-HI murine allografts (B), or C4-HI murine allografts (C). When tumors reached ~ 400 mm3, mice were

randomized to sham surgery or s.c. implantation with an E2 pellet. Tumor volume is presented as mean + SD of % change from baseline

on the day of E2 supplementation (Week 0). Groups were compared by linear mixed modeling. (D) MCF-7 and LTED cells were cultured in

hormone-depleted medium � E2 for 4 weeks; then, cells were fixed and stained with crystal violet for colony quantification using IMAGEJ. (E)

MCF-7 and FR cells seeded at low density were treated � fulv. After 4 weeks, colonies were quantified as in (D). In (D, E), data are shown

as mean of triplicates + SD relative to parental control. *P ≤ 0.05 by t-test.
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Fig. 2. Restoration of ER signaling drives cell death in MCF-7 cells with acquired resistance to fulvestrant or long-term estrogen deprivation.

(A) LTED cells were cultured in hormone-depleted medium � 1 nM E2 for up to 9 days, and then, cells were reseeded. Three days later,

apoptosis was assayed using annexin and propidium iodide staining followed by flow cytometry. Mean of triplicates + SD is shown.

*P ≤ 0.05 by Bonferroni multiple comparison-adjusted post hoc test compared to hormone-deprived controls. (B) MCF-7 and LTED cells

were transfected with ERE-driven firefly luciferase and CMV-Renilla. The next day, cells were treated � E2, and luciferase activities were

measured 24 h later. Firefly signal was normalized to Renilla signal, and data are shown as mean of triplicates + SD relative to baseline

within each cell line. *P ≤ 0.05 by Bonferroni multiple comparison-adjusted post hoc test compared to baseline within each cell line. Curves

were compared by linear regression. (C) Fulv was withdrawn from FR cells for up to 15 days, and then, cells were reseeded. Three days

later, apoptosis was assayed as in (A). (D) FR cells were treated as in (C), and then, cells were transfected as in (B). Luciferase activities

were measured 2 days post-transfection, and data were analyzed as in (B). (E) Immunoblot analysis of lysates from FR cells treated � fulv,

or MCF-7 and LTED cells treated � E2. All lanes were captured from the same blot exposure for each protein. FL, full length; CL, cleaved.

(F) LTED cells were transfected with siRNA targeting ER (or nonsilencing control). After 4 days of treatment � E2, cells were assayed for

apoptosis as in (A). *P ≤ 0.05 by t-test. (G) FR cells were treated � fulv for 10 days, then transfected with siRNA, and assayed as in (F). (H)

Primers targeting ESR1 and ASXL2 (control) were used for qPCR of genomic DNA. Ratio of ESR1/ASXL2 (DDCt) was normalized to MCF-7

cells. *P ≤ 0.05 by t-test. (I) DNA from MCF-7 and FR cells was analyzed using genome-wide SNP arrays. DNA copy number results from

the region on chromosome 6 containing ESR1 are indicated at low (top) and high (bottom) resolutions.
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induced and suppressed growth in parental and LTED

cells, respectively (Fig. S4). Human physiological

serum E2 levels reach > 1 nM in premenopausal

women and ~ 40 pM in postmenopausal women, sug-

gesting that physiological E2 levels may be sufficient

to inhibit growth of ER+ breast cancer cells with

acquired resistance to hormone deprivation (Baird and

Fraser, 1974; Iwase et al., 2013; Yao et al., 2000). The

growth-suppressive effect of E2 in LTED cells was

acute: Just 1 h of treatment with 1 nM E2 (followed by

a 25-day estrogen-free period) was sufficient to stunt

growth, and 24 h of E2 treatment elicited maximal

long-lasting growth inhibition in a 4-week assay

(Fig. S5A). Measurement of levels of ER-inducible

transcripts indicated that ER activity returned to base-

line within 4 days of E2 withdrawal in MCF-7 cells

(Fig. S5B). Thus, reduction of the duration of treat-

ment may lead to equivalent efficacy while limiting

adverse events in patients treated with exogenous

estrogens.

Although the best-characterized role of ER is as a

transcription factor, ER has been reported to have

nongenomic effects including membrane-initiated sig-

naling. Other estrogen-binding proteins have also been

implicated in cytoplasmic signaling (Miller et al., 2009;

Revankar et al., 2005; Song et al., 2006). Treatment of

parental MCF-7 cells with 1 nM E2 for 4 h decreased

cytoplasmic levels of ER but did not appreciably alter

nuclear ER; in contrast, E2 increased cytoplasmic ER

levels in LTED cells (Fig. S6A). To test whether cyto-

plasmic ER activation is involved in E2-induced apop-

tosis in LTED cells, cells were treated � 1 nM E2 or

an equivalent concentration (20 nM) of an EDC that

can enter the cytoplasm of cells but not nuclei (Har-

rington et al., 2006). The EDC did not induce ER

transcriptional activity and actually increased growth

of LTED cells, confirming that E2-induced apoptosis

requires nuclear ER signaling (Figs S4 and S6B).

3.3. Estrogen-induced apoptosis requires

activation of an unfolded protein response

Since nuclear ER activity is required for therapeutic

effects of ER reactivation (Fig. S4), we performed gene

expression profiling to identify genes associated with

therapeutic effects of estrogen in preclinical models.

After identifying Day 7 as the time point of maximal

E2-induced apoptosis in LTED cells (Fig. 2A), RNA-

seq was performed on MCF-7 and LTED cells

treated � 1 nM E2 for 7 days. We also performed

RNA-seq of WHIM16 and C7-2-HI tumors from mice

treated � E2 (via s.c. pellet) for 3 days (before regres-

sion became evident, typically around Day 7). GSVA

revealed significant enrichment for genes involved in

estrogen response and unfolded protein response

(UPR) (Fig. 3). To determine the sequence of activa-

tion of these pathways, temporal gene expression pro-

filing was performed using microarrays for FR cells

treated with FW for 0, 2, 4, 6, 8, 10, 12, or 14 days.

GSVA of FR cell gene expression profiles at individual

time points following FW revealed sequential activa-

tion of estrogen response at Day 4 (P = 1.4 9 10�7

and 8.7 9 10�7 for early and late estrogen response

gene sets, respectively), followed by a UPR at Day 8

(P = 0.005), and apoptosis at Day 14 (P = 0.009)

(Figs 3 and 4). Together, these data suggest that the

mechanism of ER reactivation-induced apoptosis

involves activation of a UPR.

E2 treatment induced upregulation of the unfolded

protein sensor IRE1a and the pro-apoptotic proteins

CHOP, PUMA, and/or Bim in WHIM16, C7-2-HI, and

C4-HI tumors (Fig. 5). Similarly, levels of IRE1a and

the unfolded protein sensor PERK were increased fol-

lowing FW and E2 treatment in FR and LTED cells,

respectively, which preceded apoptosis (indicated by

PARP cleavage; Fig. 6A,B); such changes were paral-

leled by increases in Bim and CHOP (Fig. S7). The pro-

tein-folding chaperone Bip (GRP78) has been shown to

bind and inhibit cleavage of procaspase 7, inhibit activ-

ity of the pro-apoptotic BCL-2 family protein Bik, and

increase levels of anti-apoptotic BCL2 family proteins,

which converge to suppress apoptosis and promote

resistance to anticancer drugs including anti-estrogens

(Cook et al., 2012; Fu et al., 2007; Reddy et al., 2003).

EnR stress can also induce increases in levels of the pro-

apoptotic BCL-2 family proteins Bim, PUMA, and

NOXA (Puthalakath et al., 2007; Wang et al., 2016).

To establish a requirement for the UPR for apopto-

sis in response to ER reactivation, siRNA knockdown

of the primary apoptotic UPR mediators IRE1a and

PERK was performed in conjunction with FW or E2

treatment in FR and LTED cells, respectively. Knock-

down of IRE1a or PERK provided complete protec-

tion against FW-induced apoptosis in FR cells, and

partial protection against E2-induced apoptosis in

LTED cells, confirming that activation of a prolonged

UPR by ER reactivation contributes to cell death

(Fig. 6C,D and Fig. S3C–F).
To further investigate the mechanism underlying ER

reactivation-induced UPR and apoptosis, the relative

levels of UPR mediators, protein-folding chaperones,

and proteasomal activity between parental MCF-7 and

LTED cells were measured. Compared to hormone-de-

prived MCF-7 cells, LTED cells had less basal protea-

somal activity (Fig. 6E); this difference may contribute

to the protein-folding stress in LTED cells upon E2
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Fig. 3. Transcriptomic profiling reveals a UPR upon ER reactivation via E2 treatment or anti-estrogen withdrawal. RNA was extracted from

WHIM16 and C7-2-HI tumors from mice treated � E2 (via s.c. pellet) for 3 days, from MCF-7 and LTED cells treated � 1 nM E2 for 7 days,

and from FR cells treated � FW for 12 days, all in triplicate. FR cell RNA was analyzed by gene expression microarray. RNA from other

samples was analyzed by sequencing. Whole-transcriptome expression profiles of E2-treated and FW-treated samples compared to baseline

were analyzed by unsupervised sample-wise enrichment analysis using the hallmark geneset collection in GSVA. Adjusted P-values below

the significance threshold of 0.25 (Subramanian et al., 2005) are shown, and nonsignificant (n.s.) P-values are ranked at right.
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stimulation. In addition, LTED cells expressed lower

levels and showed weaker ability to induce expression

of the chaperones Bip and PDI in response to E2 com-

pared to MCF-7 cells (Fig. 6F).

3.4. p53 and JNK signaling are required for

apoptosis induced by ER reactivation

The anticancer effects of activating the UPR have been

linked to induction of multiple other pathways,

including the p53, stress-activated protein kinase/Jun

amino-terminal kinase (SAPK/JNK), mechanistic tar-

get of rapamycin complex I (mTORC1), and nuclear

factor j-light-chain-enhancer of activated B cells

(NFjB) pathways (Hotamisligil, 2010). We found that

therapeutic effects of E2 were associated with

increased activation of the JNK pathway (assessed by

increased P-JNK and P-cJUN) and the p53 pathway

(assessed by increased p53 and decreased MDM2)

upon E2 treatment in tumor models and LTED cells,

Fig. 4. Temporal analysis indicates that ER reactivation precedes a UPR upon anti-estrogen withdrawal. FR cells were treated � FW for 0–

14 days. RNA was harvested in triplicate in 2-day intervals for gene expression microarray analysis. Whole-transcriptome expression profiles

of FW-treated samples compared to baseline were analyzed by unsupervised sample-wise enrichment analysis of using the hallmark

geneset collection in GSVA. Adjusted P-values are shown; the significance threshold of 0.25 (Subramanian et al., 2005) is indicated by

dotted horizontal line.

Fig. 5. Estrogen-independent tumors exhibit a UPR in response to E2 treatment. Mice bearing WHIM16 (A), C7-2-HI (B), or C4-HI (C)

tumors were treated with E2 via s.c. pellet. Lysates from tumors harvested after 0–4 days were analyzed by immunoblot. FL, full length;

CL, cleaved.
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Fig. 6. A UPR is required for apoptotic response to ER reactivation. (A, B) Lysates from FR cells treated with FW for 0–10 days (A) and

from LTED cells treated with E2 for 0–8 days (B) were analyzed by immunoblot. FL, full length; CL, cleaved. (C) FR cells were

treated � FW for 10 days, then reseeded, and transfected with siRNA targeting IRE1a, PERK, or nonsilencing control. Four days later, cells

were assayed for apoptosis. Mean of triplicates + SD is shown. *P ≤ 0.05 by Bonferroni multiple comparison-adjusted post hoc test. (D)

LTED cells were transfected with siRNA as in (C) and then treated � E2 for 4 days prior to assay as in (C). (E) MCF-7 and LTED cells were

treated with hormone-depleted medium for 4 days and then assayed for proteasomal activity using the Promega Proteasome-Glo Luciferase

Kit. Mean of triplicates + SD is shown. *P ≤ 0.05 by t-test. (F) MCF-7 and LTED cells were treated with E2 for 0–8 days, and then, lysates

were analyzed by immunoblot.
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and upon FW in FR cells (Figs 5 and 7A,B; MDM2

was not detected in murine tumors). FW and E2 treat-

ment drove upregulation of p53-driven transcripts

encoding PUMA, NOXA, and p21 (Fig. 7C,D) in FR

and/or LTED cells, respectively, at time points consis-

tent with induction of apoptosis (Fig. 2A,C). Tran-

scriptional reporter assays confirmed activation of

both p53 and cJUN in FR and LTED cells following

ER reactivation (Fig. 7E,F). Furthermore, activation

of cJUN was dependent upon the UPR sensor IRE1a,
as treatment with the IRE1a inhibitor KIRA6 blocked

E2-induced cJUN transcriptional activity in LTED

cells (Fig. S7D). Importantly, p53 and JNK were

required for FW- and E2-induced apoptosis, as siRNA

knockdown of p53 or JNK prevented apoptosis

(Fig. 7G,H and Fig. S3G,H).

NFjB and mTORC1 signaling were not found to be

activated upon E2 treatment (in LTED cells) or FW

(in FR cells). Instead, immunoblotting and transcrip-

tional reporter assays revealed downregulation of

NFjB-inducible transcripts and encoded proteins in

response to ER reactivation. Markers of mTORC1

activity (P-S6 and P-p70S6K) were either downregu-

lated or unchanged upon ER reactivation (Fig. S8).

4. Discussion

Estrogen is classically considered a tumor promoter

in ER+ breast cancer; thus, there is hesitation to

implement E2 as a common therapeutic option, even

in tumors entirely resistant to anti-estrogens. How-

ever, we and others have demonstrated that long-

term adaptation to estrogen deprivation or anti-estro-

gens can sensitize ER+ breast cancer cells and tumors

to the cytotoxic effects of ER reactivation. The suc-

cessful resurrection of estrogen therapy in the clinic

would be enhanced by (a) understanding of the

underlying molecular mechanism, which would (b)

facilitate the development of a biomarker to identify

patients likely to benefit. Herein, we demonstrated

that restoration of ER signaling drives cancer cell

death mediated by the UPR, offering protein-folding

stress as an avenue to identify a potential biomarker

and a potential complementary therapeutic opportu-

nity.

Long-term estrogen-deprived and FR cells, as well

as WHIM16 patient-derived xenografts and C7-2-HI

murine mammary adenocarcinoma allografts that

regress upon E2 treatment, exhibit genomic amplifica-

tion of ESR1. In contrast, ESR1 is not amplified in

C4-HI tumors, which are only partially responsive to

E2 therapy [Figs 1 and 2H,I, Fig. S1, and ref.

(Puenpa et al., 2013)]. Thus, hypersensitivity to E2

and subsequent ER-mediated cell death may be

enhanced in tumors harboring genomic amplification

of ESR1. ESR1 amplification has been observed in up

to 20% of metastatic ER+ breast tumors from

patients (Holst, 2016; Lefebvre et al., 2016; Lin et al.,

2013). Importantly, a case study showed that E2 ther-

apy caused partial tumor regression in a patient with

ESR1-amplified metastatic breast cancer (Kota et al.,

2017). ESR1 amplification was also detected in the

metastatic skin lesion of the patient from whom the

WHIM16 PDX model was created, and this patient

experienced a ‘modest response’ to E2 therapy

(Puenpa et al., 2013). These observations suggest that

ESR1 amplification may be a tumor biomarker to

enrich for the subpopulation of patients likely to ben-

efit from E2 therapy.

In three E2-sensitive tumor models, and in LTED

and FR cells, ER reactivation induced apoptosis and

tumor regression concomitant with a UPR and activa-

tion of p53 and JNK. Prior studies showed that the

hormone-independent MCF-7:5C subline expresses

higher levels of JNK and P-JNK than parental MCF-

7 controls and that P-JNK levels are further induced

by E2 treatment in 5C cells. Although treatment with

the JNK inhibitor SP600125 does not block E2-in-

duced apoptosis in 5C cells (Fan et al., 2015), a supra-

physiologic dose of E2 (20 lM) causes apoptosis of

parental MCF-7 cells that is blocked by cotreatment

with SP600125 (Altiok et al., 2007). In contrast, we

observed that JNK levels and activation are similar in

hormone-deprived MCF-7 and LTED cells, but both

markers were robustly induced by E2 in LTED cells

and tumor models, and by FW in FR cells (Figs 5

and 7A/B). siRNA-induced knockdown of JNK pro-

tected LTED and FR cells against ER reactivation-in-

duced death (Fig. 7G,H), suggesting that JNK

activation contributes to apoptosis. Thus, basal JNK

expression may not be a good biomarker to predict

response to estrogen therapy, but activation of JNK

may be useful as an early pharmacodynamic biomar-

ker of response.

Prior studies suggested an association between ther-

apeutic effects of E2 and EnR stress in ER+ breast

cancer cells in vitro. Gene expression microarray anal-

ysis of cells that are growth-stimulated (MCF-7) vs.

growth-inhibited (MCF-7:5C) by E2 revealed E2-in-

duced upregulation of EnR stress genes and inflamma-

tory response genes selectively in 5C cells (Ariazi

et al., 2011; Fan et al., 2014). E2 also induced expres-

sion of pro-apoptotic proteins that contributed to E2-

mediated apoptosis, including Bax and Bim; siRNA

knockdown of Bax or Bim, and to a lesser degree

p53, attenuated E2-induced apoptosis in 5C cells
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(Lewis et al., 2005). Early studies with C7-2-HI

tumors also demonstrated that E2-induced regression

was associated with expression of the p53 target genes

encoding p21 (Cdkn1a) and p27 (Cdkn1b) (Vanzulli

et al., 2002, 2005). Our studies confirmed that p53 is a

critical mediator of E2-induced death in FR and

LTED cells, and that this pathway is activated by E2

in WHIM16, C4-HI, and C7-2-HI tumors. Thus, loss-

of-function genomic alterations in p53 (TP53), which

are observed in approximately 17–20% and 27% of

ER+ primary and metastatic breast tumors, respec-

tively (Bertheau et al., 2013; Lefebvre et al., 2016),

may ultimately prove to be contraindicating for use of

E2 therapy.

Activation of a UPR in response to E2 in LTED

cells was correlated with lower basal proteasomal

activity and levels of protein-folding chaperones (e.g.,

Bip/GRP78, PDI) (Fig. 6E,F). Bip is a crucial stress

sensor of unfolded protein levels in the EnR that binds

to and inactivates IRE1a, ATF6, and PERK

(Hotamisligil, 2010). When misfolded proteins accumu-

late, Bip is released from IRE1a, ATF6, and PERK to

assist in protein folding, allowing for downstream acti-

vation of a UPR by IRE1a/ATF6/PERK. Prior stud-

ies established that Bip desensitizes IRE1a to low

levels of stress to tailor a UPR based upon stress levels

and duration (Pincus et al., 2010). Therefore, the Bip

deficiency in LTED cells (Fig. 6F) may contribute to

IRE1a hyperactivation and consequent apoptosis.

‘Priming’ a UPR that would drive tumor cells toward

death (rather than proliferation) during E2 treatment

may thus represent a potential therapeutic strategy; for

example, the addition of a proteasome inhibitor to

E2 treatment may stimulate an enhanced UPR and

increase therapeutic efficacy.

5. Conclusions

In summary, restoration of ER activity elicited anti-

cancer effects in cell and tumor models of both anti-

estrogen resistance and long-term estrogen deprivation.

The mechanism underlying response to E2 treatment

or anti-estrogen withdrawal is facilitated by IRE1a-
mediated activation of a UPR. This then drives down-

stream p53 and JNK signaling, which may be used as

early indicators of antitumor effects, and subsequent

apoptosis. These data also suggest that re-introduction

of E2 to routine clinical use for breast cancer therapy

will be most likely to benefit patients with ESR1

amplification and deficiency in protein-folding chaper-

ones.
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