
RESEARCH ARTICLE

How Do Efficient Coding Strategies Depend
on Origins of Noise in Neural Circuits?
Braden A. W. Brinkman1,2☯*, Alison I. Weber1,2,3☯*, Fred Rieke2,3,4‡, Eric Shea-Brown1,2,3‡

1 Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of

America, 2 Department of Physiology and Biophysics, University of Washington, Seattle, Washington,

United States of America, 3 Graduate Program in Neuroscience, University of Washington, Seattle,

Washington, United States of America, 4 Howard Hughes Medical Institute, University of Washington,

Seattle, Washington, United States of America

☯ These authors contributed equally to this work.

‡FR and ESB also contributed equally to this work.

* bradenb@uw.edu (BAWB); aiweber@uw.edu (AIW)

Abstract
Neural circuits reliably encode and transmit signals despite the presence of noise at multi-

ple stages of processing. The efficient coding hypothesis, a guiding principle in computa-

tional neuroscience, suggests that a neuron or population of neurons allocates its limited

range of responses as efficiently as possible to best encode inputs while mitigating the

effects of noise. Previous work on this question relies on specific assumptions about where

noise enters a circuit, limiting the generality of the resulting conclusions. Here we systemat-

ically investigate how noise introduced at different stages of neural processing impacts opti-

mal coding strategies. Using simulations and a flexible analytical approach, we show how

these strategies depend on the strength of each noise source, revealing under what condi-

tions the different noise sources have competing or complementary effects. We draw two

primary conclusions: (1) differences in encoding strategies between sensory systems—or

even adaptational changes in encoding properties within a given system—may be pro-

duced by changes in the structure or location of neural noise, and (2) characterization of

both circuit nonlinearities as well as noise are necessary to evaluate whether a circuit is per-

forming efficiently.

Author Summary

For decades the efficient coding hypothesis has been a guiding principle in determining
how neural systems can most efficiently represent their inputs. However, conclusions
about whether neural circuits are performing optimally depend on assumptions about the
noise sources encountered by neural signals as they are transmitted. Here, we provide a
coherent picture of how optimal encoding strategies depend on noise strength, type, loca-
tion, and correlations. Our results reveal that nonlinearities that are efficient if noise enters
the circuit in one locationmay be inefficient if noise actually enters in a different location.
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This offers new explanations for why different sensory circuits, or even a given circuit
under different environmental conditions, might have different encoding properties.

Introduction

Our sensory systems encode information about the external environment and transmit this
information to higher brain areas with remarkable fidelity, despite a number of sources of
noise that corrupt the incoming signal. Noise—variability in neural responses that masks the
relevant signal—can arise from the external inputs to the nervous system (e.g., in stochastic
arrival of photons at the retina, which follow Poisson statistics) and from properties intrinsic to
the nervous system, such as variability in channel gating, vesicle release, and neurotransmitter
diffusion (reviewed in [1]). This noise places fundamental limits on the accuracywith which
information can be encoded by a cell or population [2–5]. An equally important consideration,
however, is that noise dictates which processing strategies adopted by the nervous system will
be most effective in transmitting signal relative to noise.
Efficient coding theory has been an important principle in the study of neuroscience for over

half a century, and a number of studies have found that neural circuits can encode and transmit
as much useful information as possible given physical and physiological constraints [6–13].
Foundational work by Laughlin successfully predicted the function by which an interneuron in
the blowfly eye transformed its inputs [7]. This and other early work prompted a myriad of
studies that considered how neurons could make the most efficient use of their output range in
a variety of systems and stimulus conditions [14–19]. Efficient coding theory has played an
important role in how we interpret biological systems. However, one cannot know how effi-
ciently a neuron or population is encoding its inputs without understanding the sources of noise
present in the system. Several previous studies have recognizednoise as an important factor in
determining optimal computations [8, 11, 12, 20, 21]. These and related studies of efficient cod-
ing often make strong assumptions about the location of noise in the system in question, and
these assumptions are typically not based on direct measurements of the underlying noise
sources. For example, noise is often assumed to arise at the output stage and follow Poisson sta-
tistics. Yet experimental evidence has shown that spike generation itself is near-deterministic,
implying that most noise observed in a neuron’s responses is inherited from earlier processing
stages [22–24]. Indeed, several different sources of noise may contribute to response variability,
and the relative contributions of these noise sources can change under different environmental
and stimulus conditions [25–27]. Importantly, the results of efficient coding analyses depend on
the assumptions made about the locations of noise in the system in question, but there has been
to date no systematic study of the implications that different noise sources have for efficient cod-
ing strategies. In particular, identifying failures of efficient coding theory—i.e., neural computa-
tions that do not optimally transform inputs—necessitates a broad understanding of how
different sources of noise alter efficient coding predictions.
Here, we consider how the optimal encoding strategies of neurons depend on the location

of noise in a neural circuit.We focus on the coding strategies of single neurons or pairs of neu-
rons in feedforward circuits as simple cases with physiologically relevant applications. Indeed,
early sensory systems often encode stimuli in a small number of parallel channels, including in
vision [28–30], audition [31], chemosensation [32], thermosensation [33], and somatosensa-
tion [34]. We build a model that incorporates several different sources of noise, relaxing many
of the assumptions of previously studiedmodels, including the shape of the function by which
a neuron transforms its inputs to outputs. We determine the varied, and often competing,
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effects that different noise sources have on efficient coding strategies and how these strategies
depend on the location, magnitude, and correlations of noise across neurons. Much of the effi-
cient coding literature is impacted by these results. For example, Laughlin’s predictions assume
that downstream noise is identical for all responses; when this is not true, a different processing
strategy will be optimal. Other recent work, considering such questions as when it is advanta-
geous to have diverse encoding properties in a population and when sparse firing is beneficial,
bears reinterpretation in light of these results [21, 35]. Our work demonstrates that under-
standing the sources of noise in a neural circuit is critical to interpreting circuit function.

Results

Our goal is to understand how diverse noise sources shape a neural circuit’s optimal encoding
strategies.We determine the optimal nonlinearities using two complementary approaches.
First, we take variational derivatives of the mean squared error (MSE) between the true input
and a linear estimate of the input to derive a system of equations for the exact optimal nonline-
arities.We constrain the output of the nonlinearities to fall within a fixed range to reflect the
limited dynamic range of neurons, but aside from this, we make no assumptions about the
shape of the nonlinearities. Second, we simulate the model by parametrizing the nonlinearities
and numerically determining the parameter values of the nonlinearity that best encode the
stimulus. With this approach, we can use more complex measures of coding fidelity, such as
mutual information (MI), as our criterion for optimality (seeMethods for details).
We first describe a feedforward neural circuit model that incorporates three potential

sources of noise. We then describe how a single pathway should allocate its response range to
optimally encode its inputs, showing that optimal strategies depend strongly on where noise
enters the circuit. Finally, we extend our model to include two parallel pathways, reflecting a
common architecture in sensory systems. We consider how dual pathways should parcellate
the range of inputs, namely the factors that determine to what extent they should encode over-
lapping regions of the input distribution and whether they should have the same or different
response polarities.

Circuit model

The model is schematized in Fig 1, and is detailed below. We constructed this model with reti-
nal circuitry in mind, though the model could be reinterpreted to represent other primarily
feedforward early sensory systems, or even small segments of cortical circuitry. We begin with
a simple feature of neural circuits that captures a ubiquitous encoding transformation: a non-
linear conversion of inputs to outputs. Nonlinear processing arises from several biological pro-
cesses, such as dendritic integration, vesicle release at the synapse, and spike generation [36,
37]. Such nonlinearities appear in most neural codingmodels (such as the commonly used lin-
ear-nonlinear-poisson (LNP) models or generalized linear models [38–40]). Although there
are likely several sites with some level of nonlinear processing in the retinal circuitry, there is a
single dominant nonlinearity at most light levels which can be localized to the output synapse
of the bipolar cells [41]. Our goal is to determine the shape of the nonlinearity in this model
that most faithfully encodes a distribution of inputs—i.e., the optimal encoding strategy.
Indeed, in the retina, the shape of this nonlinearity has been shown to adapt under different
stimulus conditions, suggesting that this adaptation might serve to improve encoding of visual
stimuli as environmental conditions (and hence noise) change [18, 42].
The pathway receives an input signal or stimulus s, which is drawn from the standard normal

distribution.Generally, an individual value of s can represent any deviation from the mean stim-
ulus value, and the full distribution of s represents the set of inputs that might be encountered
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over some time window in which the circuit is able to adapt. In the context of the retinal cir-
cuitry, s can be understood as the contrast of a small region, or pixel, of the visual stimulus. The
contrast in this pixel might be positive or negative relative to the ambient illumination level. The
full distribution of s would then represent the distribution of contrasts encountered by this bipo-
lar cell as the eye explores a particular scene. (We use Gaussian distributions here for simplicity
in analytical computations, though similar results are obtained in simulations with skewed stim-
ulus distributions, similar to the distributions of pixel contrast of natural scenes [43].) We
assume the distribution of s is fixed in time. If properties of the signal distribution varied ran-
domly in time (for example, if the variance of possible signals the circuit receives fluctuates
between integration times), over long times the circuit would see an effectively broader distribu-
tion due to this extra variability. Conversely, if the particular visual scene being viewed or other
environmental conditions change suddenly, the input distribution as a whole (for example, the
range of contrasts, corresponding to the width of the input distribution) also changes suddenly.
Therefore we expect the shape of the optimal nonlinearity to adapt to this new set of signal and
noise distributions.We do not model the adaptation process itself; our results for the optimal
nonlinearity correspond to the end result of the adaptation process in this interpretation.

Fig 1. Model of neural encoding with three sources of noise. A: Model schematic for a single pathway. An input s is directly corrupted by some

noise η, and then transformed nonlinearly by f(�). The nonlinear processing stage sets the mean of a scaled Poisson response with variance equal

to κ times the mean response. This response is corrupted by additional additive downstream noise ζ to give a total response r. B: Transformed

stimulus distribution at each stage of the model. C: Model schematic for two parallel pathways. Noise upstream and downstream of the nonlinearity

may be correlated across neurons. For schematic purposes, we have drawn all signal processing steps as though they are contained within a

single neuron, but each pathway could more generally represent signal processing spread out across multiple neurons.

doi:10.1371/journal.pcbi.1005150.g001
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We incorporate three independent sources of noise, located before, during, and after the
nonlinear processing stage (Fig 1A and 1B). The input stimulus is first corrupted by upstream
noise η. This noise source represents various forms of sensory noise that corrupt signals enter-
ing the circuit. This might include noise in the incoming stimulus itself or noise in photorecep-
tors. The strength of this noise source is governed by its variance, s2

up. The signal plus noise
(Fig 1B, purple) is then passed through a nonlinearity f(�), which sets the mean of a scaled Pois-
son process with a quantal size κ. The magnitude of κ determines the contribution of this noise
source, with large values of κ corresponding to high noise. This noise source captures quantal
variations in response, such as synaptic vesicle release, which can be a significant source of
noise at the bipolar cell to ganglion cell synapse [26]. Finally, the scaled Poisson response is
corrupted by downstream noise z (with variance s2

down) to obtain the output response (Fig 1B,
green). This source of noise captures any variability introduced after the nonlinearity, such as
noise in a postsynaptic target. In the retina, this downstream noise captures noise intrinsic to a
retinal ganglion cell, and the final output of the model is the current recorded in a ganglion
cell. If the sources of upstream and downstream noise are independent (e.g., photoreceptor
noise and retinal ganglion cell channel noise, respectively), then the two kinds of noise will be
uncorrelated in a feedforward circuit like we model here. Lateral input from other channels,
which we do not consider, could potentially introduce dependence between upstream and
downstream noise. Feedback connections operating on timescales within a single-integration
window could also potentially introduce correlations between additive upstream and down-
stream noises. However, while such connections could be important in cortical circuits, they
are not significant in the sensory circuits that inspired this model, so we assume independent
upstream and downstream noise in this work. For further biological interpretation of the
model, see Discussion.
We begin by studying a model of a single pathway. We then consider how two pathways

operating in parallel ought to divide the stimulus space to most efficiently code inputs. These
models are constructed of two parallel pathways of the single pathway motif (Fig 1C), with the
addition that noise may be correlated across both pathways. The study of two parallel channels
is motivated by the fact that a particular area of visual space is typically encoded by paired ON
and OFF channels with otherwise similar functional properties, but similar parallel processing
occurs throughout early sensory systems and in some cortical areas [29, 31, 32]. We will return
to further discussion of parallel pathways in the second half of the Results.

Optimal coding strategies for single pathways

We beginwith the case of a single pathway. For simplicity, we start with cases in which one of
the three noise sources dominates over the others. Considering cases in which a single noise
source dominates isolates the distinct effects of each noise source on the optimal nonlinearity.
We then show that these same effects govern how the three noise sources compete in setting
the optimal nonlinearity when they are all of comparable magnitude.

Upstream noise decreases slope of optimal nonlinearity to encode broader range of
inputs. In Fig 2, we plot the optimal nonlinearities for cases in which one of the noise sources
dominates the others. For each noise source, we show results for small, intermediate, and large
values of the signal-to-noise ratio (SNR) of model responses. Importantly, the SNR is matched
within columns of Fig 2, allowing for a direct comparison of the effects of different noise
sources.We present both analytical results (dashed lines) for optimal nonlinearities con-
strained only by the assumption of fixed dynamic range, and results using parametrized non-
linearities of a sigmoidal form (solid lines). We show only optimal “ON” nonlinearities
(nonlinearities that increase response strength as stimulus strength increases) in this section
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for simplicity; the mirror-image “OFF” nonlinearities (which decrease response strength as
stimulus strength increases) are mathematically equivalent and result in identical values of
MSE or MI.
We beginwith the case in which the upstream noise dominates (Fig 2, top row). The opti-

mal nonlinearities are centered around the most likely stimulus and have progressively lower
slopes for greater upstream noise variance. Upstream noise is added directly to the stimulus

Fig 2. Optimal nonlinearities when one noise source dominates, found by minimizing the mean

squared error (MSE) of a linear estimator. Each row shows three separate cases in which a single source

of noise dominates. The dominant noise source is indicated by the highlighted source in the circuit

schematics left of each row. The overall level of noise is quantified by the signal-to-noise ratio (SNR), which

is fixed in each column. The SNR is largest in the leftmost column and smallest in the rightmost column; i.e.,

the strength of the noise increases toward the right. The shape of the optimal nonlinearity changes markedly

depending on which noise source dominates the circuit, even when the overall signal-to-noise ratio of model

responses is the same. Analytical results (dashed colored lines) and simulations with sigmoidal

nonlinearities (solid lines) are shown. The stimulus distribution (dashed gray curve) is also shown for

reference. Shaded regions encompass nonlinearities that perform within 1% of the minimum mean squared

error of the optimal sigmoidal nonlinearity. The SNR is computed as the variance of the signal (the variance,

across all inputs, of the average response to a given input) divided by the variance of the noise (the average

variance in responses to a given input); see Methods.

doi:10.1371/journal.pcbi.1005150.g002
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and hence cannot be removed by any nonlinear transformation. The optimal strategy in this
case is to ensure that the limited range of outputs is used to encode the entire range of inputs.
Increasing upstream noise effectively broadens the input distribution, and decreasing the slope
of the nonlinearity compensates for this broadening. Quantitatively, we find that the effect of
upstream noise is captured entirely by normalizing the inputs (stimulus plus upstream noise)

by their standard deviation ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
Þ (seeMethods). In other words, nonlinearities are sim-

ply scaled versions of each other that overlay entirely when normalized by the effective range of
inputs (stimulus plus noise) they receive.
It is instructive to see the responses produced by both optimal and suboptimal nonlineari-

ties to clarify this intuition (Fig 3). A suboptimal nonlinearity (Fig 3B) has a relatively steep
slope, which results in a large number of inputs producing either maximal or minimal
responses. As a result, the response distribution shows peaks near the edges of the response
range. The optimal nonlinearity (Fig 3A) has a shallower slope which prevents saturation of
the outputs.

Poisson noise shifts the optimal nonlinearity so that low-noise responses encodemost
likely stimuli. We next isolate the effect of the scaled Poisson noise, by considering the case
where its magnitude dominates the other noise sources (Fig 2, middle row). Increasing κ
increases the slope of the optimal nonlinearity and shifts it off-center. The scaled Poisson noise
has variance proportional to the mean response. Thus, stimuli that elicit the weakest responses
also generate the lowest noise. The offset of the optimal nonlinearity associates the least noisy
range of outputs, near the base of the nonlinearity, with the most probable stimuli.
A suboptimal nonlinearity (Fig 3D) maps a significant proportion of inputs to medium and

high responses, which are noisy. Conversely, the optimal nonlinearity (Fig 3C) maps a large
proportion of inputs to lower response values, including many to 0, which has no associated
Poisson noise. This comes at the cost of compressing many stimuli to the same response value,
but in terms of decoding error is more than compensated for by decreased levels of noise.
We chose to model this source of noise as following Poisson statistics, as several lines of evi-

dence suggest that vesicle release at synapses in the retina is well-describedas Poissonian [44,
45]. However, we also tested to what extent the results here depend on this particular assump-
tion.We investigated how optimal nonlinearities change for two additional types of noise that
might be associated with the nonlinear stage: (1) multiplicative Gaussian noise, where the vari-
ance is proportional to the output of the nonlinearity, and (2) vesicle release that follows a
binomial distribution, where the output of the nonlinearity determines the probability of
release. In both cases (and for both criteria for optimality, MSE and MI), results are qualita-
tively similar to those presented here (see S1 Fig). The trends were necessarily identical for the
Poisson and multiplicative Gaussian noises, which both have variances proportional to the
nonlinearity. For a linear stimulus estimator, as used in this work, the MSE depends only on
the mean and covariances of the nonlinear-stage noise—higher order statistics do not affect the
shape of the optimal nonlinearity determined by minimizing the MSE. Hence, any circuit in
which the mean and variances of the response are proportional to the nonlinearity will yield
the same optimal nonlinearities.

Downstreamnoise steepens slopes to improve discriminability of responses. Finally, we
study the case where the downstream noise dominates other noise sources (Fig 2, bottom row).
Here, the optimal nonlinearity remains centered for a range of noise strengths but becomes
markedly steeper as the variance of downstream noise increases. Steepening the slope amplifies
changes in the response with respect to the stimulus, while leaving the downstream noise
unchanged. The result is a greater signal-to-noise ratio for those stimuli that fall near the mid-
point of the nonlinearity. Placing the nonlinearity in the center of the stimulus distribution
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Fig 3. Responses produced by optimal (left column) and suboptimal (right column) nonlinearities. Each row

shows a different set of noise conditions in which a single source of noise is dominant (i.e., upstream noise dominates in

panels A and B, Poisson noise in C and D, and downstream noise in E and F). Markers show 1,000 points randomly

selected from the stimulus distribution (bottom subpanels) and the corresponding responses that are produced by the

nonlinearity (solid line). Different nonlinearities produce very different response distributions (left subpanels). These

particular suboptimal nonlinearities are chosen for illustrative purposes, to highlight qualitative features of the optimal

nonlinearities.

doi:10.1371/journal.pcbi.1005150.g003
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ensures that the most likely stimuli will be the most discriminable. This differs from the case of
upstream noise, where the slope becomes less steep as noise increases. Unlike upstream noise,
which corrupts the stimulus directly, the signal and downstream noise can be differentially
amplified to improve the SNR.
The optimal nonlinearity for large downstream noise (Fig 3E) has a steep slope. Responses

corresponding to stimuli above versus below the mean can be clearly distinguished from the
response distribution. This improved discriminability comes at the cost of encoding a smaller
range of inputs, but this is compensated for by the improved discriminability for inputs that
fall within the range encoded by the nonlinearity. A suboptimal nonlinearity (Fig 3F), on the
other hand, results in relatively poor discrimination of a broader range of inputs: small differ-
ences in inputs lead to small differences in outputs, which are overcome by the downstream
noise. If the downstream noise is much larger than the typical response sizes, the nonlinearity
essentially becomes an all-or-nothing response; i.e., the downstream noise is so large that the
response can only provide information about whether or not the stimulus is greater or less
than the mean. Some of this effect can be seen in the example shown in Fig 3E, with the
response distribution becoming bimodal.
To ensure that our results are not dependent on our criterion for optimality (i.e., minimiz-

ing the mean squared error of a linear estimator), we also used simulations to find the optimal
nonlinearities that maximize the mutual information between stimulus and response (see
Methods for details). Nonlinearities that maximize the MI show the same trends as those that
minimizeMSE (S2 Fig; compare to Fig 2).

Noise sources compete to shape the nonlinearity. The results in Fig 2 demonstrate that
optimal nonlinearities have very different shapes when different noise sources dominate, even
if they have the same overall “strength” (i.e., induce the same SNR). In particular, upstream
and downstream noise have opposite effects on the optimal nonlinearity, even though they are
both Gaussian and additive at their source.
We now show that the same trends occurwhen there are multiple noise sources of compara-

ble strengths. In this case the optimal nonlinearities lie between the solutions shown above and
change smoothly as the noise parameters are varied. Fig 4 takes three cuts through the (σup, κ,
σdown) parameter space and shows how the optimal nonlinearity changes as one moves in a
particular direction.Once again, we see that different noise sources often have opposite effects
on features of the optimal nonlinearity. This highlights the importance of consideringmodel

Fig 4. Optimal nonlinearities for cuts through parameter space. A: Schematic showing regions of 3-dimensional parameter space: σup (purple),

σdown (green), and κ (blue). Insets show the optimal nonlinearity corresponding to the like-colored point, along with the stimulus distribution (dashed gray

curves). B: Slope of the optimal nonlinearity as each parameter is varied along the corresponding dashed axis in A. C: Offsets plotted in the same

manner as B. Slopes and offsets are obtained from the exact solutions of the model.

doi:10.1371/journal.pcbi.1005150.g004
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assumptions about where noise enters in a circuit.When trying to determine whether a given
circuit is operating optimally, one can arrive at opposite conclusions depending on where noise
is assumed to be present. This is an important point given that there are many different ways in
which noise is commonly incorporated into neural models (e.g., Poisson noise in the nonline-
arity or additive Gaussian noise) and these assumptions are not frequently based on knowledge
of noise location in the corresponding biological circuit.

Optimal coding strategies for parallel pathways

Information in many sensory systems is encoded in parallel pathways. In vision, for example,
inputs are encoded by both ON cells and OFF cells. In audition, an incoming stimulus is
encoded in many parallel channels, each encoding a particular frequency band. Allowing for
multiple parallel channels raises fundamental questions about how these resources should be
allocated: should multiple channels have the same or different response polarities? Should an
input be encoded in multiple channels redundantly, or should different channels specialize in
encoding a particular range of inputs? To understand these tradeoffs, we solved our model for
the optimal nonlinearities for a pair of parallel pathways, the simplest case in which these ques-
tions can be investigated. Indeed, in many cases, a small number of sensory neurons are
responsible for carrying the relevant signal [46–49].
Our circuit model for multiple pathways comprises parallel copies of the single pathway

model (Fig 1C), with the additional detail that both upstream and downstream noise may be
correlated across pathways. We show below that the sign and strength of these correlations can
strongly affect optimal encoding strategies. To focus on the effects of noise on optimal encod-
ing strategies, we added complexity to the noise structure, while making significant simplifica-
tions in the stimulus structure. In particular, we assume that both channels receive the same
stimulus. Correlated but non-identical stimuli in the two channels would likely affect optimal
encoding strategies, but we did not explore this possibility and leave it as a direction for future
inquiry.
We discuss the parallel pathway results in the following order: first, we discuss the possible

pairs of nonlinearities, which are richer than the single-pathway case. We then discuss the
functional effects that each of the parameters, or in some cases combinations of parameters,
has on the shapes of the nonlinearities, with a focus on which parameter regimes favor highly
overlapping versus minimally overlapping encoding of inputs (hereafter referred to as “over-
lapping” and “non-overlapping”). Finally, we discuss factors that determine whether a circuit
should encode inputs with channels of opposite polarity versus channels of the same polarity.

Multiple optimal coding strategies exist—“ON-OFF” and “ON-ON” pairs. Similar to
the single pathway case above, solving the model reveals that each nonlinearity may be of the
ON or OFF type, allowing for four combinations of pairs: ON-ON, ON-OFF, OFF-ON, and
OFF-OFF. Note that we did not make assumptions about the shape of the optimal nonlineari-
ties, other than restricting the output range. In particular, we did not explicitly imposemonoto-
nicity of the nonlinearities, though this may be a consequence of our choice of linear stimulus
estimator. Non-monotonic nonlinearities have been proposed to serve a variety of computa-
tional functions [50–56], and understanding under what conditions they are optimal is an
interesting and important direction for future studies; here we focus on the monotonic nonlin-
earities obtained from our analytic approach.
The ON-ON and OFF-OFF pairs are related by symmetry of the model and are equivalent,

as are the ON-OFF and OFF-ON pairs. However, the ON-OFF and ON-ON pairs are not
equivalent and have different decoding error (MSE) (similar to Ref. [56]). All ON-OFF pairs
are anti-symmetric (f1(z) = f2(− z)), with varying degrees of overlap between nonlinearities
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(Fig 5A). However, ON-ON nonlinearities split into separate subclasses: identical ON-ON
pairs are two copies of the same nonlinearity, f1(z) = f2(z) and hence overlap entirely, while
non-identical ON-ON pairs split their thresholds and overlap only in the tails, similar to the
configurations considered in several recent studies [21, 56]. For some noise conditions, identi-
cal and non-identical ON-ON pairs are co-existing analytical solutions of the model; the MSE
of the two solutions need not be equal. The non-identical subclass only exists when the circuit
can lower the MSE by splitting the thresholds. The situation is simpler for ON-OFF pairs, for
which we only observe a single solution for each noise condition.
We first present results for both ON-OFF and ON-ON classes of solutions, showing how

different noise sources shape optimal nonlinearities in a circuit with two parallel channels. The
qualitative effects of each noise source are consistent across ON-OFF and ON-ON architec-
tures. We then show which parameter determines whether same polarity or opposite polarity
solutions are globally optimal.

Highly correlated inputs favor non-overlapping encoding, uncorrelated inputs favor
overlapping encoding. To fully understand how the nonlinearity pairs change when a given
noise source dominates responses, we need to be precise about what we mean when we say

Fig 5. Optimal nonlinearities for a circuit with two parallel pathways, found by minimizing mean squared error (MSE) of a linear

estimator. A: Optimal nonlinearities for circuits in which pathways are of opposite polarity. Each row corresponds to a case in which one

particular noise source is dominant. The dominant noise source is indicated by the highlighted source in the schematics at the center of the

figure. As in Fig 2, solid curves are the optimal sigmoidal nonlinearities and colored dashed curves are optimal nonlinearities obtained

analytically. The gray dashed curves represent the stimulus distribution. Shaded regions represent the range of sigmoidal nonlinearities that

perform within 1% of the mean squared error of the optimal sigmoidal nonlinearities. B: Same as A but for pathways of the same polarity. We

address the relative coding efficiency of the different polarities in the section “Globally optimal strategies.”

doi:10.1371/journal.pcbi.1005150.g005
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upstream noise or downstream noise dominates. The overall impacts of the noise sources are
not simply the variances s2

up and s2
down but are also influenced by the degree of correlation

between the noise sources across pathways, ρup and ρdown. As we will make clear, these correla-
tions dictate the effective noise level, i.e., the extent to which noise interferes with signal decod-
ing (see [2] for relevant discussion of noise correlations).
We find that upstream noise parameters (both variance and correlations) determine the

degree to which optimal nonlinearities overlap, encoding some inputs in both channels. This is
true regardless of whether nonlinearities in the two pathways are of the same polarity
(“ON-ON”) or opposite polarities (“ON-OFF”). We can gain insight into this result by first
considering the effects of the two upstream noise terms (s2

up and ρup) individually. First, con-
sider the effects of changing the magnitude of upstream noise if it is uncorrelated across chan-
nels. If the magnitude of noise is small (small s2

up), one channel can reliably encode a stimulus,
and the most favorable strategy is for each pathway to encode a different range of inputs. This
allows the largest range of inputs to be encoded. If s2

up is large, however, it is beneficial to
redundantly encode the input in both channels, as averaging can be used to better recover the
stimulus, given that the noise is not (positively) correlated.
Now consider the effects of varying amounts of noise correlations, ρup, for a fixed noise

magnitude.Weak upstream noise correlations (ρup� 0) mean that averaging can be beneficial,
as the noise is independent in each channel. This favors overlapping encoding. Strong noise
correlations (ρup≲ 1), on the other hand, result in coherent shifts of the stimulus in both path-
ways, making it difficult to distinguish what part of the input is signal and what part of the
input is noise. Encoding highly correlated inputs (including highly correlated noise) with two
overlapping nonlinearities offers no advantage over encodingwith a single nonlinearity. The
better strategy, then, is to use each pathway to encode a different range of inputs, maximizing
coverage of the input space.
It turns out that these changes can be wholly captured by the correlation coefficient of the

total inputs (stimulus plus noise) to each channel,

reff �
hðsþ Z1Þðsþ Z2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðsþ Z1Þ
2
ihðsþ Z2Þ

2
i

q ¼
s2
s þ s2

uprup

s2
s þ s2

up

: ð1Þ

i.e., s2
up and ρup do not independently control the degree of overlap of the nonlinearities. Ana-

lytical calculations (seeMethods) show that when the input to the nonlinearities is rescaled by

its standard deviation (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
, as in the single cell case), the dependence on σs, σup, and ρup

enters only through the effective parameter combination ρeff.
In summary, when inputs (stimulus plus noise) to parallel channels are uncorrelated, having

each channel cover overlapping regions of the input space provides two distinct estimates of
the stimulus. These estimates are combined to produce a better overall estimate, so encoding
the stimulus in both channels is favorable. When inputs are highly correlated or when noise is
low, the circuit cannot achieve better performance by encoding the input in two overlapping
channels than it can with a single channel, so it is best to have each nonlinearity cover a differ-
ent range of inputs to encode as large a range of stimuli as possible.

Poisson variability biases both channels to encodemost frequent stimuli. Increasing
the Poisson strength κ has opposite effects for ON-OFF versus ON-ON pairs (Fig 5, center
row) in terms of the degree of overlap in encoding. For ON-OFF pairs, increasing κ pushes the
nonlinearities apart, while for ON-ON pairs increasing κ pulls nonlinearities back together.
However, both of these effects are manifestations of the principle that the most reliable
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responses should encode the most likely stimuli, just as in the single-pathway case. Because the
variance of responses due to Poisson variability is lowest near the base of the nonlinearity,
increasing κ biases the base of the nonlinearities to be positioned near the peak of the stimulus
distribution. For ON-OFF nonlinearities, this effectively pushes the nonlinearities apart, while
ON-ON nonlinearities are drawn back together. In both ON-OFF and ON-ON pairs, the slope
of the nonlinearities increases to improve discriminability of inputs, as in the single-pathway
case.

Downstreamnoise variance steepens nonlinearities. High downstream noise steepens
the nonlinearities and drives the center of the nonlinearity back towards the most likely inputs
(Fig 5, bottom row). However, even for large noise, nonlinearitiesmay have varying degrees of
overlap, depending on the values of κ or ρeff. As such, the downstream noise does not have a
significant influence on the degree of overlap of the encoding strategies.
As in the case of a single pathway, results obtained by maximizing the mutual information

are qualitatively similar to those obtained by minimizing the mean squared error of a linear
estimator (S3 Fig; compare to Fig 5).

Competition between noise sources. To study the competition between noise sources
when there is not a clear dominant source, we sweep along cuts in the (ρeff, κ, σdown) parameter
space, similar to Fig 4. Here, however, we focus on how the rescaled slopes and offsets change
under different noise conditions. As described above, after rescaling by the standard deviation

of the input (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
), the effects of the three stimulus and upstream noise parameters can

be combined into a single parameter ρeff that determines the shape of the optimal nonlinearity.

We focus on the rescaled slopes (slope multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
) and rescaled offsets (offset

divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
) in order to present the effects of the single parameter ρeff. The Poisson

strength κ and the downstream noise standard deviation σdown have similar effects on the
paired nonlinearities as they do in the case of a single pathway. Poisson noise increases the
slope (Fig 6B, middle subpanel) and shifts the nonlinearities off-center (Fig 6C, middle sub-
panel). Downstream noise also steepens the slope (Fig 6B, right subpanel) and centers the non-
linearities (Fig 6C, right subpanel). The total input correlation ρeff has relatively little effect on
the rescaled slope (Fig 6B, left subpanel), but significantly impacts the offset (Fig 6C, left sub-
panel). The separation of the offsets of the ON-OFF nonlinearities (solid lines) increases as ρeff
increases towards 1, reflecting an increase in the degree of non-overlapping encoding.Under
most noise conditions, the two ON-ON nonlinearities (dashed lines) are identical and hence
encode inputs redundantly; however, as ρeff approaches 1, the offsets split, switching from the
identical ON-ON subclass to the non-identical ON-ON subclass. For nonlinearities of the
same polarity, this splitting is in competition with both the scaled Poisson noise and the down-
stream noise, which bias the base of the nonlinearities back towards the center of the stimulus
distribution (compare dashed lines in subpanels across Fig 6). If ρeff is not large enough, as is
the case for the cuts along the κ and σdown dimensions in Fig 6, no splitting occurs. Splitting of
ON-ON nonlinearities only occurs for a narrow range of ρeff between 0.9 − 1.0; this range
shrinks as the strength of the Poisson or downstream noise grow. For zero Poisson and down-
stream noise, the range is consistent with the model of [21].
These plots demonstrate that, as in the single pathway case, the different noise sources are

often in direct conflict with each other and result in qualitatively different nonlinearities. Fur-
thermore, the effects of upstream noise correlations differ from those of downstream noise cor-
relations, further describedbelow.

Globally optimal strategies:Downstreamnoise determines polarity of nonlinearities.
So far, we have investigated how different noise regimes shape the ON-OFF and ON-ON
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nonlinearities, without regard to which strategy is the globally optimal solution.We find that
downstream noise correlations primarily determine the relative efficiencyof ON-OFF nonline-
arities compared to ON-ON nonlinearities.
Fig 7 maps out the optimal strategy in each region of parameter space for an exemplary

value of κ, with different values of ρeff for each panel. Green points indicate that the ON-OFF
strategy is optimal, while purple or blue points indicate that identical ON-ON or non-identical

Fig 6. Optimal ON-OFF or ON-ON nonlinearities for slices through parameter space. A: Schematics showing regions of the effective

3-dimensional parameter space: total input correlation ρeff (purple), scaled Poisson strength κ (blue), and downstream noise standard

deviation σdown (green). Insets show the optimal nonlinearity corresponding to the like-colored point. Top schematic: optimal ON-OFF

nonlinearities, bottom: optimal ON-ON nonlinearities. B: Slopes of the optimal nonlinearities (rescaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

p
) for ON-OFF (solid)

and ON-ON (dashed) solutions as each parameter is varied along the corresponding dashed axis in A. C: Offsets (rescaled by

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

p
) plotted in the same manner as B. Insets in the ρeff plots are zoomed in to resolve the splitting of the identical ON-ON solution

into the non-identical ON-ON solution. Rescaled slopes and offsets are obtained from numerical solutions of the analytic model; see

Methods for details about rescaling.

doi:10.1371/journal.pcbi.1005150.g006

Fig 7. Dependence of solution polarity on noise parameters. Each panel shows the optimal solution type (indicated by color) as a function of σdown and

ρdown for a particular value of ρeff. Dot size indicates the percent decrease in MSE between the globally optimal solution and the best solution of a different

type (ON-ON where ON-OFF is optimal, and ON-OFF where ON-ON is optimal). Dots show results from numerical solution of integral equations for the

exact nonlinearities; black lines show analytic predictions for boundaries at which ON-ON and ON-OFF solutions are equally optimal. The parameter κ has

relatively little influence on the qualitative features of this plot, so for simplicity, we only show cases where κ = 1.0. The crossover from identical to non-

identical ON-ON solutions occurs between ρeff� 0.9 − 1.0; strong downstream noise or Poisson strength reduces the range over which splitting occurs. The

rescaled nonlinearities and globally optimal strategy depend only on the parameters ρeff, κ, σdown and ρdown; the dependence on σs, σup, and ρup enters only

through ρeff. See Methods for details.

doi:10.1371/journal.pcbi.1005150.g007
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ON-ON strategies, respectively, are optimal. The size of the dots indicates the percent differ-
ence in MSE between the globally optimal solution and the best solution of a different type
(e.g., if ON-OFF is optimal, percent difference between the optimal ON-OFF solution, and the
best possible ON-ON solution).
We see that downstream noise correlations impact the relative mean squared error of

ON-OFF versus ON-ON encoding strategies: ON-OFF pairs are generally optimal when the
downstream noise is positively correlated across pathways, while ON-ON pairs are generally
optimal when downstream noise is negatively correlated across pathways. The transitions can
bemost easily understood by considering the behavior of the optimal linear readout of the
stimulus for each strategy. This readout is a difference of the total responses for ON-OFF pairs,
while it is a (weighted) sum of the total responses for ON-ON pairs. Thus, ON-OFF pairs result
in a subtraction of the downstream noise, while ON-ON pairs add the downstream noise. It is
therefore favorable to encodewith an ON-OFF pair when downstream noise is positively cor-
related and with an ON-ON pair when downstream noise is negatively correlated. Although
the intuition is clearer for the linear readout, this picture also holds whenMI is maximized (see
S2 and S3 Figs).
The exact values of downstream noise variance and correlations at which the transition

fromON-OFF to ON-ON strategies being optimal depends on the upstream and scaled Pois-
son noise. The strength κ adjusts the height of the transition boundaries: increasing κ tends to
increase the range of downstream noise strength and correlations for which ON-OFF is opti-
mal, while taking κ! 0 shifts the boundary curve down until the transition occurs at ρdown = 0
for all σdown.

Discussion

While the efficient coding hypothesis has been an important principle in understanding neural
coding, our results demonstrate that proper interpretation of a neural circuit’s efficiency
depends on the nature and location of noise; a nonlinearity that is efficient if noise enters at
one location in the circuit may be inefficient if the noise actually enters in a different location.
Several previous studies have investigated how architecture or cell type impacts efficient

coding strategies [20, 21, 35, 56–58]. While these models also include noise, assumptions about
the location and strength of noise, as well as the allowed shapes of the nonlinearities, are more
restrictive than our approach, and are not intended to systematically investigate the effects of
disparate noise sources on coding strategies. Many similar questions can be answered using
our model, and thus our work complements these studies by providing a broader, unifying pic-
ture of the interplay between noise and circuit architecture or cell types, while highlighting
how different assumptions about noise could alter the conclusions or interpretation of previous
work.

Implications for efficient coding in biological circuits

Noise in neural circuits arises from a variety of sources, both internal and external to the ner-
vous system (reviewed in [1]). Noise is present in sensory inputs, such as fluctuations in photon
arrival rate at the retina, which follow Poisson statistics, or variability in odorant molecule
arrival at olfactory receptors due to random diffusion and the turbulent nature of odor plumes.
Noise also arises within the nervous system due to several biophysical processes, such as sen-
sory transduction cascades, channel opening, synaptic vesicle release, and neurotransmitter
diffusion.
Past work has focused on two complementary, but distinct aspects of neural coding: 1) how

noise limits coding fidelity, and 2) how circuits should efficiently encode inputs in the presence
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of such noise. Much of the work to date has focused on the first aspect, investigating how noise
places fundamental limits on information transfer and coding fidelity for fixed neural coding
strategies (e.g., tuning curves) [2–5]. Examples include studying how noise correlations lead to
ambiguous separation of neural responses [2] and which correlation structuresmaximally
inhibit coding performance [5].
The second perspective dates back to the pioneering work of [6] and [7]. These early works

primarily considered how efficient codes are affected by constraints on neural responses, such
as limited dynamic range. Recent studies have built upon these foundational studies, investigat-
ing further questions such as how circuit architecture shapes optimal neural codes [20, 21, 35,
56–58]. However, this body of work has not systematically studied how efficient coding strate-
gies depend on assumptions made about the nature of noise in a circuit.
Previous work has shown that the amount of noise in a circuit can qualitatively change opti-

mal coding strategies [8, 59]. We also find that noise strength can be an important factor in
determining efficient coding strategies. A 5- to 10-fold decrease in the signal-to-noise ratio pro-
duces dramatic qualitative changes in the optimal nonlinearities (Fig 2), and those changes
depend on noise location. The SNR values used in our study correspond to a range of SNR val-
ues commonly observed in responses of neurons in early sensory systems [60, 61], suggesting
that this result could be observed in biological circuits. Our analysis goes beyond consider-
ations of noise strength to reveal how efficient coding strategies change depending on where
noise arises in a circuit, showing that different noise sources often having competing effects.
Other work in the context of decisionmaking has similarly shown that the location of noise
can impact the optimal architecture of a network, thus demonstrating that noise location in a
circuit is important not only for signal transmission but also for computation [62]. Knowledge
of both noise strength and where noise arises is therefore crucial for determiningwhether a
neural circuit is encoding efficiently or not. Notably, even when the SNR of the circuit outputs
is the same, the optimal nonlinearity can be very different depending on the location of the
dominant noise source.
The locations of different noise sources have perhaps beenmost clearly elucidated in the ret-

ina. Several studies have investigated noise within the photoreceptors, and in some cases have
even implicated certain elements within the transduction cascade [61, 63, 64]. Additional noise
arises at the photoreceptor to bipolar cell synapse, where stochastic fluctuations in vesicle
release obscure the signal [45, 65–67]. It has also been suggested that noise downstream of this
synapse contributes a significant amount of the total noise observed in the ganglion cells, with
some studies pointing to the bipolar cell to ganglion cell synapse specifically [26, 67].
Several pieces of evidence show that the relative contributions of different noise sources can

change under different conditions as a circuit adapts. For example, in starlight or similar condi-
tions, external noise due to variability in photon arrival dominates noise in rod photoreceptors
and the downstream retinal circuitry [61, 68–70]. As light levels increase, noise in the circuits
reading out the photoreceptor signals—particularly at the synapse between cone bipolar cells
and ganglion cells—can play a more prominent role [26, 67]. Moreover, even in cases where
the magnitude of a given noise source remains unchanged, adaptation can engage different
nonlinearities throughout the circuit, shifting the location of the dominant nonlinearity and
thereby effectively changing the location of the noise sources relative to the circuit nonlinearity.
The fact that noise strength and nonlinearity location in neural circuits is subject to change
under different conditions underscores the importance of understanding how these circuit fea-
tures shape optimal encoding strategies.
In the retina, it has been observed that the nonlinearity at the cone bipolar to ganglion cell

synapse can change dramatically depending on ambient illumination. Under daylight viewing
conditions, this synapse exhibits strong rectification. Yet under dimmer viewing conditions,
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this synapse is nearly linear [42]. The functional role of this change is unclear, though the fact
that noise sources are known to change under different levels of illumination points to a possi-
ble answer. If the dominant source of noise shifts from external sources to sources within
downstream circuitrywith increasing light level, as suggested by the evidence in [42], our
results indicate that the circuit indeed ought to operate more nonlinearly at higher light levels.
Furthermore, it is known that the strength of correlations not only varies between different
types of retinal ganglion cells [71], but these correlations may be stimulus dependent [72, 73].
Based on our results for paired nonlinearities, we predict that types of neurons that receive
highly correlated input will have nonlinearities with small overlap, while cells that receive
uncorrelated input will have highly overlapping nonlinearities. Fully understanding this adap-
tation, and adaptations in other systems, will require further elucidation of the noise sources in
the circuit.

Reinterpretation of other efficient coding studies

Understanding how different aspects of circuit architecture shape efficient coding strategies
has been a recent area of interest [20, 21, 35, 56–58]. However, a systematic study of the effects
of noise was not the goal of these works, and so the properties of the noise in these studies has
been limited, bound by specific assumptions on noise strength and location, and the allowed
shapes of nonlinearities. As a result, while there is some overlap in the conclusions of these
studies, the differences in assumptions about the noise and nonlinearities also lead to some
apparent disagreement. Fortunately, we can investigate many similar questions within our
model, and thereby complement the results of these previous studies and enrich our under-
standing of the role of circuit architecture and function.We briefly discuss the connections
that other published studies have to the work presented here, focusing on studies with ques-
tions that can be most directly investigated as special cases of our model.
Early work by Laughlin suggested a simple solution for how a single neuron can maximize

the amount of information transmitted: a neuron should utilize all response levels with equal
frequency, thereby maximizing the response entropy [7]. Laughlin found that an interneuron
in the compound eye of the blowfly transforms its inputs according to this principle. More
recent work investigated nonlinearities in salamander and macaque retinal ganglion cells, pre-
dicting that optimal nonlinearities should be steep with moderate thresholds [35]. Experimen-
tal measurements of nonlinearities in ganglion cells were found to be near-optimal based on
these predictions. Although both of these studies (along with many others) predict that neu-
rons are efficiently encoding their inputs, assumptions about noise are not well-constrained by
experiment. (In one case, the model assumes very low noise of equal magnitude for all output
levels, while in the other all noise is at the level of the nonlinearity output.) As our work shows,
one can arrive at different—even opposite—conclusions depending on where noise is assumed
to enter the circuit.Without experimentally determining the sources of noise in each circuit, it
is impossible to determine whether that circuit is performing optimally.
Going beyond single neurons or pathways, several recent studies have investigated the bene-

fits of using multiple channels to encode stimuli and assigning different roles to each of those
channels depending on circuit inputs. For example, Gjorgjieva and colleagues investigated
when it is beneficial to encode inputs with multiple neurons of the same polarity versus encod-
ing inputs with neurons of different polarity [56]. They conclude that ON-ON and ON-OFF
circuits generally produce the same amount of mutual information, with ON-OFF circuits
doing so more efficiently per spike. Our results provide a broader context in which we can
interpret their findings, showing that when additive downstream noise (which was not
included in their model) is anti-correlated, encodingwith same polarity neurons can become a
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more favorable solution. Another recent study investigated under what conditions it is benefi-
cial for multiple neurons of the same polarity to have the same threshold and when it is benefi-
cial to split thresholds [21]. In particular, [21] find that nonlinearities split when the strength
of upstream noise is weak. Our results are consistent with this finding and again broaden our
understanding of why this splitting occurs: by incorporating correlations, we show that it is not
simply the amount of noise that determines splitting, but the combination of noise strength
and noise correlations. This identifies additional possibilities for testing these efficient coding
predictions, by looking not just for cells that receive noisy input with similar magnitudes, but
by looking for types of cells that receive correlated versus uncorrelated input and determining
the degree of overlap of their nonlinearities.

Conclusion

We find that even in relatively simple circuit models, assumptions about the location and
strength of multiple noise sources in neural circuits strongly impact conclusions about optimal
encoding. In particular, different relative strengths of noise upstream, downstream, or associ-
ated with nonlinear processing of signals yield different optimal coding strategies, even if the
overall signal-to-noise ratio is the same. Furthermore, correlations between noise sources
across multiple channels alter the degree to which optimal channels encode overlapping por-
tions of the signal distribution, as well as the overall polarity of the channels. On the other
hand, different combinations of noise sources can also yield very similar nonlinearities. Conse-
quently, measurements of noise at various locations in neural circuits are necessary to verify or
refute ideas about efficient coding and to more broadly understand the strategies by which neu-
rons mitigate the effects of unwanted variability in neural computations.

Methods

Model details

Ourmodel is schematized in Fig 1. Biophysical interpretation is discussed in detail in the
Results and Discussion.We model the input to the circuit as a signal or stimulus s that comes
from a distribution of possible inputs within a short integration time window, and hence is a
random variable in our model. Before this input can be encoded by the circuit, it is corrupted
by noise η, which we also take to be a random variable. The circuit then encodes total signal
s + η by nonlinearly transforming it, f(s + η). This transformed signal sets the mean of a vari-
able circuit response. That is, the circuit does not respond deterministically, but stochastically.
We do not take this stochastic response to be spiking, due to the fact that spike generation has
been shown to be repeatable, attributing variability in spiking to other sources [22–24]. Instead,
inspired by quantal neurotransmitter release, which results in post-synaptic potentials of inte-
ger multiples of a fixedminimum size, we model the stochastic response as a scaled Poisson
distribution: responses come in integer multiples of a minimum non-zero response size κ, with
an overall mean response f(s + η), conditioned on the total input, s + η. This stochastic response
is then corrupted by downstream noise z, which we also take to be a random variable. The total
response r of a single-path circuit is thus

r ¼ kmþ z; ð2Þ

wherem is a Poisson-distributed random variable with mean κ − 1 f(s + η), such that the mean
of κm is f(s + η). Our circuit model thus has three sources of intrinsic variability: the additive
noise sources (η and z) and the stochastic scaled-Poisson response.
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We assume the statistics of the signal and noise are held fixed over a time window long
enough that the circuit can adapt its nonlinearity to the full distribution of signal and noise.
That is, in a small integration time window Δt, the channel receives a draw from the signal and
noise distributions to produce a response. Thus, we model the signal s and noises η, z, and the
scaled Poisson responses as random variables rather than stochastic processes.
In this work, we assume the distribution of possible inputs to be Gaussian with fixed variance

s2
s ; without loss of generality we can take the mean to be zero (i.e., the signal represents variations
relative to a mean background).We assume the upstream and downstream noise to be Gaussian
with mean 0 and variances s2

up and s2
down, respectively. The assumption of Gaussian distributions

for the input and noise is not a restriction of the model, but a choice we make to simplify our
analyses and becausewe expect physiologically relevant noise sources to share many of the prop-
erties of a Gaussian distribution. Even in cases where the input distribution is not Gaussian, pre-
processing of inputs can remove heavy tails and lead to more Gaussian-like input distributions.
It has been shown that stimulus filtering in the retina indeed has this effect [74].
An additional scenario to consider is the possibility that the signal properties, such as the

variances, could themselves be random.We might then wonder how this would impact the pre-
dicted nonlinearities. As a “trial” of our model is a single draw from the stimulus and noise dis-
tributions, there is no well-defined variance on a single trial. A changing variance on every trial
would be equivalent to starting with a broader noise distribution of fixed variance.We can thus
interpret the stimulus distribution we use in the study to be the effective distribution after trial-
by-trial variations in variance have already been taken into account. The results for a signal of
constant variance can thus be adapted, qualitatively, to the case of random trial-by-trial vari-
ance by increasing the stimulus variance in order to mimic the impact that trial-by-trial
changes in variance have on the shape of the nonlinearity.

Two methods for determining the optimal nonlinearities

In order to understand how noise properties and location impact efficient coding strategies, we
seek the nonlinearity that best encoded the input distribution for a variety of noise conditions.
We primarily consider the mean squared error (MSE) of a linear estimator of the stimulus, as
outlined below, as our criterion of optimality. This is not the only possible optimality criterion,
so to check the effects that other criteria might have, we also consider maximizing the mutual
information (MI) between stimulus and response. MI provides a measure of coding fidelity
that is free from assumptions about how information is read out from responses. However, MI
is difficult to evaluate analytically for all but the simplest models. Indeed, for our model, deriv-
ing exact analytic equations for the optimal nonlinearities usingMI is intractable.We turn to
simulations in this case.
We determine the nonlinearities obtained by minimizing the MSE using two complemen-

tarymethods. First, we take variational derivatives of the MSE with respect to the nonlinearities
themselves to derive a set of exact equations for the optimal nonlinearities, free from any
assumptions about their shape or functional form, as describedbelow. The only constraints we
apply are that the nonlinearity must be non-negative and saturate at a value of 1. (The choice
of saturation level is arbitrary and does not affect the results.) Applying such constraints are
non-trivial—inmost variational problems constraints enforce an equality, but in our method
we are enforcing an inequality, discussed in the next section.Using this analytic approach, we
minimize the assumptions we make about the nonlinearities and obtain insights into the
behavior of the model that are otherwise inaccessible.
Second, we parametrize the nonlinearities as sigmoidal or piecewise linear curveswith two

parameters that control the slope and offset.We simulate the model, sweeping over the slope
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and offset parameters (Fig 8A) until we find the parameter set that minimizes the MSE of the
linear readout. This parametric approach makes strong assumptions about the form of the
nonlinearity but also has distinct advantages. Simulations allow us to test to what extent our
conclusions about the shape (i.e., slope and offset) of the optimal nonlinearity depend on its
specific functional form. For example, we find from our analytical calculations that optimal
nonlinearities are roughly piecewise linear (Fig 8C), but one might expect biophysical con-
straints to restrict neurons to having smooth nonlinearities. For this reason, we also test sig-
moidal shaped nonlinearities, a smooth approximation of the piecewise linear solutions that
emerge from the nonparametric analytical approach, and use simulations to find the optimal
parameters. We find the results with sigmoidal nonlinearities qualitatively very similar to the
analytical solution (Fig 8C).
Parametric simulations have the additional advantage of allowing tests of more complex cri-

teria for optimality than the MSE, such as maximizing the mutual information (MI) between
the stimulus and responses, which we cannot compute analytically. Using simulations with
parametrized nonlinearities, we are able to find the nonlinearity that maximizesMI (Fig 8B).
We have verified that optimal nonlinearities found by maximizingMI are qualitatively similar
to those found by minimizing the MSE of a linear readout (Fig 8C shows one example). For
simplicity, throughout the main text of this paper we focus on results for minimizingMSE, but
present results frommaximizingMI in a few cases for comparison.

Variational approach

Single pathway. We first evaluate how well a single pathway encodes the signal s using the
mean squared error (MSE) between the true signal s and an estimate of the signal, sest, com-
puted from the responses:

w2 ¼ ðs � sestÞ
2


 �

s;r; ð3Þ

where the average is taken over all possible inputs and all possible responses (or, equivalently,
all possible inputs and all possible configurations of intrinsic circuit variability).We choose as

Fig 8. Complementary methods for determining the optimal nonlinearity. A: We use simulations to find the sigmoidal nonlinearity that minimizes the

mean squared error (MSE) of a linear readout of the stimulus. We sweep over multiple possible slope and offset combinations to find the optimal

nonlinearity. MSE is given in units of the stimulus variance, s2
s . B: Using the same method as A, we maximize the mutual information (MI) between stimulus

and responses. MI is given in units of bits. C: Optimal sigmoidal nonlinearities (blue and purple curves) found from simulations versus the optimal

nonlinearity determined by solving the model analytically (gray curve). The analytical solution is determined non-parametrically, and was not chosen to be

piecewise linear. All nonlinearities are qualitatively similar, regardless of the criterion for optimality or constraints on the functional form of the nonlinearity.

doi:10.1371/journal.pcbi.1005150.g008
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our signal-estimator a linear function of the response:

sest ¼ D0 þ Dr: ð4Þ

The parameterD is a “decoding weight” that sets the scale between the signal estimate and the
responses. It can be shown that minimizing χ2 with respect to the parameterD0 yieldsD0 =
−Dhri, so the estimator may be written

sest ¼ Dðr � hriÞ:

For the linear estimator, the expression for the MSE yields

w2 ¼ s2
s � 2Dhsf ðsþ ZÞi þ D2ðkhf ðsþ ZÞi þ var½f ðsþ ZÞ� þ s2

downÞ; ð5Þ

where the averages h. . .i are taken over the stimulus and noise distributions: s, η, z (averages
over the scaled-Poisson variable have been evaluated completely). This expression for the MSE
is a function of the decodingweightD and a functional of the nonlinearity f(z). To find the
most efficient coding strategy for a fixed set of noise parameters s2

up, κ, and s2
down, we must min-

imize χ2 with respect to both the decodingweightD (which gives the “optimal linear estima-
tor”) and the nonlinearity f(z).
We can minimize χ2 with respect to the decodingweightD by taking a partial derivative

and setting it equal to zero, yielding

D khf ðsþ ZÞi þ var½f ðsþ ZÞ� þ s2
down

� �
¼ hsf ðsþ ZÞi: ð6Þ

To determine the optimal nonlinearity, subject to the constraints 0� f(z)� 1, we take a var-
iational derivative of the MSE with respect to the nonlinearity itself. The constraints can be for-
mally applied using a continuous version of the Karush–Kuhn–Tucker (KKT) conditions, an
extension of the method of Lagrangemultipliers to inequality constraints. This allows us to
free ourselves from all assumptions about the shape of the nonlinearity outside of the limited
dynamic range we impose. For Gaussian stimuli and upstream noise of respective variances s2

s

and s2
up, the resulting equation for f(z) is

f ðzÞ ¼ X
s2
s

s2
s þ s2

up

z
D
�

k

2
þ hf ðsþ ZÞi

 !

; ð7Þ

whereX(x) = 0 if x< 0, 1 if x> 1, and x if 0� x� 1; this imposes the constraints on the solu-
tion. From Eq (7), we read off that the optimal single-pathway nonlinearity is a piecewise linear
function (i.e., the nonlinearity is of the formmz + b for z0< z< z1, and is 0 for z< z0 and 1 for
z> z1). It is important to reiterate that, other than the limited dynamic range, we did not
impose any assumptions (such as monotonicity) on the nonlinearity. All that remains is to self-
consistently determine the constants D and hf(s + η)i. Rather than solve directly for these con-
stants, it is convenient to write the nonlinearity as

f ðzÞ ¼ X
z � z0

z1 � z0

� �

; ð8Þ

and solve for the constants z0 and z1, which are defined by f ðzþ0 Þ ¼ 0 and f ðz�
1
Þ ¼ 1. This

yields the relations z1 � z0 ¼ Dð1þ s2
up=s2

s Þ and z0 = (z1 − z0)(κ/2 − hf(s + η)i). Using these
relations and Eq (8) to compute the expectations appearing in Eq (6) yields a set of transcen-
dental equations for z1 and z0 that can be solved numerically for any values of the noise param-
eters s2

s , s
2
up, κ and s2

down. The expectation integrals h. . .i over s and η can be non-
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dimensionalized by a change of variables that shows that z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
x1 and

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
x0, for rescaled inputs x1 and x0 that depend only on κ and s2

down. Following

this result, we set z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
x in Eq (7). The resulting coefficient of x is s2

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
=D.

Non-dimensionalizing the expectation values in Eq (6) reveals that this parameter combination
only depends on the non-dimensionalized expectation integrals, and so f(z) normalizes the

input z by the standard deviation of z. As a result, the rescaled nonlinearity f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
xÞ ¼

~f ðxÞ is independent of s2
s and s2

up.
Two pathways. Ourmodel of a two-pathway circuit encoding a common signal input

builds on two copies of the single-pathway circuit. Both paths receive the same input signal s,
which is then corrupted by noise upstream of the encoding nonlinearity. The corrupting noise
is not the same in each pathway, but may be correlated. Thus, the total input to pathway 1 is
s + η1 and the total input to pathway 2 is s + η2. Each pathway then encodes its input by nonli-
nearly transforming it, f1(s + η1) and f2(s + η2). The transformed signals set the mean of the
scaled-Poisson noise in each path. The stochastic responses of each path are conditionally inde-
pendent of each other. That is, correlations in the stochastic responses are only due to correla-
tions in the inputs to the two pathways, not due to any intrinsic correlation. Finally, these
stochastic responses are each corrupted by noise downstream of the encoding nonlinearity.
The noise is not the same in each pathway, but may be correlated across pathways.
The responses for each pathway may be formulated mathematically as

r1 ¼ km1 þ z1; ð9Þ

r2 ¼ km2 þ z2; ð10Þ

wherem1 andm2 are Poisson-distributed integers with (conditional) means κ−1 f1(s + η1) and
κ−1 f2(s + η2), respectively. As in the single-pathway model, we assume there is a distribution of
inputs s that we model as a zero-mean Gaussian with variance s2

s . As the upstream noise is cor-
related, η1 and η2 follow a joint-distribution that we take to be a zero-mean Gaussian with
equal variances s2

up in each pathway and correlation coefficient ρup. Similarly, we model the
downstream noise as a zero-mean bivariate Gaussian with variance s2

down in both pathways and
correlation coefficient ρdown. The rationales for choosing Gaussian distributions are the same
as in the single-pathway model. The choice of equal upstream or downstream noise variance in
each channel simplifies the analysis; unequal variances are tractable but offer little additional
insight, so we do not discuss this case in this work.
As in the single-path case, we determine the optimal choices of nonlinearities by minimizing

the mean-squared-error between the input to the circuit and an estimate computed from the
responses of each pathway. We estimate the signal using a weighted sum of the responses,

sest ¼ D1ðr1 � hr1iÞ þ D2ðr2 � hr2iÞ: ð11Þ

(The constant shiftD0 has been decomposed into the optimal choice,D0 = −D1hr1i − D2hr2i.)
The MSE for this choice of decoderworks out to

w2 ¼ s2
s � 2D1hsf1ðsþ Z1Þi � 2D2hsf2ðsþ Z2Þi

þD2
1
ðkhf1ðsþ Z1Þi þ var½f1ðsþ Z1Þ� þ s2

downÞ

þD2
2
ðkhf2ðsþ Z2Þi þ var½f2ðsþ Z2Þ� þ s2

downÞ

þ2D1D2ðcov½f1ðsþ Z1Þ; f2ðsþ Z2Þ� þ s2
downrdownÞ;

ð12Þ

How Efficient Coding Depends on Origins of Noise

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005150 October 14, 2016 22 / 34



averages in this expression are taken over the stimulus s, and the joint distributions of η1 and
η2; averages over z1 and z2 have been performed, yielding terms depending on the variance
(s2

down) and correlation (ρdown) of the downstream noise. Taking regular derivatives with
respect to the decodingweightsD1 and D2 and variational derivatives with respect to f1(z) and
f2(z) yields a coupled set of integral equations for the optimal weights and nonlinearities (sub-
ject again to the constraints 0� f1(z)� 1 and 0� f2(z)� 1). To simplify the resulting equa-
tions, we present them here in rescaled form, defining the rescaled nonlinearities
~f 1ðxÞ ¼ f1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
xÞ and ~f 2ðxÞ ¼ f2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
xÞ, as well as the rescaled decoderweights

~D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
D1=s2

s and ~D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
D2=s2

s . This reflects that, as in the single-pathway

case, the optimal nonlinearities rescale inputs by the total input standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s þ s2

up

q
.

The equations for the rescaled decoderweights and nonlinearities are

~D1 kh~f 1i þ var½~f 1� þ s2
down

� �
þ ~D2 cov½~f 1;

~f 2� þ s2
downrdown

� �
¼ hy~f 1i; ð13Þ

~D2 kh~f 2i þ var½~f 2� þ s2
down

� �
þ ~D1 cov½~f 2;

~f 1� þ s2
downrdown

� �
¼ hy~f 2i; ð14Þ

~f 1ðxÞ ¼ X
x
~D1

�
k

2
þ h~f 1i þ

~D2

~D1

h~f 2i �

Z 1

� 1

dy
e
�

1

2

ðy � reffxÞ
2

1 � r2
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � r2

effÞ
p ~f 2ðyÞ

2

6
6
6
6
4

3

7
7
7
7
5

0

B
B
B
B
@

1

C
C
C
C
A
; ð15Þ

~f 2ðxÞ ¼ X
x
~D2

�
k

2
þ h~f 2i þ

~D1

~D2

h~f 1i �

Z 1

� 1

dy
e
�

1

2

ðy � reffxÞ
2

1 � r2
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � r2

effÞ
p ~f 1ðyÞ

2

6
6
6
6
4

3

7
7
7
7
5

0

B
B
B
B
@

1

C
C
C
C
A
; ð16Þ

where again X(x) = 0 if x< 0, 1 if x> 1, and x if 0� x� 1. Here, the averages h. . .i involving
single nonlinearities are integrals with respect to a standard normal distribution weight,
exp ð� y2=2Þ=

ffiffiffiffiffiffi
2p
p

; e.g.,

hy~f i ¼
R1
� 1
dy

e
�

y2

2
ffiffiffiffiffiffi
2p
p y~f ðyÞ:

The covariance between ~f 1ðxÞ and ~f 2ðxÞ, cov½~f 1;
~f 2�, is defined as

cov½~f 1;
~f 2� ¼ h

~f 1
~f 2i � h

~f 1ih
~f 2i;

where

h~f 1
~f 2i ¼

R1
� 1
dy1dy2

~f 1ðy1Þ
e
�

1

2

y2
1
þ y2

2
� 2reffy1y2

1 � r2
eff

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

eff

p ~f 2ðy2Þ:
ð17Þ

The effective upstream noise correlation coefficient is defined by Eq (1) in the main text, and
represents the total effective correlation between the inputs s + η1 and s + η2; i.e., the perfectly
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correlated inputs to the two pathways (the two copies of s) are corrupted by noise, thereby
reducing the overall correlation of the inputs to the two channels.
Unlike the single-pathway case, the equations for the paired-pathway nonlinearities are cou-

pled nonlinear integral equations that must, in general, be solved numerically. Two special cases
can be solved by hand: ρeff = 0, in which the inputs to two pathways are effectively uncorrelated
(requiring large, negatively correlated upstream noise) and the equations decouple, yielding two
copies of the single-pathway nonlinearity. The second case is ρeff = 1, for which the inputs to the
two channels are perfectly correlated (either due to the lack of upstream noise or because
upstream noise is perfectly correlated between the two channels). In this case, the Gaussian inte-
gral kernels in Eqs (15) and (16) reduce to delta functions, yielding two coupled functional equa-
tions for the nonlinearities that can be solved to show the optimal nonlinearities are piecewise
linear. The resulting pair of nonlinearitiesmay have the same polarity of responses to stimuli,
which we call “ON-ON” or “OFF-OFF” pairs (by analogy to ON and OFF cells in the retina) or
opposite polarity responses to stimuli, which we dub “ON-OFF” or “OFF-ON” pairs.

Numerical solution of the coupled integral equations for the paired nonlinearities. To
solve the paired nonlinearities in general, we formulate Eqs (13)–(16) as fixed points of the set
of iterated mappings

~Dðnþ1Þ

1 ¼
kh~f ðnÞ2 i þ var½~f

ðnÞ
2 � þ s2

down

� �
hy~f ðnÞ1 i � cov½~f ðnÞ1 ;

~f ðnÞ2 � þ s2
downrdown

� �
hy~f ðnÞ2 i

Q2

i¼1
kh~f ðnÞi i þ var½~f

ðnÞ
i � þ s2

down

� �
� cov½~f ðnÞ1 ;

~f ðnÞ2 � þ s2
outrdown

� �2
; ð18Þ

~Dðnþ1Þ

2 ¼
kh~f ðnÞ1 i þ var½~f

ðnÞ
1 � þ s2

down

� �
hy~f ðnÞ2 i � cov½~f ðnÞ1 ;

~f ðnÞ2 � þ s2
outrdown

� �
hy~f ðnÞ1 i

Q2

i¼1
kh~f ðnÞi i þ var½~f

ðnÞ
i � þ s2

down

� �
� cov½~f ðnÞ1 ;

~f ðnÞ2 � þ s2
downrdown

� �2
; ð19Þ

~f ðnþ1Þ

1 ðxÞ ¼ X
x

~DðnÞ1

�
k

2
þ h~f ðnÞ1 i þ

~DðnÞ2

~DðnÞ1

h~f ðnÞ2 i �

Z 1

� 1

dy
e
�

y2

2
ffiffiffiffiffiffi
2p
p ~f ðnÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

eff

p
y þ reffx

� �

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A
; ð20Þ

~f ðnþ1Þ

2 ðxÞ ¼ X
x

~DðnÞ2

�
k

2
þ h~f ðnÞ2 i þ

~DðnÞ1

~DðnÞ2

h~f ðnÞ1 i �

Z 1

� 1

dy
e
�

y2

2
ffiffiffiffiffiffi
2p
p ~f ðnÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

eff

p
y þ reffx

� �

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A
: ð21Þ

We formally solved the linear set of eqs (13) and (14) for the rescaled decodingweights to write
down Eqs (18) and (19). We have also changed variables in the integrals to move all dependence
on ρeff into the nonlinearities. This is necessary for numerical stability when ρeff is close to 1.
Though we have written the above equations in rescaled form for notational simplicity, the

code was written in the original, unrescaled form, so we revert to that notation when describing
the algorithm below.
The idea of this set of iterative mappings is to make initial guesses for Dð0Þ1 , D

ð0Þ

2 , f
ð0Þ

1 ðzÞ, and
f ð0Þ2 ðzÞ, and use Eqs (18)–(21) to update the guesses until

Dðnþ1Þ

i � DðnÞi
�
�

�
� < �;

f ðnþ1Þ

i ðzÞ � f ðnÞi ðzÞ
�
�

�
� < �;
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for an absolute tolerance � = 10−4, for every point z. This is a form of Picard iteration for find-
ing the fixed points of iterated maps. It is difficult to prove convergence of this scheme, so we
resort to solving the equations for multiple initial guesses and showing that they consistently
converge to the same solutions. ON-OFF solutions can be found by making initial guessD1>
0,D2< 0, while ON-ON solutions can be found by making initial guessD1> 0,D2> 0. Our
initial guesses are Gaussian random variables centered at ±1, with a standard deviation of 0.5.
Eqs (15) and (16) constrain the form of the nonlinearities, which allows us to consider a

restricted set of initial guesses. Because the integral kernel has unit area and the nonlinearities
are restricted to the range [0, 1], the integral term in Eqs (20) and (21) is also within the range
[0, 1]. For initial guesses for the nonlinearities, we discretize the input values z, and for each
input value we choose a uniform random value for the integral term in Eqs (20) and (21). The
initial guess is also thresholded so that it satisfies the constraint 0 � f ð0Þi ðzÞ � 1.
For each class of ON-OFF or ON-ON initial conditions, we use 20 different initial random

seeds. The initial conditions for different seeds generally converge to the same solutions. Some
rare exceptions occur: occasionally, an ON-ON or ON-OFF initial guess may find the opposite
class of solution. For parameter regimes in which the MSE of identical and non-identical
ON-ON solutions is very close, ON-ON guesses may result in either solution.
During the iterative computations, the discretized nonlinearities are fit with splines for use

in numerically computing the various integrals. Single variable integrals are performed using a
Gauss-Legendre quadrature scheme, while double-integrals are evaluated usingMonte Carlo
sampling.
For the parameter values used in the numerical solution of the integral equations, see the

“Parameter values used in figures” section, below.

Model simulations

Analytic calculations allow us to exactly determine the nonlinearities that minimize the MSE of
a linear readout, without making any assumptions about the shape of the nonlinearity. How-
ever, it is possible that certain physiological properties might constrain the shape of the nonlin-
earity (to be smooth, for example). It is also possible that another criterion for optimality
(instead of minimizingMSE of a linear readout) might yield different results. To test these pos-
sibilities, we turned to simulations.

MinimizingMSE for different nonlinearity shapes. We first tested the dependence of
our results on the shape of the nonlinearity. Throughout the paper, we show results for logistic
nonlinearities of the form:

f ðzÞ ¼
1

1þ exp ð� nðz � �ÞÞ
ð22Þ

where ν is a slope parameter and ϕ is an offset parameter. (Remember that we constrain the
range of our nonlinearities to be between 0 and 1 to mimic physiological constraints that result
in thresholding and saturating nonlinearities.) This particular form was chosen due to its
smoothness (in contrast to the optimal nonlinearities found from analytic calculations) and
because it can be characterized by just two parameters. For a given set of noise conditions, we
drew randomly from the stimulus distribution and simulated responses that would be produced
by a nonlinearity with slope parameter ν and offset ϕ. We then found the decodingweight(s)D,
estimated the stimulus, and calculated the MSE. The number of draws required from the stimu-
lus distribution to produce an accurate estimate varied widely depending on the noise parame-
ters (with noisier conditions requiringmore draws to accurately estimate the MSE). We
generally used about 10 million draws from the stimulus distribution and averaged the results of
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5–10 repetitions of this procedure to obtain our results. Comparisonwith analytical calculations
verified the accuracy of our estimates. By completing this procedure for a number of different
possible parameters for the nonlinearity, sweeping over a broad range of slope and offset values,
we determined the parameters that minimized the MSE. These results are shown throughout
the paper for comparison to the analytic solutions. The two classes are in broad agreement.

Maximizing mutual information. Simulations also allowed us to test the dependence of
our results on the criterion for optimality. As a second criterion, we chose to maximize the
mutual information:

MIðS;RÞ ¼ HðRÞ � hH RjSð ÞiS ð23Þ

where S denotes the stimulus and R denotes the response. The (differential) entropy H is given
by:

HðXÞ ¼ �
R1
� 1
dx pðxÞ log 2pðxÞ ð24Þ

where p(x) denotes the probability density function of x. In order to estimate entropy, we used
the binless estimator outlined by Victor in [75]. Briefly, this strategy relies on calculating near-
est neighbor distances between points to estimate the distribution p(x); shorter distances indi-
cate a higher density of points and greater p(x). The binless entropy estimate is given by:

HdiffðXÞ � log 2

Sd M � 1ð Þ

d

� �

þ
g

ln 2ð Þ
þ
d
M

XM

j¼1

log 2 lj

� �

ð25Þ

d is the dimensionality of the distribution for which entropy is being estimated (in our case, the
number of pathways),M is the number of samples, and λj is the Euclidean distance to the near-
est neighbor of sample j. Sd is the area of a unit d-dimensional spherical surface (S1 = 2,
S2 = 2π). γ is the Euler-Mascheroni constant. See [75] for further details. As with estimating the
MSE, the number of draws from the stimulus distribution required for convergence was based
on the value of the noise parameters. Generally, about 10,000 draws from the stimulus distribu-
tion were taken to estimateH(R). For each of those stimulus values, about 10,000–100,000
responses were simulated (on different “trials,” the same stimulus presented repeatedly yields
different responses due to noise) to estimateH(R|S). Results of about 10 repetitions were aver-
aged to obtain the final MI estimate.
The binless method requires that no two samples be identical, which can pose problems in

certain conditions. For example, if κ is nonzero such that the output of the nonlinearity is dis-
cretized into a certain number of bins and downstream noise is zero or very small, many
responses are likely to be identical to numerical precision. In these cases, a more standard
binnedmethod was used to estimate entropy:

HdiffðXÞ � �
XM

j¼1

pðxjÞ log 2

pðxjÞ
w

� �

ð26Þ

wherew is the bin width. Similar numbers of draws from the stimulus distribution were used
as were used with the binless estimator. Generally, MI estimates converged when*50 bins
were used.
Several test cases were used to verify that the binless and binned approaches yielded con-

sistent estimates of the mutual information. MI estimates were additionally verified by com-
paring the estimates produced by these methods to particular cases in which the response
distribution can be calculated analytically, enabling accurate numerical computation of the
mutual information. Two cases were tested analytically. In both cases, the only source of
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noise is the downstream noise. The noise entropy H(R|S) is then equivalent for all S and the
second term in Eq (23) is simply the entropy of the downstream noise distribution,
1

2
log 2 2pes2

down

� �
. The nonlinearity thus only affects the response entropy H(R). The first of

the two nonlinearities considered was the cumulative distribution function of the stimulus
distribution; the output of the nonlinearity is then a uniform distribution on [0, 1]. The
response distribution is this uniform distribution convolved with the downstream noise dis-
tribution, giving

pðrÞ ¼
1

2
erf

r
ffiffiffi
2
p

sdown

 !

�
1

2
erf

r � 1
ffiffiffi
2
p

sdown

 !

;

where erfðxÞ ¼ 2p� 1=2
R x

0
dt exp ð� t2Þ is the error function. The second nonlinearity tested

was a piecewise-linearnonlinearity, f ðsÞ ¼ X
s� z0
z1 � z0

� �
. The response distribution can be com-

puted exactly, but the expression is moderately lengthy, so it is omitted here. In both cases,
numerical evaluation of H(R) can be done by direct numerical integration of p(r)log2 p(r).
Optimal nonlinearities obtained by maximizing the mutual information were in broad

agreement with those found by minimizing the mean squared error, as observed in S2 Fig
(compared to Fig 2) and S3 Fig (compared to Fig 5).

Signal-to-noise ratio. For a single channel, we define the signal-to-noise ratio (SNR) used
in Fig 2 as

SNR ¼
vars E r sj �½½ �

Es var r sj �½½ �
; ð27Þ

where the innermost expectation (numerator) and variance (denominator) are taken over all
responses r = κm + z, conditioned on the stimulus. The outer variance (numerator) and expec-
tation (denominator) are then taken over the stimulus distribution. In terms of integrals over
the rescaled nonlinearities defined above, the SNR may be written

SNR ¼
h~f ðy1Þ

~f ðy2Þi � h
~f i2

h~f 2i � h~f ðy1Þ
~f ðy2Þi þ kh~f i þ s2

down

: ð28Þ

The covariance-like term h~f ðy1Þ
~f ðy2Þi has the same form as Eq (17), evaluated with

reff ¼
s2
s

s2
sþs2

up
. It is not an actual covariance; it results from averaging EZ½f ðsþ ZÞjs�2 over the

stimulus, using the fact we can rewrite this term as EZ1
½f ðsþ Z1Þjs�EZ2

½f ðsþ Z2Þjs�, for two
independent random variables η1 and η2.

Parameter values used in figures

For all results, the stimulus is drawn from the standard normal distribution, and nonlinearity
outputs are constrained to fall between 0 and 1.
For the simulations presented in this work, we swept over the parameters listed in Table 1.

We chose a lower value of σdown = 0.1 rather than 0 to limit the number of parameter sets for
which all noise sources in the model were zero, as these sets frequently do not converge within
a reasonable amount of time. Because our code is written in terms of the unrescaled nonlineari-
ties, we swept over ρeff by fixing σs = 1 and σup = 2 and sweeping over the upstream noise corre-
lation coefficient ρup = {− 0.25, 0.0625, 0.3750, 0.6875, 1.0}. We swept over a much finer range
of ρup between 0.875 and 1 to resolve the splitting seen in Fig 6. For these cases, we only used
one initial seed to speed up computation.
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The upstream noise variance must be larger than the stimulus variance in order to achieve
ρeff = 0. As the rescaled nonlinearities only depend on the ρeff, κ, σdown and ρdown, this choice
only affects the absolute values of the MSE, which do depend on the ratio between σs and σup.
Despite the dependence of the MSE on σs and σup, changing these parameters does not change
which solutions are optimal for a fixed set of ρeff, κ, σdown and ρdown. This is because, for the
optimal nonlinearities, the MSE works out to (in terms of the rescaled nonlinearities and
decodingweights)

w2 ¼ s2
s 1 �

s2

s2
s þ s2

up

~D1hy~f 1i þ
~D2hy~f 2i

� �
" #

:

The term ~D1hy~f 1i þ
~D2hy~f 2i is always positive because the decodingweights and averages

always have the same sign. For fixed parameter values, it is only this term that varies between
ON-OFF and ON-ON pairs. As the rescaled quantities only depend on reff ; k; s2

down; and
ρdown (for equal noise variances in each pathway), the exact values of s2

s and s2
up do not deter-

mine which class of solutions is optimal except through ρeff. However, because the values of s2
s

and s2
up do affect the overall MSE, the optimal solution may not perform significantly better

than “nearby” sub-optimal nonlinearities; e.g., there may be a wide range of nonlinearities that
give MSE within 1–5% of the optimal nonlinearity when the upstream noise variance is large.
See Figs 2 and 5 in Results.
Similarly, the percentage difference in MSE betweenON-OFF versus ON-ON strategies can

vary depending on the size of σs and σup. Fig 7 shows differences of up to 20% for σs = 1.0 and
σup = 1.0 (we use a smaller value of σup here to show that the percent differences in MSE can be
significiant; the default value of σup = 2.0 yields percent differences in MSE of up to about 5%).
For Fig 8 (comparison of methods for determining the optimal nonlinearity), the parame-

ters used were: σup = 0.2, κ = 10-3, and σdown = 0.2.

Table 1. Parameter values used in numerical solutions of the coupled integral equations determining

the optimal nonlinearities f1(z) and f2(z).

ρeff 0, 0.25, 0.5, 0.75, 1.0

κ 0, 0.25, 0.5, 0.75, 1.0

σdown 0.1, 0.25, 0.5, 0.75, 1.0

ρdown -1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0

doi:10.1371/journal.pcbi.1005150.t001

Table 2. Parameters used to generate data shown in Fig 2 (single pathway optimal nonlinearities).

low noise

SNR = 5

medium noise

SNR = 1

high noise

SNR = 0.1

upstream noise dominant σup 0.375 0.92 3.1

κ 10-3 10-3 10-3

σdown 0.05 0.05 0.05

Poisson noise dominant σup 0.05 0.05 0.05

κ 0.0395 0.5 6.6

σdown 0.05 0.05 0.05

downstream noise dominant σup 0.05 0.05 0.05

κ 10-3 10-3 10-3

σdown 0.135 0.4175 1.54

doi:10.1371/journal.pcbi.1005150.t002
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For Fig 2 (single pathway optimal nonlinearities) the parameters are listed in Table 2;
parameters for Fig 3 (comparison of optimal and suboptimal nonlinearities) are listed in
Table 3; parameters for Fig 5 (parallel pathway optimal nonlinearities) are listed in Table 4.

Supporting Information

S1 Fig. Optimal nonlinearities for different choice of noise at nonlinearity output stage.As
the amount of noise associated with the nonlinear processing stage increases, optimal nonline-
arities steepen regardless of detailed statistical structure of this noise. We compared Poisson,
multiplicative Gaussian, and binomial noise sources. Poisson noise was parameterized as
described in the manuscript. Multiplicative Gaussian noise was drawn from a Gaussian distri-
bution with mean zero and variance equal to the nonlinearity output multiplied by a parameter
controlling noise strength. This noise was then added to the output of the nonlinearity. Noise
strengths in the Poisson and multiplicative Gaussian plots are directly comparable in the sense
that the corresponding lines have identical variance at each response level. Binomial noise was
generated by drawing from a binomial distribution, with the number of “events” (analogous to
the number of available vesicles) determining the noise level (where a greater number of events

Table 3. Parameters used to generate data shown in Fig 3 (comparison of optimal and suboptimal

nonlinearities).

upstream noise dominant σup 0.8

κ 0

σdown 0.005

Poisson noise dominant σup 0

κ 0.2

σdown 0.005

downstream noise dominant σup 0.05

κ 0

σdown 0.3

doi:10.1371/journal.pcbi.1005150.t003

Table 4. Parameters used to generate data shown in Fig 5 (parallel pathway optimal nonlinearities).

low noise high noise

upstream noise dominant σup 0.85 0.85

ρup 0.9762 -0.9073

κ 0.1 0.1

σdown 0.1 0.1

ρdown 0 0

Poisson noise dominant σup 0.25 0.25

ρup -0.7 -0.7

κ 0.25 0.9

σdown 0.1 0.1

ρdown 0 0

downstream noise dominant σup 0.25 0.25

ρup -0.7 -0.7

κ 0.1 0.1

σdown 0.25 0.9

ρdown 0 0

doi:10.1371/journal.pcbi.1005150.t004
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results in lower noise) and probability of success of each event given by the output of the non-
linearity, ranging from 0 to 1. We then found optimal nonlinearities through simulations that
maximize the mutual information (as described in Methods). For each of these types of noise,
the optimal nonlinearity steepens as noise is increased (dark blue to light blue lines).
(EPS)

S2 Fig. Optimal nonlinearities for a single pathway when one noise source dominates,
found by maximizingmutual information (MI). Same as Fig 2, except that mutual informa-
tion is maximized. Optimal nonlinearities found by maximizingMI are generally steeper than
those found by minimizing the MSE of a linear estimator, but qualitative trends are the same.
Nonlinearities are only shown for the two larger SNR values, as it was difficult to obtain reliable
estimates of the mutual information for SNR = 0.1.
(EPS)

S3 Fig. Optimal nonlinearities for a circuit with two parallel pathways, found by maximiz-
ing mutual information (MI).As in Fig 5, solid lines represent the optimal logistic nonlineari-
ties (for opposite polarities in panel A and the same polarities in panel B), and shaded regions
indicate the region that contains solutions within 1% of the maximumMI. For reference,
dashed lines show analytic results obtained by minimizing the MSE of a linear estimator (iden-
tical to those in Fig 5). Optimal nonlinearities found by maximizingMI are steeper (as in S2
Fig), and additionally tend more towards independence in the two channels. However, qualita-
tive trends are the same regardless of the specific criterion for optimization.
(EPS)
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