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Abstract

Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The
identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis,
improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify
chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates
located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate
genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our
method is based only on two, simple, biologically motivated assumptions—that a gene is a good disease-gene candidate if
it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein
interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression
Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying
pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective
algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence
and shared pathophysiology between different disorders.
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Introduction

Many diseases need complex genetic and environmental factors

to occur. To find the genetic factors is important for both medical

(aiding in drug discovery and personalized treatments) and

scientific reasons (understanding mechanistic and evolutionary

aspects of pathogenesis). Genetic approaches, such as linkage

analysis (connecting loci with a tendency to be inherited together)

and association studies (mapping correlation between alleles at

different loci), have uncovered plenty of links between diseases and

particular chromosomal regions [1]. In such studies, a chromo-

somal region typically contains up to hundreds of genes, which is

too much to be useful to experimentally test potential disease

genes. For this reason it is very valuable with computational

methods to rank such candidate genes within a chromosomal

region in order of likeliness of being a disease gene.

It is fairly well confirmed that the propensity of many diseases

can be reflected in a difference of gene expression levels in

particular cell types [2]. Specifically, if a group of genes shows a

consistent pattern of different expression levels in sick subjects and

a control group, then that gene is likely a strong candidate of

playing a pathogenic role. Differences in expression levels are

detected primarily by microarray studies [2–6]. Another phenom-

enon pointed out by previous studies [7–9] is that genes associated

with the same disorder tend to share common functional features,

reflected in that their protein products have a tendency to interact

with each other. Thus another indicative trait of a disease gene is

that its protein product is strongly linked to other disease-gene

proteins. A few previous computational methods have taken this

starting point and devised methods to identify disease genes from

protein-protein interactions [10–13]. Recently, some efforts have

been made to integrate these different contributions—being

differentially expressed and being close to diseases genes, for the

identification of disease genes [14,15]. This category of methods is

based on the assumption that the protein products of disease genes

tend to be in close, in the protein interaction network, to

differentially expressed genes. Karni et al. noticed that this problem

as one equivalent to the set cover problem in graph theory, which

is NP-complete [14]. Thus it is no wonder that large-scale protein

networks can only be analyzed with approximate, greedy

algorithms. Nitsch et al. defined, what they call, a soft

neighborhood of differentially expressed genes where indirectly

connected genes also can contribute but with a weight decreasing

with the distance [15]. Our method is similar in that it combines

the same types of data, but rather than assuming that nodes

neighboring to differentially expressed genes are disease gene
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candidates, we assume, recursively, that nodes close to disease

gene candidates are disease gene candidates. This difference, as we

will see, simplifies our method both conceptually and algorithmi-

cally, and makes it to a better tool for inferring pathogenic

interactions invisible in microarray data.

To outline the paper, we will start by deriving out method from

our simple assumptions of influence inspired by the Katz centrality

[16], which is similar in nature to the more well known PageRank

algorithm. To test our method, we apply it to 58 gene expression

datasets from major platforms in the NCBI Gene Expression

Omnibus (GEO) database. These datasets represent the gene

expression levels of 40 distinct diseases. Our human protein

interaction data comes from the STRING database of the human

genome and proteome. We got the data on disease genes of the

mentioned 40 diseases from the OMIM database. First, we

predicted disease genes within disease-associated loci only based

on gene expression levels and protein-protein interactions. We

used known disease genes as a benchmark to test the performance.

Then we demonstrated that inputting known disease genes

enhanced the prediction accuracy. At last, we analyzed the

globally top ranked genes to confirm that they are involved in the

physiological cellular processes of many diseases.

Results and Discussion

Overview and derivation of the method
In this section, we will derive our method for assigning a score to

genes to reflect how strong candidate disease gene a node is. The

derivation follows the same ideas as Katz’ centrality index

designed for social networks [16] and similar indices [17,18].

The starting point from the derivation is the assumption that

disease genes are typically close, in the associated protein network,

to other disease genes [7]. This is natural since proteins typically

need to form complexes, or in other ways interact to be involved in

the same (pathogenic, in this case) function, hence their associated

proteins should also have a tendency to interact. We let s =

(s1,…,sn) be our score vector over the set of genes (where si

indicates how strong i is as a disease-gene candidate), and treat the

score as a property that can be redistributed by the nodes, then our

starting point can be formalized mathematically as

stz1
i ~w

X

j=i

wijs
t
j ð1Þ

where wij is the strength of the coupling between the proteins of

gene i and j, w is a constant telling us how strongly i is affected by

the scores of its neighborhood, and t (in the superscript) is a

symbolic, discrete time of the redistribution of score (that we will

get rid of eventually). However, in Eq. (1), we do not include the

activity level of gene i in the disease, such as difference in

expression level. We let x = (x1,…,xn)
T represent activity level of

genes in the disease, quantified in some way. Assuming that the xi

influence the score of i in the same way as the score of the

neighbors do, we can extend Eq. (1) to

stz1
i ~dzgxizQ

X

j=i

wijs
t
j ð2Þ

where g is another proportionality constant. d is a constant that

represents a background probability that a vertex is a disease gene

even though in is neither differentially expressed nor connected to

other disease genes. The time in this equation is just symbolic, we

are interested in the situation when all the scores are redistributed

to a stationary state so st+1 = st. Then we drop the superscript and

write Eq. (2) on matrix format as

s~ddzgxzwWs, ð3Þ

where d = (1,…,1)T. Which gives

s~ I-wWð Þ{1 ddzgxð Þ ð4Þ

Since we are only interested in the relative values of the scores we

can set d = 1 without loss of generality. If we assume the activity

levels are the same, i.e. x = d, and that the coupling strengths of

W are one or zero, and that d is negligible (i.e. that g is large),

then our score function reduces to the Katz centrality. The score

function has two free parameters—w that sets the balance

between the influence of the neighbors in the protein network

and the difference in activity level; and g that sets the relative

likelihood that a random vertex is a candidate gene. If w is small,

the difference in activity level is more important; if w is large, the

coupling to the protein neighbors is more important. Another

limit on w is that the elements of (I – wW)21 should be non-

negative, which in practice will be the case for the w optimizing

the score (and thus no practical problem). If g is small there is less

value in the differential expression data so that there is a fair

chance a random node is associated with the disease. Ultimately,

one needs to calibrate w and g with real data where one has

another estimate of how much a gene contribute to the disease.

We will do this below, but first we consider an example to

illustrate the procedure.

In Fig. 1 we illustrate the method on an example network

designed to capture some features of disease gene networks. The

area of a node i is proportional to xi; the width of an edge is

proportional to the wij; the color indicate the score si and the

number shows the ranking of the vertices. In this case we assume g
& 1 so that d and g can be omitted in Eq. (4). In panel A we show

the situation for a low w-value—about 2% of its maximum value

(that comes from the condition that all elements of (I – wW)–1

should be non-negative); in B we illustrate the opposite case of a

large w (98% of the maximum). We see that the w puts a priority

on being close to vertices of high score so that, for example, the

vertex that is ranked 14th in A (that it self is not differentially

expressed) becomes ranked third in B.

Disease gene prediction based on gene expression levels
and protein-protein interactions

We collected 58 human microarray datasets representing 40

diseases from the NCBI Gene Expression Omnibus (GEO). Since

GEO contains some experiments that include gene expression

measurements for more than one disease, we combined the

samples of one disease and the normal samples in the same

experiment into a disease-control set and generated 81 disease-

control sets from the 58 datasets (see Table S1). Our protein

interaction network was constructed from the STRING database,

which includes both physical and functional interactions integrat-

ed from numerous sources, including experimental repositories,

computational prediction methods and public text collections.

Eliminating self-interactions, this network consists of 1,032,872

interactions between 14,532 proteins of human genome, with their

normalized interaction weights in the STRING database.

For each microarray disease-control set, we calculated its s-core

vector by equation (4). Here we set the vector x in Eq. (4) as the

vector of the absolute values of the logarithm of the ratio of the

expression levels of this microarray set, and W as the normalized

interaction-weight matrix in STRING (See Material and Method).

Katz-Centrality Based Disease-Gene Prediction
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In the cases when one disease corresponds to more than one

experiment (disease-control datasets) we summed up the s-score

vectors corresponding to the disease. Then we ranked the genes in

each candidate-gene set of a disease according to their s-scores and

got their r-ratios (see the Materials and Methods section). We

scanned the (w,g) parameter space in the regions Q[ 0,0:01½ � and

g[ 0,1000½ � using this procedure, and checked the average r-ratios

of all the known OMIM disease genes for the disease we studied. It

is noted that, since some genes are involved in different diseases,

for example, the gene IL6 is associated with Type 2 Diabetes

Mellitus, Crohn’s Disease and Juvenile Rheumatoid Arthritis, we

actually computed 348 r-ratios for the known 318 distinct OMIM

disease genes of the 40 diseases. In this way, the optimum value of

(w,g) was determined as (0.005,39), which minimized the average r-

ratios of known OMIM disease genes for the 40 diseases. For

comparison, we also fixed w and g to zero respectively, and then

searched for the optimum g and w as above. They represent the

cases that only expression data (w = 0) and protein interaction

network (g = 0) were used to predict disease genes, respectively.

When w = 0, the result is the same for any g .0. As for g = 0, we

got optimum parameter w = 0.001.

For the optimum (w,g) = (0.005,39), and the two extreme

reference values (0.001,0) and (0,1), we find average r-ratios of

0.246, 0.250 and 0.418. This result suggests that the known disease

genes were averagely ranked top 24.6% of the candidates by

integrating gene expression levels with protein interactions,

whereas they ranked top 41.8% and 25%, on average,

respectively, if only gene expression data or protein interaction

network were utilized. In Figure 2, we show the distributions of r-

ratios for the known OMIM disease genes of the 40 diseases and

the ROC curves of our algorithm, when (w,g) was taken as the

three different values respectively. It can be seen that the ranks of

gene expression levels for the disease genes are distributed almost

like the average (Figure 2A), while our s gives rise to the

enrichment of the disease genes on the top of rankings (Figure 2C).

Figure 2D shows that the ROC curve for the case of w = 0 is

almost a diagonal line and the area under the ROC-curve

(AUROC) is 0.593. When protein interactions are included in the

prediction algorithm, the ROC becomes a convex curve above the

diagonal line and the AUC significantly increases to 0.767. If only

use PPI network (g = 0), the AUC is 0.764. These results indicate

the significance of our approach.

From the s-ranks of genes in each candidate set, we can predict

the top h ones associated with the disease. In Table 1, we listed

different prediction results for the known OMIM disease genes

with different h-values. A total of 28 known disease genes were

ranked first, taking a percentage of 8.1%. True positive rates

(TPR) and false positive rates (FPR) suggest the sensitivity (TPR)

and specificity (one minus the FPR) of our algorithm, respectively.

It can be seen that with the increase of h, both TPR and FPR

increase. That is, the increase of sensitivity is at the cost of the

decrease of specificity. To find a reasonable h that corresponds to a

good tradeoff between the sensitivity and specificity, in Figure 3,

we plotted the trend of the rate at which TPR changes with respect

to the change in FPR, in response to changes of h, i.e.,

DTPR=DFPRas a function of h. As shown, h = 24 appeared as a

critical point where DTPR=DFPR exhibits a sudden drop from

values significantly larger than one to smaller than one. Since a

DTPR=DFPR-value smaller than one suggests that the gain of

sensitivity is not likely to compensate the loss of specificity, h = 24

could be chosen as an optimal cutoff, in which the sensitivity and

specificity are 60% and 76.4% respectively. In practice, there is no

universal criterion for ‘‘best cutoff’’ but depends on the

background. In our case, we think h = 30 is also an acceptable

choice, with the sensitivity and specificity 67% and 70.4%

respectively.

Out of the 40 diseases we also study three monogenic diseases,

caused by a single gene mutation. This is, of course, to evaluate

method rather than to disprove that the disease is monogenetic.

The other diseases are complex diseases believed to be associated

to variations or dysfunctions of multiple genes. As shown in

Table 2, the causing single genes of the 3 monogenic diseases,

progeria, Duchenne muscular dystrophy, and cystic fibrosis, were

successfully identified by our algorithm. While checking the

complex diseases, we found that many disease genes with highest

rankings have been reported as associated with the diseases in

other sources than OMIM. For example, genes APOE, APP,

PSEN1 and PSEN2 have been revealed being linked to autosomal

Figure 1. Illustration of the method with synthetic data. The area of the nodes is proportional to xi—the difference in expression level. The
width of the edges represents the coupling strength wij in the protein interaction network. The color of the nodes represents our score and the
numbers shows their order in this ranking. Panels A and B shows the result of two values of w—a low value of w (2% of the maximal possible) in A,
and a high value of w (98% of max). Low w-values put an emphasis on the difference in expression level; high w-values stress the proximity to other
vertices with high score. We also assume g&1.
doi:10.1371/journal.pone.0024306.g001

Katz-Centrality Based Disease-Gene Prediction
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dominant or familial early onset Alzheimer’s disease by genetic

studies [19]. Genome-wide association (GWA) studies have

identified some top candidate genes that consistently replicate in

Crohn’s disease, which include NOD2 and IL23R [20]. Insulin

resistance has been known strongly associated with type II

diabetes, thus genes IRS1 and IRS2, which play central roles in

insulin signal transmission, are important candidate genes

associated with type II diabetes [21]. See Table S2 for detailed

prediction results of the known disease genes.

Disease gene prediction when disease genes are partially
known

In the last section, we assume that no genes on disease loci have

been associated with the disease. Thus we only used gene

expression level to represent the activity level of gene in the

disease. In fact, genetic studies have uncovered plenty of links

between diseases and particular chromosomal regions, while some

of these disease loci have identified causative genes but the others

have not yet. For example, APOE, APP, PSEN1 and PSEN2 are

known Alzheimer’s disease associated genes located at loci

19q13.2, 21q21, 14q24.3 and 1q31–q42, respectively. Other

chromosomal regions such as 12p11.23–q13.12 and 10q24 have

been identified as related with this disease, but no specific genes

have got confirmed yet, hence disease genes on these loci are

labeled as AD5 and AD6 respectively in the OMIM morbid map

(OMIM ID 602096, 605526). Here we tried to investigate whether

the known disease genes could facilitate the prediction of the

unknowns.

For diseases with multiple known associated genes, we utilized

partially known disease genes to predict the others. Specifically, we

successively took out one gene and used the rest of the genes as

input to predict this one. We modified equation (4) as follows:

s1~(I{wW){1(x1zx2) ð5Þ

where x1 is the normalized vector of d + gx in equation (4), and

vector x2 was constructed such that the components correspond-

ing to the input known genes were assigned as 1 and the other

components were assigned as 0. As we did in the last section,

taking (w,g) as (0.005,39), we computed the s1-scores of genes and

then ranked the candidate genes accordingly. We found that,

compared with the results of last section which only used gene

Figure 2. Parameter dependence of prediction performance. (A) The distributions of r-ratios for the known OMIM disease genes of the 40
diseases under study, at (w,g) = (0,1), i.e., only gene expression levels were used to predict disease genes. (B) The distributions of r-ratios for the
known OMIM disease genes at (w,g) = (0.001,0), i.e., only the PPI network was used in the ranking. (C) The distributions of r-ratios for the known
OMIM disease genes at (w,g) = (0.005,39), (C) ROC curves for (w,g) = (0.005,39), (0.001,0), and (0,1), respectively.
doi:10.1371/journal.pone.0024306.g002

Figure 3. Finding a trade-off between sensitivity and specific-
ity. The variation trend of DTPR=DFPRin response to changes of h—the
number of disease genes predicted. TPR: true positive rates; FPR: false
positive rates.
doi:10.1371/journal.pone.0024306.g003

Table 1. Prediction results of our algorithm (w,g) = (0.005,39)
for the known OMIM disease genes of the 40 diseases under
study.

h TP TPR FPR TPR/FPR

1 28 0.081 0.009 9

10 120 0.345 0.098 3.520

15 163 0.468 0.147 3.184

24 208 0.600 0.236 2.542

30 233 0.670 0.296 2.264

h: number of genes on the top of the candidate ranking that was predicted as
disease-associated; TP: true positive numbers, i.e., number of known disease
genes that was predicted as disease-associated; TPR: true positive rates; FPR:
false positive rates.
doi:10.1371/journal.pone.0024306.t001

Katz-Centrality Based Disease-Gene Prediction
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expression levels as input, the ranks of most disease genes went up

and the r-ratio decreased to 21.11 (See Table S2). In Figure 4 we

show the performance comparison of the predictions in situations

of inputting partial known disease genes or not. It can be seen that

when partial known disease genes were utilized in the prediction,

the area under the ROC-curve (AUROC) increased to 0.80.

These results suggest that our algorithm performed better when

more information about the disease was known.

As listed in Table S3, among the diseases we studied, 123 genes

have not been identified on known disease-associated chromo-

somal regions. Similar as we did above, we tried to predict the

unknown genes using all the known disease genes. Here we

present our results on Alzheimer’s disease (AD) as an example.

The OMIM morbid map collected 15 known AD-associated

genes (see Table S2) and 12 unknown genes denoted as

AD5,AD16. Using all the known genes as input, we ranked

the candidates on each chromosmal region of unknown genes by

their s1-scores. Then starting from the top of each candidate rank,

we picked a gene and conducted literature search in PubMed to

explore possible links of this gene to Alzheimer’s disease. We

listed our predictions of AD-associated genes that have found

literature supports in Table 3 and the evidences in literature as

follows:

N VDR: Vitamin D3 is known to be involved in neuroprotection.

Vitamin D receptor (VDR) gene can influence the affinity of

vitamin D3 to its receptor and thus associated with AD [22].

N BTRC: BTRC mediates the ubiquitination and subsequent

proteasomal degradation of target proteins. Defects in

ubiquitin-dependent proteolysis have been shown to result in

a variety of neurodegenerative diseases [23].

N TRDMT1: TRDMT1is a DNA methylation protein involved

in aging-related process [24].

N PCNA: Expression of PCNA was observed in glial cells and

neurons, with a trend to increased expression in association

with higher burdens of Alzheimer-type pathology [25].

N ICAM1: Monocytic cell adhesion molecules are decreased in

AD patients [24]. Elevated cerebrospinal fluid soluble ICAM-1

is associated with lower perfusion levels in the parietal cortex of

cognitively intact elderly [27].

N NOS3: Expression of the NOS3 gene has been demonstrated

in degenerating neurons and glial cells in brains with AD [28].

N CDKN2A: CDKN2A is a promising new candidate gene

potentially contributing to AD susceptibility on chromosome

9p [29].

N FGFR1: Gene expression of FGFR1 was up-regulated in

amyloid beta protein-injected mouse model for Alzheimer

disease [30].

N S100A4: S100-mediated signal transduction pathways play an

important role in nervous system function or disease, and

S100A4 has been shown implicated in neurological diseases

[31].

N PRDX6: Oxidative stress conditions exist in AD and

peroxiredoxin 6 is an important antioxidant enzyme in human

brain defenses [32].

N TF: Epistatic interaction between rs1049296 (P589S) in the

transferrin gene (TF) and rs1800562 (C282Y) in the hemo-

chromatosis gene (HFE) results in significant association with

risk for AD [33].

N COX7B: Amyloidbetapeptide (A beta) is implicated in

neuronal cell death in Alzheimer’s disease. Studies on AD

suggest that COX7B mRNA is increased in AD brains and its

overexpression in cells enhances A beta(1-40)-toxicity [34].

Table 3 shows that almost half of the predicted disease genes are

ranked first in the list of candidate genes, suggesting a good

performance of our algorithm.

Analysis of the globally top ranked genes
For each disease under study, we computed s1 for all vertices by

equation (5) using gene expression levels and all known disease

genes as input. Then we neglected, for the moment, the expression

data and ranked genes in the protein interaction network

according to their s1-values. It was found that the top genes

overlapped in most diseases. For example, gene AKT1 and TP53

Table 2. Selected prediction results for disease genes in three
monogenic diseases and complex diseases, respectively.

Disease MeSH Gene name Gene loci s-rank

Progeria LMNA 1q21.2 4

Muscular Dystrophy, Duchenne DMD Xp21.2 2

Cystic Fibrosis CFTR 7q31.2 8

Alzheimer Disease APOE 19q13.2 3

APP 21q21 4

PSEN1 14q24.3 4

PSEN2 1q31-q42 15

Crohn Disease IL6 7p21 1

IL23R 1p31.3 3

NOD2 16q12 4

Diabetes Mellitus, Type 2 IL6 7p21 1

PPARG 3p25 1

IRS1 2q36 2

IRS2 13q34 3

s-rank: ranks of candidate genes according to their s-values when (w,g) =
(0.005,39).
doi:10.1371/journal.pone.0024306.t002

Figure 4. ROC curves for the predictions of disease genes. Here
we restrict the analysis to diseases with at least two known associated
genes.
doi:10.1371/journal.pone.0024306.g004
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were ranked top 10 in 87.8% and 82.9% diseases under study,

respectively.

We took out the top 200 s1-ranked genes of each disease and

got 1330 genes in total, 107 of which overlapped in at least 90%

diseases under study (see Table S4 for detail). (In the table we

called them top ranked genes.) However, only 23 of them are

disease genes of these 40 diseases. To explore the implications of

the top ranked genes to diseases, we conducted gene ontology

(GO) and pathway enrichment analysis. We used the P-value to

quantitatively measure whether this top ranked gene group is

more enriched with genes of a specific Gene ontology (GO) term

or genes involved in a particular pathway than what would be

expected by chance. Given significance level a = 0.05, a P-value

smaller than a demonstrates low probability that the genes of

same GO term or pathway appear in the group by chance. As

listed in Table 4, this top ranked group is significantly enriched

with genes whose GO terms are response to stimulus and stress,

regulation of cell differentiation, proliferation and death, and

immune process. These biological processes are highly associated

with the progress of diseases, especially cancers. When mapping

these genes onto KEGG pathways, we found that a total of 42

disease pathways are significantly enriched with genes in this

group, 17 of which are among the 40 diseases under study (see

Table S5). In addition, these top 1% s-ranked genes are

significantly involved in 32 pathways of cellular processes,

organismal systems and environmental information processing

(see Table S6). It has been known that most of these pathways are

related with diseases.

Next, we studied the correlation between s1-rank and the

pleiotropic effects of disease genes. Disease gene pleiotropy refers

to the ability of different mutations within the same gene to cause

different pathological effects. For each of the 318 known disease

genes of the 40 diseases under study, we searched the OMIM

morbid map and got the number of different diseases shared with

this gene. Figure 5 displays the negative correlation between

average s1-rank of known disease genes and the number of shared

diseases (Pearson’s correlation coefficient is –0.906), suggesting

that our algorithm ranks genes with more pleiotropy higher. This

phenomenon confirmed our observation above that the globally

top ranked genes tend to be involved in multiple diseases.

To investigate whether the top ranked genes are intrinsic for

diseases, for each of the 81 disease-control sets, we generated ten

random counterparts of gene expression levels and known disease

gene sets, respectively. Replacing vectors x1 and x2 in equation (5)

with those corresponding to their random counterparts, we

computed the s1-scores of genes by equation (5). As we did above,

we took out the top 200 s1-ranked genes of each random

counterpart. Almost all the genes appeared at least once in a top

200 list, in which only two genes overlapped in at least 35%

random counterparts. In contrary to what computed from real

gene expression levels and known disease gene sets of diseases,

these top ranked genes exhibited very low extent of overlapping.

This result suggests that only real data reflecting the activity levels

of genes in disease status could help to correctly pick out the genes

with the features we observed above. Thus the globally top s1-

ranked genes are inherently correlated with diseases.

In summary, although only a small fraction (21.5%) are disease

genes in the OMIM database, these globally top ranked genes are

significantly involved in multiple disease processes. This is in line

with previous findings that comorbidity between different diseases

is linked by phenotypic interdependency (via protein interactions)

and common pathophysiology (being differentially expressed in

Table 3. Alzheimer’s disease (AD) associated genes predicted by our algorithm that have found literature supports.

Unknown AD genes in OMIM morbid Predicted AD-associated genes by our algorithm

No
Gene Symbol
in OMIM morbid OMIM ID Gene loci Gene ID Gene Symbol Gene loci s1-rank

1 AD5 602096 12p11.23–q13.12 7421 VDR 12q13.11c 3

2 AD6 605526 10q24 8945 BTRC 10q24.32a 4

3 AD7 606187 10p13 1787 TRDMT1 10p13a 9

4 AD8 607116 20p 5111 PCNA 20p12.3c 2

5 AD9 608907 19p13.2 3383 ICAM1 19p13.2c 1

6 AD10 609636 7q36 4846 NOS3 7q36.1c–q36.1d 1

7 AD11 609790 9p22.1 1029 CDKN2A 9p21.3c 2

8 AD12 611073 8p12–q22 2260 FGFR1 8p12a 1

9 AD13 611152 1q21 6275 S100A4 1q21.3c 3

10 AD14 611154 1q25 9588 PRDX6 1q25.1a 1

11 AD15 611155 3q22–q24 7018 TF 3q22.1e 1

12 AD16 300756 Xq21.3 1349 COX7B Xq21.1a 3

doi:10.1371/journal.pone.0024306.t003

Table 4. Selected significantly enriched GO terms for the top
s1-ranked genes.

GO ID GO Term
Mapped
genes

Total
genes

GO:0050896 response to stimulus 68 6192

GO:0006950 response to stress 53 2538

GO:0002376 immune system process 44 1436

GO:0030154 cell differentiation 43 2008

GO:0042127 regulation of cell proliferation 40 946

GO:0010941 regulation of cell death 44 1042

All reported genes are significant with a P-value less than 0.001.
doi:10.1371/journal.pone.0024306.t004
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microarray data). Our result suggests that these top ranked genes

could be bridges to relate different diseases with each other.

Conclusions
This work has discussed a method to integrate microarray-based

global gene expression data and genome scale protein-protein

interaction network for the prioritization of candidate disease

genes. According to the observation that disease genes tend to be

close to other disease genes in the associated protein network, we

proposed a score inspired by the Katz centrality. This score needs

to be calibrated by only two parameters. These parameters have a

clear biological interpretation so their optimal values can give us

some further insights. The first parameter w sets the relative

importance of the difference in expression level and closeness in

the protein interaction network. The second parameter g
represents chance for a node that is not differentially expressed

to be a disease gene. The optimum is reached for (w,g) =

(0.005,39), which is well in the interior of the parameter space in

both dimensions—0# w ,0.01 and 0# g ,0.01. This means that

both the protein interaction network and the differential

expression contain information that can be exploited in disease-

gene ranking, as hypothesized. On the other hand, we see that

putting Ø = 0 worsen the performance much more than putting

g = 0, which suggest that there is more information for the benefit

of predicting unknown disease genes in the interaction compared

with the microarray data, at least with our setup. Furthermore, we

were able to increase our method’s performance by including

partial information about known disease genes. Also, when we did

not consider specific gene loci and ranked all genes globally by our

score, we could identify genes that show high extent of pleiotropy

and participate in the physiological pathogenic processes of many

diseases [35]. In addition, the successful identification of the

common genes involved in many diseases in the context of

network indicates the phenotypic interdependency, cooccurrence

and shared pathophysiology between different disorders. This

study provides a novel, effective and easy-implemented algorithm

for the prioritization of candidate disease genes. It can also be used

to compare the connection between pathological phenotypes

through their common genetic factors.

Materials and Methods

Gene expression data collection and integration
We collected human microarray datasets from the NCBI Gene

Expression Omnibus (GEO) [36] and restricted to using only those

curated and reported in the GEO Datasets (GDS). Our criteria for

the selection of a dataset are as follows:

1. It used one of the four most common platforms: HG_U95A,

HG_U95Av2, HG_U133A, and HG_U133_Plus2.

2. It was assigned to human disease conditions, with healthy

samples as the control condition. In addition, at least one

disease gene of this disease is known from the OMIM database.

The samples were not treated by drugs.

3. It did not include time-series data.

4. It included at least four disease samples and four control

samples.

A total of 58 datasets was found to satisfy the criteria. We

combined the samples of one disease and the normal samples in

the same experiment into a disease-control set. Since GEO

contains some experiments that include gene expression measure-

ments for more than one disease, 81 disease-control sets were

obtained from the 58 datasets. Mapping the disease description in

the GDS curation to their MeSH (Medical Subject Headings)

terms corresponded to 40 distinct diseases (see Table S1).

To integrate gene expression data from different platforms, we

mapped the probe sets of the platforms to Entrez Gene ID. This

process yielded a set of 9308 genes common to all four platforms

for our further study. For each gene in a dataset, we calculated the

average expression level for probe sets associated to this gene, and

converted the expression value to its rank among expression values

of the sample. The rank transformation allows for the direct

comparison of gene expression levels across various microarray

experiments [37,38]. To identify differentially expressed genes, for

each gene in a disease-control set, we calculated the log ratio of the

average rank of disease samples versus the average rank of control

samples. We take the absolute value of the log ratio as a measure

of the activity level of the gene in this disease.

Protein-protein interaction data
Protein interactions between human proteins were downloaded

from the version 8.3 of STRING [39]. STRING includes both

physical and functional interactions integrated from numerous

sources, including experimental repositories, computational predic-

tion methods and public text collections. It uses a scoring system to

weight the evidence of each interaction. STRING includes the

interactions between 14532 proteins of human genome. We

normalized the interaction scores in STRING to the interval [0,1].

Disease-gene dataset
We searched the Morbid map of the Online Mendelian

Inheritance in Man (OMIM) database [40] and identified 359

genes associated with the 40 distinct diseases in our microarray

data, in which one disease was associated with at least one gene. As

listed in Table S2, the disease with the most known causing genes

is cardiomyopathy, with 32 disease genes known. A total of 318 of

the 359 genes were found to present in the protein-protein

interaction network constructed from STRING, and these genes

were used to validate our algorithm (see Table S2).

Candidate genes
We downloaded human gene location data from the FTP

server of NCBI’s MapViewer [41]. This source includes the

Figure 5. Correlation between the importance and pleiotropy.
We measure the s1-score averaged over bins of the number of shared
diseases for that particular gene (as a measure of the strength of
pleiotropy).
doi:10.1371/journal.pone.0024306.g005
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chromosomal locations and chromosomal base pair ranges of

human genes. For each of the 318 known disease genes, we

determined a set of about 100 candidate genes, including this

disease gene, which locate at, or near to the cytogentic loci of the

disease gene.

Disease gene prediction
Most of our algorithm is already detailed in the section

Results and Discussion. We mention, however, that we solved

equation (4) by Jacobi iteration algorithm. Furthermore, for

each disease-control dataset k, an s-vector was calculated by

equation (4). In cases when one disease corresponds to more

than one experiment (disease-control datasets), the score

vectors for a given disease were added together to obtain a

combined s-score. Then the genes in each candidate gene set of

a disease can be ranked according to their s-cores, while the top

h genes in the ranking could be predicted as associated with this

disease.

Performance measure
The known disease genes in the OMIM database were used to

determine parameters w and g, as well as to assess the

performance of our algorithm. For a known disease gene in a

candidate gene set of size N, if its s-rank calculated by our

algorithm is r, then its r-ratio defined as r/N, could reflect how

strong this gene is predicted as a disease gene. We determined

parameters w and g as those minimized the average r-ratios of the

known OMIM disease genes.

We then applied the receiver operating characteristics (ROC)

analysis [42] to evaluate our algorithm. We took the top h genes

in each of our candidate gene rankings as disease genes (positive).

Changing h from 1 to 100, we computed the true positive rates

(TPR) and false positive rates (FPR) of our predictions. Then a

ROC curve is obtained by plotting TPR versus FPR for the h-

values. A ROC curve gives an overview of the overall

performance of a classifier. When comparing ROC-curves of

different classifiers, good curves lie closer to the top left corner

and the worst case is a diagonal line that represents a strategy of

random guessing. The total area under the ROC-curve

(AUROC) is a measure of the performance of the classifier.

The area lies in the interval [0.5,1] and larger area indicates

better performance. On the other hand, the values of TPR and

FPR suggest the sensitivity and specificity of the classifier,

respectively. Larger TPR and smaller FPR correspond to both

higher sensitivity and specificity. Usually, the increase of

sensitivity is at the cost of the decrease of specificity. In our case,

with the increase of h, both TPR and FPR increase. Only when

the increase of TPR is faster than that of FPR, i.e.

DTPR=DFPRw1, taking the larger h is cost-efficient. Thus the

optimal trade-off value of h satisfies:

DTPR

DFPR
hð Þ~ TPR hð Þ{TPR h{1ð Þ

FPR hð Þ{FPR h{1ð Þw1 and

DTPR

DFPR
hz1ð Þ~ TPR hz1ð Þ{TPR hð Þ

FPR hz1ð Þ{FPR hð Þv1

is a natural cutoff position in the candidate ranking that

corresponds to a optimum tradeoff between the sensitivity and

specificity.

Pathway data and pathway enrichment analysis
We downloaded pathway data from the FTP service of KEGG

[43] (Kyoto Encyclopedia of Genes and Genomes) on June 21,

2011. The KEGG PATHWAY section is a collection of manually

drawn pathway maps representing the information on the mole-

cular interaction and reaction networks. The ‘‘hsa_pathway.list’’

file in this section includes a list of the known proteins in H. sapiens’

genome and the corresponding pathways that they are involved in.

We used pathway enrichment analysis [44] to determine

whether a pathway is significantly enriched with a group of

genes. Specifically, we compare with a hypergeometric

cumulative distribution [45] to measure whether a pathway is

more enriched with the gene group under study than would be

expected by chance. Given significance level a = 0.05, a P-value

smaller than a suggests a low probability that the gene group

appear in the pathway by chance, i.e., the pathway can be

regarded as being significantly influenced by this group of genes

under the null-hypothesis of a hypergeometric cumulative

distribution.

Generating random counterparts of gene expression
levels of diseases and known disease gene sets

For each disease-control set, we selected a pair of genes

randomly and exchanged their activity values in the disease (the

log ratio of the average rank of disease samples versus the average

rank of control samples). Repeating this process a sufficiently large

number of times gave us a randomly reshuffled vector of gene

expression levels for the disease-control set, which we used as a

random reference of gene expression levels for this disease.

As the known disease genes of the 40 diseases under study are at

least 1 and at most 32, we generated an array of random integers

chosen from the continuous uniform distribution over the interval

[1,32] to simulate the numbers of disease genes. Then, for each

random number R in the array, we selected R genes randomly in

the protein interaction network as random counterparts of known

causing genes of the disease.
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Table S1 Description of miroarray datasets under study.
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Table S2 Known OMIM genes associated with the 40 diseases

under study and their ranks in the candidate gene sets. e–rank:

ranks of candidate genes according to the absolute values of log

ratio for the expression levels [equation 3, (w,g) = (0,1)];

p–rank: ranks of candidate genes according to protein

interactions [equation 3, (w,g) = (0.001,0)]; s–rank: ranks of

candidate genes according to their s-scores [equation 3, (w,g) =

(0.005, 39)], when gene expression levels were used as input

activity level of genes in the disease; s1–rank: ranks of candidate

genes according to their s1-scores [equation 4, (w,g) = (0.005,

39)], when gene expression levels and the other known causative

genes of the disease were used as input activity level of genes in

the disease.

(DOCX)

Table S3 Unidentified genes on known chromosomal regions

associated with the diseases under study, from OMIM morbid

map.
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Table S4 List of the top ranked genes, i.e., the top 200 s1-ranked

genes in over 90% diseases under study.
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Table S5 Disease pathways significantly enriched with the top

ranked genes.
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