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ABSTRACT: We developed a highly sensitive method for
quantifying 21 bile acids (BAs) in the rat liver by capillary liquid
chromatography tandem mass spectrometry (cLC/MS/MS) with
one-pot extraction. High recovery rates were obtained for the one-
pot methods with either methanol (MeOH) extraction or MeOH/
acetonitrile (ACN) (1:1, v/v) mixture extraction; the results
obtained for the MeOH/ACN mixture solution were better than
the results obtained for MeOH. Thus, we determined that the one-
pot method with MeOH/ACN was the most suitable method for
the efficient extraction of BAs in the liver. Targeted BAs were well
separated by cLC with gradient elution using ammonium acetate
(NH4OAc)−MeOH mobile phases. Method validation proved that
the intra-day and inter-day accuracies and precisions were primarily
less than ±20 and 20% relative standard deviation, respectively. Also, the limit of detection (LOD) and the limit of quantitation
(LOQ) were 0.9−10 and 2.3−27 ng/g liver, which proves the high sensitivity of the method. Finally, we quantitated 21 BA
concentrations in the liver samples of normal and nonalcoholic steatohepatitis (NASH) rats, both of which were derived from
stroke-prone spontaneously hypertensive five (SHRSP5) /Dmcr rat. The hepatic BA profiles were found to be substantially different
between the normal and NASH groups; the two groups were clearly separated along the first component axis in the score plots of the
principal component analysis. In particular, 10 BAs (β-muricholic acid (MCA), glyco (G-) cholic acid (CA), G-chenodeoxycholic
acid (CDCA), tauro (T-) CA, T-CDCA, T-ursodeoxycholic acid (UDCA), T-lithocholic acid (LCA), T-hiodeoxycholic acid
(HDCA), T-α-MCA, and T-β-MCA) were significantly different between the two groups using Welch’s t-test with the false
discovery rate correction method, demonstrating BA disruption in the NASH model rat. In conclusion, this method was able to
quantify 21 BAs in the rat liver and will evaluate the hepatic BA pathophysiology of rat disease models.

■ INTRODUCTION

Bile acids (BAs) have numerous isomers; different forms for
primary and secondary BAs and conjugates are generated
during biosynthesis and metabolism. BAs have recently been
used as biomarkers for various diseases, such as obesity and
type 2 diabetes,1 because of their role as signal molecules in
regulating biosynthesis and energy homeostasis.2,3 In addition,
Josef et al. reported that BAs have potential as biomarkers for
diagnosing Alzheimer’s disease.4

Each BA plays an important role in the digestion and
absorption of lipid nutrition,5 although some BAs show
cytotoxicity because of their detergency.6 Thus, abnormal
changes in the composition and accumulation of BAs,
especially in the liver, can be a risk factor for various diseases.
In particular, their accumulation in the hepatocyte is strongly
related to chronic liver diseases such as liver fibrosis, cirrhosis,
and cancer.7,8 Our previous study9 using nonalcoholic
steatohepatitis (NASH) model rats10 demonstrated that the

expressions of cytochrome P450 7A1 (CYP 7A1) (cholesterol-
7-α-hydroxylase) and CYP 7B1 (oxysterol-7-α-hydroxylase),
which are involved in BA homeostasis, were upregulated. In
addition, the expressions of CYP 8B1 (sterol-12-α-hydrox-
ylase), CYP 27A1 (sterol-27-α-hydroxylase), and bile salt
export pump, which are involved in BA excretion, were
downregulated. These results strongly suggested that changes
in the BA composition were related to the development of
NASH. Based on these results, we need to understand the
more detailed hepatic profile of BAs in the NASH pathology.
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As described above, it is necessary to discriminate the
isomers of BAs because numerous such isomers exist in nature.
Currently, gas chromatography mass spectrometry (GC/
MS)11−13 and liquid chromatography tandem mass spectrom-
etry (LC/MS/MS)14−20 are being widely used in the analysis
of BAs. LC/MS/MS is useful in detecting and quantifying BAs
in tissue samples because it does not require the derivatization
of target compounds. To improve MS identification, LC/high-
resolution MS (HRMS) has been applied to the analysis of
BAs.21−23 However, improvements in LC separation are
needed to separate BA isomers, which can potentially be
achieved by LC with narrow inner diameters, such as capillary
LC (cLC) and nano-LC. The cLC method is more practical
than the nano-LC method because the flow rate and back
pressure can be easily controlled. Chervet et al. stated that cLC
needs to be applied with a flow rate of 1−10 μL/min and an
inner separation column diameter of 150−500 μm.24 The cLC-
based methods have been used in various fields in which the
sensitivity and separation of the targets are superior to those of
the targets used in the conventional methods.25−31 However,
there has been only one report on the application of cLC for

analyzing BAs in urine,32 and there have been no reports on
the use of cLC/MS/MS for analyzing BAs in the rat liver.
In this study, we developed a cLC/MS/MS-based method

for the analysis of BAs in the rat liver. We optimized an
extraction method of BAs in the rat liver and validated the
quantitativity of the method. Finally, our method was applied
to normal and NASH rats, and the usefulness of this approach
was evaluated.

■ RESULTS AND DISCUSSION
Optimization of cLC/MS/MS. The MS parameters for

each BA were optimized using the enhanced product ion (EPI)
scan mode (collision energy: -130− to 5 eV) by infusion
analysis. The optimized selected reaction monitoring (SRM)
transitions and collision energies (CEs) are described in the
Materials and Methods section (Table 3). The free BAs were
not easily dissociated, and no characteristic product ions except
for the deprotonated ions ([M-H]−) were observed for the free
BAs. Thus, the precursor ions (i.e., the deprotonated ions)
were passed through Q3 and detected as the product ions. As
shown in Table 3, chenodeoxycholic acid (CDCA), deoxy-
cholic acid (DCA), ursodeoxycholic acid (UDCA), and

Figure 1. SRM chromatograms of BA standards (50 ng/mL) obtained by cLC/MS/MS
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hiodeoxycholic acid (HDCA) are isomers; their glycine and
taurine conjugates also have the same molecular weight.
Moreover, they exhibit identical optimized SRM transitions.
Thus, these isomers must be separated by chromatography. In
this study, we compared ammonium acetate (NH4OAc)−
methanol (MeOH)-based and NH4OAc−acetonitrile (ACN)-
based mobile phases. When the NH4OAc−ACN-based mobile
phase was used, UDCA and HDCA were not sufficiently
separated (Figure S1-a). Although the peaks of CDCA and
DCA were partially separated, their spectra overlapped. In
addition, the glycine and taurine conjugates of UDCA and
HDCA were coeluted (Figures S1-b and S1-c). However, their
peaks were well separated when the NH4OAc−MeOH-based
mobile phase was used (Figure S2). Therefore, we selected the
NH4OAc−MeOH-based mobile phase for LC separation.
These compounds were well separated because of their strong
retention in the column, which resulted from the high polarity
of the NH4OAc−MeOH-based mobile phase. Furthermore,
NH4OAc can suppress peak tailing and improve peak shapes,19

which contribute to successful separation.
Although good separation of BAs was achieved using the

NH4OAc−MeOH-based mobile phase, a 90 min duration was
required to separate all the target BAs. Therefore, we further
improved the LC gradient conditions. We increased the
gradient curve during the initial part of the gradient condition
(see the Materials and Methods section), which decreased the
total analysis time (57 min). The chromatograms obtained
under the optimized conditions are shown in Figure 1.
Extraction of BAs in Rat Liver Samples. Although

effective procedures for BA extraction have been reported by
other researchers,15,17,18 these approaches require two steps:
(1) homogenization with a mixture of distilled water and
MeOH and (2) deproteinization and desalting with alkaline
ACN. In this study, we additionally performed a one-step
extraction methodhomogenization and deproteinization
were performed in one pot. Here, we compared three solvents:
(1) MeOH, (2) ACN, and (3) the MeOH/ACN (1:1, v/v)
mixture solution.
We applied the two-step extraction method with water/

MeOH and the one-pot methods with different solvents to
wild-type rat (Wister Kyoto, WKY) liver samples; the relative
recovery rates are shown in Figure S3. High recovery rates
were obtained using the one-pot methods by either MeOH
extraction or MeOH/ACN mixture extraction; the MeOH/
ACN mixture solution showed better results than MeOH.
Furthermore, because of the deproteinization effect of ACN,33

the extract obtained using the one-pot method with MeOH/
ACN was a more visually translucent sample solution than that
obtained using the one-pot method with MeOH. Thus, we
determined that the one-pot method with MeOH/ACN was
the most suitable for efficient extraction.
Method Validation. In general, calibration curves are

prepared with spiked samples. However, BAs endogenously
exist in liver samples; therefore, blank extracts are required for
method validation.14,15,17,18,20 Other researchers have reported
using activated charcoal for preparing blank extracts, and the
amount of added activated charcoal differed depending on the
use: 0.2−0.5 mg/mg for liver samples,15,18 50−100 mg/mL for
serum samples,14,15,18 and 3 mg/mg for brain samples.20 In our
study, we initially treated the liver samples with activated
charcoal at 0.5 mg/mg; however, some BAs were not fully
removed. Therefore, we prepared blank liver extracts by the

duplicate treatment of activated charcoal at 0.5 mg/mg, as a
result of which no BA was detected in the extract (Table S1).
The validation results for the proposed method are listed in

Table 1. In our pre-experiments, LCA was not detected in the
liver samples of the normal and NASH groups (Figure S4) (as
described in more detail later). Therefore, method validation
for LCA was not performed. The calibration curves show good
linearity (correlation coefficient (r2) = 0.990−0.999) except for
α-muricholic acid (MCA) (r2 = 0.951) in the range of 2.5−
1000 ng/g liver. The limit of detection (LOD) and the limit of
quantitation (LOQ) values were 0.9−10 ng/g liver and 2.3−27
ng/g liver, respectively. Also, the precision values (%RSD) near
the lower end of the calibration range (5 ng/g liver) were
under 14% RSD (Table S2). This cLC/MS/MS method
enables a highly sensitive analysis of BAs despite using a low
injection volume (2 μL).
The matrix effects exceeded 80% for most of the BAs,

although the values for free BAs were slightly lower (ca. 70%)
except for α-MCA and β-MCA (109 and 87.2%). This is
mainly due to their lower ionization efficiencies because there
are no polar moieties in their chemical structures. The recovery
rates exceeded 80%, except for CDCA and DCA (ca. 70%),
and G-LCA and T-LCA (ca. 76%). In this study, the MeOH/
ACN mixture was used for extraction; thus, the recovery rates
of low-polar BAs such as CDCA and DCA tended to be
somewhat low. As shown in Figure 1, LCA was strongly
retained (retention time: ca. 43 min), suggesting that the
hydrophobicity of LCA was significantly strong. Also, the
retention times of G-LCA and T-LCA were the same as that of
LCA; that is, these conjugates were strongly hydrophobic.
Thus, the recovery rates of G-LCA and T-LCA became
somewhat lower than those of other conjugates. The intra-day
and inter-day accuracies were 83.7−106% and 88.9−116% for
the quality control (QC) sample 1 (corresponding to 100 ng/g
liver) and 84.0−111% and 84.1−130% for QC sample 2
(corresponding to 750 ng/g liver). The intra-day and inter-day
precisions were 0.8−9.8% relative standard deviation (RSD)
and 2.1−11% RSD for QC sample 1 and 0.4−12% RSD and
0.9−16% RSD for QC sample 2. The intra-day and inter-day
accuracies and precisions were below 20%, excluding the
accuracy of α-MCA for QC sample 2 (30%); these results
prove the validity of our method.

Profiling of Hepatic BAs in Normal and NASH Rats.
NASH is a type of nonalcoholic fatty liver disease and is
characterized by progression from a simple fatty liver to
chronic inflammation, fibrosis, cirrhosis, and hepatocellular
carcinoma. Kitamori et al. developed a NASH model rat10

based on a stroke-prone spontaneously hypertensive five
(SHRSP5)/Dmcr rat with an eight-week intake of high-fat
and cholesterol (HFC) diet, as shown in Table S3. Jia et al.
demonstrated that the NASH model rat exhibited expression
changes in BA synthetase and excretion transporters.9

Moreover, this model rat developed fibrotic steatohepatitis,
which resulted in changes in the BA profile of the liver.34 In
this study, we applied the cLC/MS/MS method to the normal
(not fibrotic steatohepatitis) and NASH rats to evaluate the
effectiveness and validity of our method.
The quantitative results for the BAs are shown in Table 2.

Although LCA was successfully detected in the liver of WKY
rats (wild type rats), it was not detected in either the normal or
NASH rats. These results matched well with the results of our
previous report.34 Other studies have also reported that the
concentration of LCA in a rodent’s liver was undetectable or
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very low.15,18,35,36 Moreover, the other 21 BAs were
successfully detected in the liver of the normal and NASH
rats. The quantitative results for the normal and NASH groups
were confirmed as reliable because there was no difference in
their matrix effects, as shown in Table S4. The principal
component analysis (PCA) score and loading plots for these
data are shown in Figure 2. In the PCA score plots, the normal
and NASH groups were well separated, which demonstrated
that their BA profiles were substantially different. The PCA
loading plots show that glycocholic acid (G-CA), glycocheno-
deoxycholic acid (G-CDCA), and taurine-conjugated BAs are
primarily responsible for group separation. Furthermore,
projection to latent structures−discriminant analysis (PLS−
DA) was performed (Figure S5), and variable importance in
projection (VIP) and q values were calculated (Table 2).
Finally, the levels of 10 BAs were significantly different
between the normal and NASH groups (significance level at
0.05); their box-and-whisker plots are shown in Figure 3.
Among these BAs, the levels of G-CA and G-CDCA were
significantly higher in the NASH group, and the other BAs
showed significantly lower levels. This method enabled the
simultaneous analysis of BAs in the rat liver with a low sample
injection volume. In particular, the high-precision analysis of
low-concentration BAs enabled us to identify subtle changes in
the liver samples of the normal and NASH groups.

■ CONCLUSIONS
In this study, we developed a reliable cLC/MS/MS-based
quantitative method for 21 BAs in the rat liver. We optimized
various one-pot extraction methods using different solvents
and determined that MeOH/ACN was the most suitable for
the efficient extraction of BAs in the liver. The targeted BAs

were well separated by cLC with gradient elution using the
NH4OAc-MeOH mobile phases. The method validation
showed satisfactory results: the intra- and inter-day accuracies
and precisions were primarily less than ±20 and 20% RSD,
which proved the high quantitativity of the method. Also, the
LOD and LOQ values were 0.9−10 ng/g and 2.3−27 ng/g
liver, respectively, which proved the high sensitivity of the
method. Finally, we applied the method to normal and NASH
rats. The two groups were clearly separated in the PCA score
plots; the PCA loading plots suggested that G-CA, G-CDCA,
and taurine conjugates strongly contributed to group
separation in the PCA score plots. In particular, significant
differences were found for 10 BAs between the two groups;
these values revealed the differences in the BA profiles between
the normal and NASH groups. This method will help elucidate
the hidden pathophysiological properties of BAs in various
disease models.

■ MATERIALS AND METHODS
Materials and Reagents. The BA standards used in this

study are listed in Table 3. We used eight unconjugated BAs,
six glycine-conjugated BAs, and eight taurine-conjugated BAs.
These BAs were obtained from FUJIFILM Wako Pure
Chemical Corporation (Osaka, Japan), Merck (Darmstadt,
Germany), Santa Cruz Biotechnology (Santa Cruz, California,
USA), Sigma-Aldrich (St. Louis, MI), and Steraloids (New-
port, RI). Four deuterium-labeled (D4) BAs were purchased
from CDN Isotopes Inc. (Pointe-Claire, Quebec, Canada) for
use as internal standards (ISs). MeOH, ACN, distilled water,
and NH4OAc were of the LC−MS grade, obtained from
Sigma-Aldrich (St. Louis, MI) and Kanto Chemical (Tokyo,
Japan).

Animals. WKY rats (wild-type rats) were distributed by the
Disease Model Cooperative Research Association (Kyoto,
Japan). The rats were housed in plastic cages for 5 days after
their arrival and were given ad libitum access to SP diet
(Funabashi Farm, Chiba, Japan), as a normal diet for SHRSP
strain rats, and water. The rearing room was controlled on a
12-h light−dark cycle (lights off at 9:00 pm), and the room
temperature was maintained at 25 ± 1 °C.
The normal and NASH rats were prepared from the

SHRSP5/Dmcr rats (Disease Model Cooperative Research
Association, Kyoto, Japan), which were differentiated from the
WKY rats in accordance with our previous report.10 The
NASH model rats were prepared from 10-week male SHRSP5/
Dmcr rats with the HFC diet for 8 weeks. The normal (not
fibrotic steatohepatitis) rats were prepared from 18-week
SHRSP5/Dmcr rats with SP diets. The nutrient components of
the SP and HFC diets are listed in Table S3. All the animal
experiments were approved by the Experimental Animal
Research Committee of Kinjo Gakuin University (Author-
ization number 10).

cLC/MS/MS Conditions. Instrumental analysis was
performed using a DiNa-2A nano-LC (KYA Tech, Tokyo,
Japan) coupled with a 4000 Q-TRAP mass spectrometer
(Sciex, Framingham, MA, USA). LC separation was performed
using an L-column2 ODS (300 μm i.d. × 50 mm, 3 μm particle
size; Chemicals Evaluation and Research Institute, Tokyo,
Japan). The mobile phases were as follows: A (10% MeOH in
10 mM NH4OAc aqueous solution); B (98% MeOH in 10
mM NH4OAc aqueous solution). The gradient conditions
were as follows: 0−5 min: 0−25% B; 5−42 min: 25−100% B;
42−47 min: 100% B; 47−47.1 min: 100−0% B; 47.1−57 min:

Table 2. Quantitative BA Results for Liver Samples from
SHRSP5/Dmcr Rata

normal group NASH group

BA VIP value q value

(ng/g liver) (ng/g liver)

average ± SD average ± SD

CA 119 ± 149 32 ± 16 0.73 N.A.
CDCA 90 ± 63 93 ± 35 0.40 N.A.
DCA 44 ± 29 44 ± 36 0.04 N.A.
UDCA 357 ± 211 130 ± 74 0.97 N.A.
HDCA 345 ± 241 158 ± 71 0.78 N.A.
α-MCA 658 ± 382 547 ± 113 0.45 N.A.
β-MCA 71 ± 24 24 ± 13 1.09 0.0151
G-CA 701 ± 693 2699 ± 634 1.38 0.0020
G-CDCA 106 ± 104 1129 ± 486 1.32 0.0044
G-DCA 313 ± 348 864 ± 676 0.77 N.A.
G-UDCA 371 ± 520 156 ± 68 0.58 N.A.
G-LCA 23 ± 26 42 ± 26 0.64 N.A.
G-HDCA 66 ± 61 76 ± 77 0.24 N.A.
T-CA 3331 ± 1189 802 ± 299 1.32 0.0044
T-CDCA 942 ± 243 731 ± 304 0.62 N.A.
T-DCA 1694 ± 424 460 ± 311 1.36 0.0020
T-UDCA 1873 ± 620 62 ± 24 1.42 0.0027
T-LCA 282 ± 119 49 ± 30 1.28 0.0052
T-HDCA 941 ± 340 34 ± 42 1.38 0.0034
T-α-MCA 1302 ± 337 590 ± 249 1.23 0.0044
T-β-MCA 2138 ± 438 1131 ± 605 1.12 0.0105

aN.A., not applicable.
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0% B. The total flow rate was 1 μL/min, and the injection
volume was 2 μL.
The measurements were performed in the ESI-negative

mode. The remaining MS parameters were as follows: curtain
gas at 10 AU; collision gas at 6 AU; ion spray voltage of -1300
V; interface heater temperature of 150 °C; declustering
potential of −20 V; entrance potential of −10 V; and collision
cell exit potential of −15 V. The analytes were monitored in
the SRM mode using the SRM transitions and CEs shown in
Table 3.
Preparation of Blank Liver Extract. The blank liver

extract was prepared by removing endogenous BAs from 18-
week-old WKY rat liver. The liver extracts were homogenized
with a five-fold volume of the MeOH and ACN mixture (1:1,

v/v) using a multisample organ homogenizer (Multi-beads
shocker, Yasui Kikai, Osaka, Japan) rotated at the speed of
2500 rpm for 40 s. Then, the liver homogenate was centrifuged
at 13,000 g for 10 min. Activated charcoal was added to the
supernatant at 0.1 mg/μL (corresponding to 0.5 mg/mg liver),
and the samples were vortexed for 30 min at room
temperature. After centrifugation, the supernatant was placed
in a new Eppendorf tube. Additional activated charcoal (0.1
mg/μL) was added to the sample, which was then vortexed for
30 min. After centrifugation, the obtained supernatant was
used as a blank liver extract.

Calibration Curves and Method Validation. BA-stand-
ard MeOH solutions were prepared at 1 mg/mL each and
stored at 4 °C. BA working mixture solutions were prepared at

Figure 2. PCA for the normal and NASH groups: (a) PCA score plots; (b) PCA loading plots.
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Figure 3. Box-and-whisker plots of the BAs exhibiting significant changes (*q < 0.05, **q < 0.01).

Table 3. BAs and Their SRM Transitions and CEs

compound name SRM transition collision energy (eV)

free-BA cholic acid (CA) 407 → 407 −15
chenodeoxycholic acid (CDCA) 391 → 391 −30
deoxycholic acid (DCA) 391 → 391 −30
ursodeoxycholic acid (UDCA) 391 → 391 −30
lithocholic acid (LCA) 375 → 375 −30
hiodeoxycholic acid (HDCA) 391 → 391 −30
α-murichoric acid (α-MCA) 407 → 407 −15
β-muricholic acid (β-MCA) 407 → 407 −15

glyco-BA glycocholic acid (G-CA) 464 → 74 −70
glycochenodeoxycholic acid (G-CDCA) 448 → 74 −70
glycodeoxycholic acid (G-DCA) 448 → 74 −70
glycoursodeoxycholic acid (G-UDCA) 448 → 74 −70
glycolithocholic acid (G-LCA) 432 → 74 −70
glycohiodeoxycholic acid (G-HDCA) 448 → 74 −70

tauro-BA taurocholic acid (T-CA) 514 → 80 −125
taurochenodeoxycholic acid (T-CDCA) 498 → 80 −125
taurodeoxycholic acid (T-DCA) 498 → 80 −125
tauroursodeoxycholic acid (T-UDCA) 498 → 80 −125
taurolithocholic acid (T-LCA) 482 → 80 −125
taurohiodeoxycholic acid (T-HDCA) 498 → 80 −125
tauro-α-murichoric acid (T-α-MCA) 514 → 80 −125
tauro-β-muricholic acid (T-β-MCA) 514 → 80 −125

internal standard D4-cholic acid (D4-CA) 411 → 411 −15
D4-chenodeoxycholic acid (D4-CDCA) 395 → 395 −30
D4-ceoxycholic acid (D4-DCA) 395 → 395 −30
D4-ursodeoxycholic acid (D4-UDCA) 395 → 395 −30
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2.5, 25, 50, 250, 500, and 1000 ng/mL prior to the
experiments, and an IS mixture solution in MeOH was
adjusted to 250 ng/mL. Calibration curves were constructed
using six calibrants (2.5, 25, 50, 250, 500, and 1000 ng/g liver,
n = 4 for each calibrant sample), which were produced by
spiking the working mixture solutions in blank liver extracts.
To prepare calibrants, 10 μL of the working mixture solution
of each concentration and 10 μL of IS were added to 50 μL of
the blank liver extract. Then, the sample was evaporated using
a centrifugal concentrator at room temperature. The residue
was reconstituted with 50 μL of 10% MeOH in 10 mM
NH4OAc and filtrated through a 0.22 μm filter.
The theoretical LOD and LOQ were determined by

analyzing the calibrants and calculated according to the
formula: LOD = 3sd/a, LOQ = 10sd/a (sd = the standard
deviation of y = intercepts of regression lines and a = slope of
the calibration curve).37 The recovery rates were calculated by
comparing the results between the pre-spiked and post-spiked
samples using blank liver extracts. The matrix effects were
calculated by comparing the results between the post-spiked
sample and a standard mixture solution (50 ng/mL each).
Method validation was performed using two QC samples (QC
sample 1 with 100 ng/g liver and QC sample 2 with 750 ng/g
liver), and the intra-day and inter-day accuracies and precisions
were evaluated.
Preparation of Rat Liver Samples. Approximately 20 mg

of the liver sample was homogenized in a five-fold volume of
the MeOH/ACN (1:1, v/v) mixture solution with respect to
the liver weight, and the homogenate was centrifuged at 13,000
g for 10 min. After 10 μL of the IS mixture solution (250 ng/
mL each) was spiked in 50 μL of the supernatant, the sample
was evaporated using a centrifugal concentrator at room
temperature for 1 h. The residue was reconstituted in 50 μL of
10% MeOH in 10 mM NH4OAc and filtrated through a 0.22
μm filter.
Statistical Analysis. The differences in the BA profiles

between the normal and NASH groups were evaluated by the
PCA using the R software version 3.6.3.38 The R script was
demonstrated in our previous study.39 PLS−DA was further
applied to the results, and the VIP values were calculated. In
our previous reports,39,40 the VIP value-based approach was
applied to determine the statistical family. Here, the BAs with
VIP values over 1.0 were selected as a statistical family. The
statistical differences of BAs were evaluated using Welch’s t-
test, where the p levels were adjusted to control multiple
comparisons using the FDR procedure proposed by Benjamini
and Hochberg,41 and the adjusted values were expressed as q
values (significance level at 0.05).
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