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The complement system is a family of serum and cell surface proteins that recognize pathogen-associated
molecular patterns, altered-self ligands, and immune complexes. Activation of the complement cascade
triggers several antiviral functions including pathogen opsonization and/or lysis, and priming of adaptive
immune responses. In this review, we will examine the role of complement activation in protection and/or
pathogenesis against infection by Flaviviruses, with an emphasis on experiments with West Nile and
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Dengue viruses.

. Complement activation pathways

The complement system is comprised of soluble and cell sur-
ace associated proteins that recognize exogenous, altered, or
otentially harmful endogenous ligands [1]. Complement is acti-
ated through three distinct pathways referred to as the classical,
ectin, and alternative pathways depending on specific recognition

olecules [1,2]. Classical pathway activity is triggered by C1q bind-
ng to antigen-antibody complexes on the surface of pathogens
r by spontaneous tickover [3]. The lectin pathway is initiated by
annan binding lectin (MBL) or ficolin recognition of carbohy-

rate structures on the surface of microbes or apoptotic cells. The
lternative pathway is constitutively active at low levels through
he spontaneous hydrolysis of C3 and also serves to amplify acti-
ation of the classical and lectin pathways. Despite the distinct
riggering mechanisms, the classical, lectin, and alternative path-
ays generate convertase enzymes (C4bC2a for classical and lectin,

nd C3bBb for the alternative) which cleave C3, the central com-
onent of the complement system, and expose a reactive internal
hioester bond on C3b necessary for covalent attachment to target

urfaces. The binding of C3b back to C4b2a and C3bBb C3 conver-
ases forms the classical and alternative pathway C5 convertases,
espectively. These enzymes cleave C5 and promote assembly of
5b-9 membrane attack complex (MAC), which lyses pathogens
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r infected cells. Sub-lytic amounts of C5b-9 on a cell surface
an activate granulocytes and endothelial cells, whereas solu-
le C5b-9 independently induces inflammation through cytokine

nduction [4–10]. The release of anaphylatoxins (C3a and C5a) by
he C3 and C5 convertases also contributes to the host inflam-

atory response by promoting chemotaxis of immune cells via
he interaction with specific G-protein coupled transmembrane
eceptors (C3aR and C5aR) [11]. Deposition of opsonic C3 and C4
ragments (C3b and C4b) on a pathogen facilitates binding and
hagocytosis by complement receptors (CR1, CR3, CR4, and CRIg),
process called opsonization, which helps to clear microbial infec-

ions [12,13].

. Regulation of the complement system

To limit inappropriate activation and potential tissue damage,
he complement system is controlled by a group of cell surface
nd soluble regulators [14]. Negative regulation of complement
ctivation is achieved by several independent mechanisms: (a)
roteolytic cleavage of C3b and C4b by the plasma serine pro-
ease factor I in conjunction with one of the membrane or plasma
ofactors (membrane cofactor protein (MCP or CD46), comple-
ent receptor 1 (CR1 or CD35), factor H, and C4 binding protein

C4BP) [15–18]; (b) dissociation of the C3 and C5 convertases,
process known as decay accelerating activity, which involves
ecay accelerating factor (DAF or CD55), CR1, C4BP and factor H
19–23]; (c) MAC formation is inhibited by the membrane regulator
D59 (protectin) [24,25], the soluble regulator apolipoprotein clus-
erin (Apo-j) [26–30], and vitronectin [31,32]; (d) specific protease
nhibitors (e.g., serpins and C1 inhibitor) limit cleavage of C4 and C2
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y dissociating the classical (C1r-C1s) and lectin (MBL-associated
erine protease 2 (MASP-2)) pathway serine proteases [33].

. Complement links innate and adaptive immune
esponses

Beyond its roles in direct recognition and clearance of microbes,
omplement activation is critical for generating an efficient adap-
ive immune response. Ligation of complement receptors enhances
umoral immune responses [34,35]. Binding of the complement
plit products C3d, C3dg, or iC3b [36] by CR2 (CD21) lowers the
hreshold for B cell activation by cross-linking the B cell recep-
or with the CD19/CD81/CR2 co-receptor complex [37]. Indeed,
onjugation of C3d to viral glycoproteins increases their immuno-
enicity up to 10,000 fold [38–41], and C3−/− or CR2−/− mice have
mpaired humoral responses to T cell-dependent (TD) antigens
42–45]. Additionally, expression of CR2 on follicular dendritic cells
DC) is required for B cell survival within the germinal center, affin-
ty maturation, and the establishment of B cell memory [46–48]. In
ddition, CR1 (CD35), a type I integral membrane protein that binds
3b, C4b, and C1q, and MBL, also plays a role in establishment of B
ell responses [49–51]. This glycoprotein is expressed on all periph-
ral blood cells in humans with the exception of platelets, natural
iller cells and most T cells [49,52]. In primates, CR1 expression on
rythrocytes contributes to immune complex clearance and trans-
er of C3b-opsonized antigens to splenic and hepatic macrophages
53,54]. In mice, CR1 is expressed as an alternative splice product
f the Cr2 gene and is restricted to B cells and follicular dendritic
ells [55–57]. Profound defects in humoral immunity have been
bserved in CR1/CR2−/− mice [42,43,45,58], with little effect on T
ell activity [59,60]. CR1/CR2-mediated antigen trapping on follic-
lar dendritic cells enhances antigen presentation to B cells, and

s required for both primary and secondary humoral responses
61,62].

Complement and its receptors can also augment T cell activation.
R3 and CR4 can mediate phagocytosis of iC3b-opsonized antigens
n antigen presenting cells, and thus, may augment antigen pre-
entation. In the absence of complement C3, T cell responsiveness
o influenza virus, lymphocytic choriomeningitis virus (LCMV),
eishmania, and alloantigens are reduced [59,60,63,64]. Corre-
pondingly, C3b opsonization augments protein antigen uptake
65,66] and T cell stimulation [65,67,68]. Covalent C3b modification
an target antigen to specific MHC class II containing vesicles [69]
nd may increase lysosomal peptide-MHC stability [70], and the
iversity of T cell epitopes presented [71]. Additionally, a deficiency
f C1q can lead to suboptimal antigen uptake, impaired DC differ-
ntiation and maturation, and reduced T cell responses [64,72–77].
C present exogenous antigen in a MHC class I-restricted manner,

eading to the activation of naïve CD8+ T cells through cross-
resentation [78]. DC uptake of complement containing immune
omplexes (IC) enhances the efficiency of protein antigen cross-
resentation compared to free antigens [77,79,80]. However, C1q
ay not be necessary to stimulate T cell priming against pathogen-

erived antigens [81,82].

. Virus evasion of the complement response

To minimize recognition and/or destruction by complement
everal different families of viruses have evolved strategies to evade

r exploit complement to establish infection (reviewed in [83–87]).
omplement evasion mechanisms include: (a) use of complement
eceptors to enhance viral entry or suppress adaptive immune
esponse (e.g., HIV, West Nile virus (WNV), measles virus, aden-
viruses, herpesviruses, enteroviruses, hepatitis B and C viruses
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88–126]); (b) expression of viral proteins that directly inhibit
omplement (e.g., herpesviruses, coronaviruses, and astroviruses
127–136]); (c) modulation of expression of complement regulators
n host cells to prevent complement-dependent lysis (e.g., her-
esviruses [137–139]); (d) incorporation of human regulators on
he surface of virions to protect from complement-mediated viroly-
is (e.g. HIV, HTLV, cytomegalovirus, and vaccinia virus [140–146]);
e) recruitment of soluble complement regulatory proteins to the
irion or infected cell surface (e.g., WNV and HIV [147–151]); (f)
xpression of viral decoy proteins that structurally or function-
lly mimic complement regulatory proteins (e.g., poxviruses and
erpesviruses [152–159]. A single virus may utilize several inde-
endent strategies to escape from recognition and targeting by
omplement and modulate the immune response to establish per-
istent infection.

. Complement and flavivirus infection

Although complement activation inhibits infection of many
iruses [160–166], it appears to have both protective and
athogenic roles in Flavivirus infection depending on the specific
irus, phase of the infection, and immune status of the host. The
enus Flavivirus is composed of 73 enveloped viruses containing
11 kilobase single-stranded, positive-polarity RNA genomes [167].
ithin this family, several are associated with severe human dis-

ases including dengue (DENV), yellow fever (YFV), WNV, Japanese
ncephalitis (JEV), and tick-borne encephalitis (TBE) viruses [167].
single open reading frame is translated in the cytoplasm as a

olyprotein and cleaved by virus- and host encoded-proteases into
hree structural (capsid (C), membrane (prM/M), and envelope (E))
nd seven nonstructural (NS) proteins including NS1, NS2A, NS2B,
S3, NS4A, NS4B and NS5 [168]. The E protein functions in recep-

or binding, entry, and membrane fusion and elicits the majority of
eutralizing antibodies whereas prM assists in folding, assembly,
nd function of the E protein [168]. Viral particles assemble at the
ndoplasmic reticulum and are released by exocytosis following
ransport through the trans-Golgi network [168].

Flavivirus non-structural proteins regulate viral transcription,
eplication, and attenuation of host antiviral immune response,
ncluding antagonizing the interferon response (reviewed in [168]).
ne non-structural proteins, NS1, has been recently shown to reg-
late complement function (see below). NS1 is synthesized as
monomer and dimerizes after post-translational modification

169,170]. Within the cytoplasm, NS1 acts as a co-factor for the NS5
NA-dependent RNA polymerase during viral replication [171,172].
owever, it is also expressed on the cell surface and secreted as a
examer [169,173]. NS1 has been implicated in the pathogenesis
f severe DENV infection [174–176] and immune evasion by WNV
147,177].

.1. Protective effects of complement

Complement can limit Flavivirus infection by stimulating adap-
ive immune responses. C3−/− mice are more susceptible to lethal

NV infection and show greater viral burden and reduced antivi-
al antibody titers [178]. Infection studies with mice lacking C1q,
4, or factor B suggest that all complement activation pathways
rchestrate protection against WNV infection [81]. However, each
ctivation pathway appears to exert somewhat distinct protective

ffects in response to WNV infection. Humoral IgM responses to
NV likely depend upon activation of C3 by the lectin recogni-

ion pathway. In contrast, both the lectin and alternative pathways
ppear necessary for efficient T cell priming as C4−/−, factor B−/−,
nd factor D−/− mice exhibited reduced WNV-specific CD8+ T cell
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esponses [81]. The T cell defects in C4−/− mice may be indirect
s depressed IgM responses could affect viral opsonization and
ntigen presentation.

Flaviviruses also directly trigger complement activation in vitro
nd in vivo. Increasing concentrations of complement or serum neu-
ralize as much as 60% of a given infectious dose of WNV in cell
ulture in the absence of antibody [178]. Complement activation by
laviviruses also has been described in vivo. C3 and C4 consump-
ion were observed in a mouse model of WNV infection prior to the
nduction of a specific antibody response [81]. C3 catabolism and
roduction of complement split products during secondary DENV

nfection correlate with increased disease severity and develop-
ent of dengue hemorrhagic fever and shock syndrome, the most

evere form of DENV infection [174,179–181].
Complement activation augments antibody-mediated neu-

ralization of several viruses, including influenza [165,182],
IV [183–186], respiratory syncytial [187,188], varicella zoster

189–191], Epstein-Barr [192,193], and herpes simplex viruses
194–196]. Complement also improves antibody-mediated neu-
ralization of Flaviviruses. Complement augments immune serum-

ediated neutralization of YFV, DENV, and Kunjin virus [197–199]
nd monoclonal antibody-dependent neutralization of WNV [178].
imilarly, the protective efficacy of Flavivirus neutralizing anti-
odies in vivo correlates with IgG subclasses that efficiently fix
omplement [200].

Fc-�R engagement by antibodies in vitro can paradoxically
nhance replication of Flaviviruses [201–206]. This phenomenon,
nown as antibody-dependent enhancement of infection (ADE),
s hypothesized to contribute to the pathogenesis of secondary
ENV infection [203,207]. Recent studies indicate that complement
an restrict ADE. Complement minimized ADE of WNV and DENV
nfection in Fc-�R-expressing cell lines and primary macrophages
208,209]. Experiments with mouse sera deficient in individual
omplement components indicate that C1q is sufficient to restrict
DE of WNV infection in vitro. This effect was IgG subclass-
ependent, as C1q restricted ADE by a human IgG3 isotype-switch
ariant, but had little effect on IgG2 and IgG4 subclass variants
208]; these results correlate with the known affinity of human IgG
ubclasses for C1q [210,211]. Interestingly, complement-dependent
nhibition of DENV ADE may also require C3 [209]. While these
tudies establish that complement restricts ADE by Flaviviruses, the
recise inhibitory mechanisms at the cellular level remain unclear.

Recent studies suggest that C1q also limits Flavivirus ADE in vivo.
hereas enhancement of WNV infection was not observed after

assive transfer of antiviral IgG2a mAbs that bind C1q avidly in wild
ype mice, it was observed in C1q−/− mice [208]. The ability of C1q
o suppress ADE may explain some of the difficulties in consistently
bserving Flavivirus ADE in animal models. Further investigation is
ecessary to define the links between complement restriction of
DE, Fc-�R specificity, and disease pathogenesis of Flaviviruses.

.2. Potential pathogenic effects of complement

In cells that express CR3, antibody-dependent complement
ctivation may paradoxically enhance viral infection. Comple-
ent activation by antiviral IgM enhanced WNV infection of
acrophages and monocyte cell lines [92,93]. Blockade of CR3

brogated the complement-dependent enhancement of WNV
nfection in this model system. Thus, under certain circumstances,

ntibody and complement-dependent opsonization of Flaviviruses
ay increase infection in CR3-expressing cells.
During severe secondary DENV infection, a vascular leakage syn-

rome occurs with fluid transudation into serosal spaces [212].
lthough the pathogenesis of DENV infection remains controver-
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ial and implicates cross-reactive antibodies and effector T cells
reviewed in [213–215]), a pathological role for complement acti-
ation has been suggested. In early clinical studies, reduced levels of
3, C4 and factor B and increased catabolic rates of C3 and C1q were
bserved, particularly in patients with severe disease [179,180].
dditionally, C3 breakdown products and anaphylatoxins accumu-

ated in the circulation of severely ill patients and peaked at the
ay of maximum vascular leakage [181,216]. Circulating immune
omplexes formed by virions and DENV-specific antibodies were
ypothesized to cause the pathological complement activation
180], although only small amounts were detected in circulation
181,217]. One alternative hypothesis is that infected cells express
ufficient amounts of DENV antigens (E or NS1 proteins) on their
urface facilitating immune complex formation and complement
eposition [218]. Indeed, DENV-infected endothelial cells activate
uman complement in the presence of antibodies resulting in C5b-
deposition [219]. A subsequent study implicated NS1 as the key

urface viral protein responsible for complement activation [174].
s soluble DENV NS1 differentially binds to cultured endothelial
nd mesothelial cells [175], high levels of intravascular soluble NS1,
s observed in DENV-infected patients, could promote binding and
urface expression of NS1 on selective cells without a requirement
or direct viral infection; this could contribute to tissue-specific vas-
ular leakage that occurs during severe secondary DENV infection
fter recognition by anti-NS1 antibodies, immune complex forma-
ion, and inflammatory damage [174,219].

.3. Mechanisms of complement evasion by Flaviviruses

Recent evidence suggests WNV NS1 has immune evasion func-
ion and protects against complement activation by binding the
egative regulator factor H [147]. Factor H sustains factor I-
ediated cleavage of C3b and inactivates the alternative pathway

3 convertase (reviewed in [220]). Co-immunoprecipitation exper-
ments demonstrate that soluble WNV NS1 binds to factor H,
eading to degradation of C3b in solution [147]. Additionally, cell
urface NS1 limits C3b deposition and C5b-9 MAC formation [147].
hus, secreted or cell surface NS1 may minimize immune system
argeting of WNV by decreasing complement activation in solution
nd on the surface of infected cells. This data appears to contra-
ict early studies that suggested DENV NS1 might be the key viral
rotein that triggers complement activation [221,222]. In those
tudies, NS1 was termed “non-hemagglutinating soluble comple-
ent fixing antigens (SCF)” because it has activity in the traditional

tandard complement fixing test that requires specific antibodies to
rigger guinea pig complement [221,222]. Subsequent experiments
ndicate that DENV NS1 does not activate complement efficiently,
ut instead requires specific anti-NS1 antibodies for complement
onsumption and C5b-9 generation ([174] and Avirutnan et al.,
npublished results). Additionally, DENV NS1 has been reported
o bind to clusterin, a complement regulator that inhibits MAC for-

ation [223]. Clearly, more studies are necessary to establish the
ignificance of these findings in the pathogenesis of infection of
ENV, WNV, and other Flaviviruses in vivo.

. Concluding remarks

Activation of the complement system has a critical role in protec-
ion and possibly pathogenesis of infection by different Flaviviruses.

omplement activation primes adaptive immune responses and
odulates the effector functions of Flavivirus-specific antibod-

es. Recent studies suggest that Flaviviruses have evolved novel
trategies to limit complement activation. The balance between
omplement activation and evasion likely helps determine the out-
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ome of a productive infection. A greater understanding of how
omplement restricts and contributes to pathogenesis of individ-
al Flaviviruses may expand strategies for developing therapeutics
r vaccines to control infection.
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