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Abstract

Gradient vector flow (GVF) is an effective external force for active contours; however, it suffers from heavy computation
load. The virtual electric field (VEF) model, which can be implemented in real time using fast Fourier transform (FFT), has
been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is
referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a
convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related
to the vector field convolution (VFC) model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses
not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence,
subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape
concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving.
Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these
advantages of the CONVEF model on both synthetic and natural images.
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Introduction

Image segmentation aims at partitioning the input image into a

finite number of disjoint regions, which share certain consistent

properties such as intensity and texture. Active contour, or snake

model, has been one of the most influential variational models for

image segmentation since its debut in 1988 [1]. The basic idea

behind the snake model is that an elastic curve c(s) = [x(s),y(s)],

s[½0,1�, defined in the image domain, deforms to minimize the

following energy functional

Esnake~

ð
1

2
aDcsD2zbDcssD2
� �

zEext c sð Þð Þds, ð1Þ

where cs(s) and css(s) are the first and second derivatives of c(s) with

respect to s and positively weighted by a and b, respectively.

Eext(c(s)) is the image potential. Using the calculus of variations,

the Euler equation to minimize Esnake is

acss(s){bcssss(s){+Eext~0: ð2Þ

This can be considered as a force balance equation,

FintzFext~0, ð3Þ

where Fint = acss(s)- bcssss(s) and Fext = {+Eext. The internal force

Fint keeps the snake contour to be smooth while the external force

Fext attracts the snake to the desired image features.

Soon after the snake model has been proposed, there has been a

flurry of research devoted to the theory and application of this

model. Generally speaking, the active contours can be categorized

into region-based models [2–20] and edge-based models [1], [21–

28] according to how the image data is utilized. The region-based

models usually employ certain region-homogeneity criteria to

guide the evolution of the active contours, such as the local region

descriptors in [17–20] and histogram in [10–12]. The advantages

of region-based models include robustness to noise and weak edge,

and insensitivity to initial contour. Edge-based models utilize the

image edge map to stop the evolution of the contour, as a result,

the active contours follow high gradient to extract object

boundaries and are effective only when the contrast between

foreground and background is high. The edge-based snake is an

active topic in the computer vision community [22] [23] [27] [28]

and we focus on the edge-based parametric active contour in this

study.

Under the framework of edge-based active contours, the typical

external force is derived from the gradient of the edge map. Due to

its local nature, the gradient based external force is ‘myopic’ and

not regular enough, as a result, the snake contour must be

initialized around the object boundary. In order to overcome the

shortcomings, Xu and Prince [29], [30] proposed the gradient
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vector flow (GVF) external force which largely solved the problem

of limited capture range. Although there are many improved

works on the GVF [31–43], the high computation load of the GVF

creates an obstacle for real-time applications. In order to address

this issue, several algorithms have been proposed to accelerate the

convergence [44,45]. Park and Chung [46] and Yuan and Lu [47]

independently proposed the virtual electric field (VEF) external

force, in which each pixel is considered as a static charge. By

leveraging fast Fourier transform (FFT), the VEF can be

implemented in real time and maintains other desirable properties

such as large capture range and u-shape concavity convergence.

Recently, the vector field convolution (VFC) model is proposed

[48] by convolving the image edge map with a vector field kernel.

As stated in [49], the VFC has superior noise robustness and lower

computational cost than the GVF model. Very recently, a hybrid

structural and texture distinctiveness vector field convolution

(STVFC) approach is proposed, where the texture distinctiveness

is employed to automatically initialize the snake and to get a better

edge map for texture segmentation [50].

In this work, we propose an extension of the VEF model by

using modified distance in the convolution kernel. We refer to this

extension as CONvolutional Virtual Electric Field, CONVEF for

short. As we will point out in section 3, the CONVEF model can

also be considered as an extension of the VFC model. In contrast

to the STVFC model which focuses on initialization and on better

edge map using texture distinctiveness [50], the proposed

CONVEF model aims at designing a better convolution kernel.

This CONVEF model maintains the common properties of the

GVF-like external force, such as enlarging capture range, u-shape

concavity convergence, subject contour convergence and initial-

ization insensitivity. What’s more, the CONVEF model is more

effective on suppressing noise than the GVF, VEF and VFC

models and possesses other interesting properties such as G-shape

concavity convergence and neighboring objects separation, which

are not mentioned in VEF [46] and VFC [48] models. Meanwhile,

the CONVEF model can also be implemented in real-time by

using FFT. The basic idea of the CONVEF is presented in [51]

and has been recently integrated into the anisotropic diffusions for

image denoising [52]. Compared with [51], we explore the VFC

model with Gaussian-like magnitude and analyze the performance

of the VFC model in detail; we further present theoretical analysis

Figure 1. Results on a synthetic image. (a) Synthetic edge map containing an impulse, a strong edge and a weak one; streamlines generated
from (b) GVF using m = 0.2,#iteration = 200, (c) VFC using m1 with c~1:5, (d) VFC using m1 with c~1:2, (e) VFC using m2 with f~10, (f) VFC using m2

with f~20; (g) CONVEF with n = 1.0, h = 20.0, (h) CONVEF with n = 1.0, h = 25.0.
doi:10.1371/journal.pone.0110032.g001
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of the CONVEF model, and have extended the experimental

results.

The remainder of this paper is organized as follows. In Section

2, a brief review of the GVF, VEF and VFC models is presented.

In Section 3, the behavior of noise suppression of the GVF, VEF

and VFC models is analyzed first and then the proposed

CONVEF model is presented. Section 4 reports the experimental

results. Conclusions are drawn in Section 5.

Backgrounds: From GVF to VEF and VFC

GVF: Gradient Vector Flow
The typical shortcomings of the external force using the

gradient vector of the edge map of a given image include limited

capture range and poor convergence to concavities [29]. In order

to solve these problems, Xu and Prince [29] proposed the gradient

vector flow (GVF) model to replace Fext = {+Eext in (3). The

GVF is a vector field v x,yð Þ~ u x,yð Þ,v x,yð Þð Þ obtained by

minimizing the following energy functional [29]:

EGVF ~

ðð
m(u2

xzu2
yzv2

xzv2
y)zD+f D2Dv{+f D2dxdy, ð4Þ

where f is the edge map of an image, m is a regularization

parameter. Using the calculus of variations, the Euler equation to

minimize EGVF reads:

vt~mDv{D+f D2 v{+fð Þ, ð5Þ

where D is the Laplacian operator.

VEF: Virtual Electric Field
In order to overcome the heavy computation load of GVF, Park

and Chung proposed the virtual electric field (VEF) model [46]. In

this model each pixel in the image is considered as a virtual electric

charge and the virtual electric field at x0,y0ð Þ, which is created by

all other electric charges in region D enveloping x0,y0ð Þ, is given

by

EVEF x0,y0ð Þ~
X

x,yð Þ[D

x,yð Þ= x0,y0ð Þ

q: x0{xð Þ
d3

,
q: y0{yð Þ

d3

� �
, ð6Þ

where d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x0ð Þ2z y{y0ð Þ2

q
, D = {(x,y)| |x-x0|#t, |y-y0|#

Figure 2. Segmentation results using the VFC, GVF and VEF snakes. The noisy images in Column (a) are coined by using MATLAB function
imnoise with different noise level. Columns (b) and (c) are the results of VFC using m1(x,y), those in columns (d) and (e) are based on m2(x,y), those in
column (f) are the results of GVF snake with m~0:2, #iteration = 200 for GVF, and those in column (g) are the results of VEF snake. The noisy images
are smoothed using Gaussian filter of standard deviation s~1:0 to calculate the GVF field, and the initial contours are very close to the u-shapes,
especially in the 3rd and 4th rows, for the GVF and VEF snakes. It is obvious that all the results are not satisfactory because of edge leakage, being
trapped in local minima and failure to converge to concavities.
doi:10.1371/journal.pone.0110032.g002
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t}, and q is defined as the magnitude of the edge map of an image.

This VEF can be implemented in real time by using FFT since the

EVEF can be rewritten in convolution form as follows,

EVEF x,yð Þ~ {
x

r3
6q,{

y

r3
6q

� �
, ð7Þ

where 6 denotes convolution operation and r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
is

defined in region R = {(x,y)|2t#x#t, 2t#y#t}. The name VEF

is coined in [46], however, the introduction of electric field into

active contours could date back to the work by Yue et al [53]

where they stated ‘‘we determine Eimage by following the concept of
electric potential energy of an electric charge. Each edge pixel is
treated as an electric charge, and the image energy is considered as
the contribution from all the electric charges.’’ The gradient of the

potential energy is just the virtual electric field. This VEF can serve

as an alternative to GVF, not only for active contour, but also for

other applications such as extraction of curve skeleton [54] and

finding symmetry axes [55].

In addition, it is also interesting to mention there is another

physical phenomenon being utilized to design the external force

for active contours, i.e., universal gravitation [56]. Under this

framework, each pixel is a celestial body, between any two single

bodies with mass, there exists attractive force acting on each other,

which is proportional to their mass product and inversely

proportional to the distance between their mass centers. Based

on this concept, the gravitation energy field takes the following

form [56],

Egravity~

ð
g ~rrð Þ ~rr

~rrk k d~rr: ð8Þ

Comparing (8) with (7), if g :ð Þ is also defined as the magnitude of

the edge map, the VEF would be, to some extent, equivalent to

this universal gravitation based external force.

VFC: Vector Field Convolution
Lately, Li and Acton [48] proposed the VFC external force by

convolving the image edge map with a vector field kernel,

EVFC x,yð Þ~ {m(x,y)
x

r
6q,{m(x,y)

y

r
6q

� �
, ð9Þ

Figure 3. Analysis of the behaviors of h and n in 1D case.
doi:10.1371/journal.pone.0110032.g003
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where r and q possess the same meanings as in (7), and m(x,y)is
the magnitude function of vector {x=r,{y=rð Þat (x,y) and the

authors proposed two types of magnitude function as follows,

m1 x,yð Þ~1=rc, ð10Þ

m2 x,yð Þ~ exp {r2
	

f2
� �

, ð11Þ

where c and f are positive parameters to control the decrease, as

the signal-to-noise (SNR) is decreased, c (or f) should be decreased

(or increased). The authors have already mentioned the equiva-

lence between the VFC using m1 x,yð Þ and the universal

gravitation based external force. It is also clear that the VFC

using m1 x,yð Þ is equivalent to the VEF in (7) if the parameter c in

(10) is 2, and therefore, the VFC can be considered as a direct

extension of the VEF model.

The CONVEF Model

Analysis of the VFC,GVF and VEF Models for Noise
Suppression

For the VFC model using m1 x,yð Þ, the authors encouraged

decreasing c to suppress noise, therefore, c~1:7 is employed for all

the experiments and excellent performance over GVF on noise

suppression has been exemplified in [48]. As pointed out in [57],

‘‘a significant advantage in using the VFC force as opposed to
standard formulations of external forces or more sophisticated
formulations such as the gradient vector flow field (GVF) is that the
VFC force is robust to spurious edges and noise in the image and
provides a large capture range.’’ However, further studies show

that the VFC model would also smooth away weak edges while

suppressing noise. Fig. 1 shows an example similar to that in Fig. 3

in [48]. There are an impulse, a strong edge and a weak edge in

this synthetic image where black is zero and white is unitary. The

magnitudes of the strong edge and the impulse are zero and that of

the weak edge is 0.85. The streamlines generated from the VFC

using m1 x,yð Þ with c~1:5 and c~1:2 are shown in Figs.1 (c) and

(d), respectively, where it can be observed that the force generated

from the impulse always plays an important role in the left part of

the strong edge even though the weak edge is overwhelmed in

Fig. 1 (d). Similar observations also occurred in [48]. Therefore,

there is a dilemma for the VFC snake to eliminate noise and

preserve weak edges simultaneously. The streamlines of the VFC

model using m2 x,yð Þ with f~10 and f~20 are shown in Figs.1 (e)

and (f), respectively. Although the result in Fig. 1(f) is satisfactory,

the VFC using m2 x,yð Þ fails when the noise distribution is more

complicated. The streamlines of the GVF model is shown in Fig. 1

(b), it is also obvious that the impulse noise dominates the left part

of the GVF field. Since VEF is equal to the VFC using m1 x,yð Þ
with c~2:0, it is clear that the VEF cannot overwhelm the impulse

noise as well.

There are other demonstrations in Fig. 2. Resembling the noisy

image in Fig. 8 in [48], the impulse noise is added to the U-shape

image by using MATLAB function imnoise(U, ’salt&pepper’, Var)
with Var varying from 0.1 to 0.4 with step 0.1 in from the first row

to the fourth row in Fig. 2, respectively. The goal in these

examples is to extract the U-shape object from the noisy images.

There are three handicaps in achieving this goal: (1) the evolving

contour would get trapped in local minima arising from noise; (2)

since the object boundary may be broken by noise, the evolving

contour would leak out; (3) it is difficult for the contour to converge

to the noisy concavity. Since the noises in the present examples are

much heavier than those in [48], it is more difficult for the snakes

to converge correctly to the concavities. We also let the noisy

image stay intact as done in [48]. The results of VFC snake using

m1 x,yð Þ are shown in columns (b) and (c), those using m2 x,yð Þ are

in columns (d) and (e). The corresponding values of the parameters

in m1 x,yð Þ and m2 x,yð Þ,i.e., c and f, respectively, are shown in the

subcaption of each subfigure. These values are chosen so that they

Figure 4. An example of the line-drawing image with N = 128 used for computational cost comparison. It is clear that the GVF field in (b)
is unmatured at iteration N=2, so, the runtime reported in Table 1 for GVF is underestimated.
doi:10.1371/journal.pone.0110032.g004

Table 1. Comparison of the runtime of GVF and CONVEF for an N|N image.

Runtime(second) N

2048 1024 512 256 128 64

GVF 9739.5 1188.8 116.2 12.3 0.93 0.22

CONVEF 24.01 3.89 1.04 0.27 0.05 0.02

doi:10.1371/journal.pone.0110032.t001
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are justifiable, for example, in Fig. 2(b1), c is 1.6 but the contour

leaks out; when c is 1.5 the leakage is more serious. Therefore, we

set c to 1.7 to resist leakage in Fig. 2(c1), however the concavity

convergence is poorer than that in Fig. 2(b1) and the contour

converges more poorly when c is 1.8. Consequently, the results of

c~1:6 and c~1:7 are chosen for demonstration. The values for f
are also chosen in the same way. The increasing step is 0.1 for c
and 1.0 for f. We found when the step for f is 0.5, there is usually

no significant change in the result, for example, when f~5:5, the

converged result is similar to that in Fig. 2 (d1) where f~5:0, so

f~6:0 in Fig. 2 (e1). It is obvious that the VFC model using

m1 x,yð Þ cannot conquer the above mentioned three handicaps at

all, the model using m2 x,yð Þ performs slightly better; however, the

result are not satisfactory especially in the third and fourth rows in

Fig. 2. What’s more, we will demonstrate that the VFC model

using m2 x,yð Þ behaves clumsily on G-shape convergence in the

next section. The results of the GVF snake are presented in

column (f). The noisy images are smoothed using Gaussian filter of

standard deviation s~1:0 to calculate the GVF field, and the

initial contours are very close to the u-shapes, especially in the 3rd

and 4th rows, however, the results are far from satisfactory. Since

the VEF is equal to the VFC using m1 x,yð Þ with c~2:0, the results

in column (g) are not better, if not worse, than those in column (c)

where c is 1.7 or 1.8.

The Proposed CONVEF Model
In order to overcome the dilemma of eliminating noise and

simultaneously preserving weak edge encountered by the VFC and

VEF models, we propose a further extension of the VEF model by

modifying the distance metric. We depart from the concept of

electric potential. Following the definitions in (6), the virtual

electric potential (VEP) at x0,y0ð Þ is given by

Figure 5. Segmentation results of the noisy images in Fig. 2 using the CONVEF snake and comparisons with the VFC snake. Columns
(a) and (b) are the results using CONVEF snakes, those in columns (c) and (d) are the results using VFC snakes with m1(x,y) and those in columns (e)
and (f) are the results using VFC snakes with m2(x,y). Before calculating all the VFC fields, the noisy images are preprocessed using a 2D Gaussian
function with standard deviation s. Although the VFC model prefers small c for noise suppression, we increased c to preserve edges in these
experiments. The corresponding parameters are listed in the subcaption of each subfigure.
doi:10.1371/journal.pone.0110032.g005
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PVEP~
X

x,yð Þ[D

x,yð Þ= x0,y0ð Þ

q x,yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x0ð Þ2z y{y0ð Þ2

q : ð12Þ

This is a weighted sum and can be rewritten via convolution due

to the fact that the weight 1


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x0ð Þ2z y{y0ð Þ2

q
is not

correlated with the signal q(x,y). Therefore, the potential takes the

following form

PVEP~KVEF 6q, ð13Þ

where KVEF ~1=r, r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
, and the associated electric field

which is the gradient of the electric potential can also be rewritten

via convolution as in (7). If one neglects the physical nature of (12)

and take (13) just as a convolution operation, some other

convolution kernels can be employed in (13). These new kernels

may not necessarily bear any physical meanings any longer;

however, they would make VEF more powerful and flexible than

the original version. We refer to this convolution based version as

CONvolutional Virtual Electric Field, CONVEF for short and to

the snake models with CONVEF external force as CONVEF

snakes.

We present here one practically effective kernel by modifying

the distance metric in KVEF . One nonnegative factor h is

introduced into r so that rh~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2zh

p
, and the power of r

is relaxed from 1 to a certain positive real number n, therefore, the

proposed kernel is formulated as

KCONVEF~1
	

rn
h: ð14Þ

and the corresponding VEP is

PVEP{CONVEF ~KCONVEF6q, ð15Þ

and the gradient of the VEP, i.e., the CONVEF field, is given by

ECONVEF~ {
x

rnz2
h

6q,{
y

rnz2
h

6q

 !
: ð16Þ

It is obvious, when h = 0 and n = 1, the CONVEF model reduces

to the VEF model. This modification of r makes the CONVEF

more powerful than the VEF. On one hand, the factor h plays a

Figure 6. Blob-like concavity convergence of the CONVEF, VFC, and GVF snakes. The results using CONVEF snake are in row (a), and those
in rows (b) and (c) are the results using VFC and GVF snakes, respectively. The parameters to calculate the GVF field are m~0:2, and #iteration = 200,
and the other corresponding parameters are listed in the subcaption of each subfigure.
doi:10.1371/journal.pone.0110032.g006
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role analogous to scale space filtering, the larger the value of h, the

greater the smoothing effect on the results, as a result of which the

CONVEF snakes would be more robust to noise. In general, the

value of h should be increased as the signal-to-noise ratio (SNR) is

decreased. On the other hand, the larger the value of n, the faster

the potential decays with distance and vice versa, this property

allows the CONVEF snakes to preserve edges and to tell apart two

closely-neighboring objects with large n (larger than 1, taking the

VEF model as reference) and to dive into C-shape concavities with

small n. Note that we neglect a constant n outside the bracket in

(16).

In order to better understand the behaviors of h and n, we plot

the kernel KCONVEF in 1D case with different h and n in Fig. 3. It

can be seen from Fig. 3(a) that, the larger the value of h, the

smaller the value of KCONVEF at points near x = 0, but almost

unchanged at points far from x = 0. Recall that the convolution in

(15) is a weighted sum, this property means larger h weighs less

information from nearby points in the sum, consequently, the

potential PVEP{CONVEF is much smooth and its gradient, the

electric field, is much regular. Note that KCONVEF is not defined at

x = 0 when h~0:0, we set KCONVEF 0ð Þ= KCONVEF 1ð Þ for the

purpose of exhibition. Similar strategy is employed in Fig. 3 (b)

where it can be observed that the larger the value of n, the faster

KCONVEF decays with distance. For example, although point A is 4

far from x = 0 while B is 15, due to varying n, the values of

KCONVEF at point A and B are almost identical, it seems as if the

point B is as near to x = 0 as point A in terms of the values of

KCONVEF ; Similar results can be observed for points C and D and

it seems as if the point C is as far as D from x = 0. As a result, if one

wants to separate two closely-neighboring objects or preserve

edges, large n can be employed such that nearby points are less

weighted as if they are far away; on the other hand, if concavity is

too deep, small n can be employed to weigh relatively more on

faraway points as if they are nearby. Although the CONVEF

model is derived from the VEF model, it can also be taken as an

extension of the VFC model, since the VFC in (10) is a special case

of the CONVEF with h~0:0 in form. Certainly, the significant

difference between the two models is that, the VFC model

encourages decreasing c for noise suppression while the CONVEF

model employs factor h for noise suppression and encourages large

n for edge preserving and small n for C-shape concavity

convergence. These factors make the CONVEF model more

effective and more versatile than the VFC model. To note, the

power of rh in CONVEF is larger than 2 whereas that of r in VFC

is just larger than 1 according to their different derivations.

Experimental Results

In this section, we first show the computation efficiency of the

CONVEF model and demonstrate the performance of the

CONVEF model on noise suppression and weak edge preserving

by comparing with the VFC, VEF and GVF models, then

illustrate other interesting properties of the CONVEF model, such

as blob-like concavity convergence and neighboring objects

separation, on both synthetic and natural images. The parameters

for all snakes in our experiments are a~0:1, b~0:1, time step

t~0:5, m~0:2 for all GVF, and the size of convolution kernel is

the same as that of the image unless otherwise stated.

Figure 7. In each panel, from left to right, (a) synthetic image of
two objects and its edge map; convergence and the close-up of
force field of (b) VEF snake, (c) CONVEF snake with n = 3.0,
h = 0.0, (d) VFC snake using m2 with f~3:0.
doi:10.1371/journal.pone.0110032.g007

Figure 8. Convergence of the CONVEF snakes with different initial contours.
doi:10.1371/journal.pone.0110032.g008
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Computational Cost
In order to demonstrate the computation efficiency of the

CONVEF model, we coined line-drawing images of dimension

N|N to calculate the CONVEF and GVF fields. Since the VEF,

VFC and CONVEF models can all be calculated using FFT, their

computational costs depend mainly on the size of the convolution

kernel. Therefore, we just compare the runtime of the CONVEF

model with that of the GVF model. The convolution kernel size

for CONVEF is
N

2
|

N

2
, and the iteration number for GVF is

N=2. The results with different N are reported in Table 1, from

which one can see that the CONVEF is about 10 to 400 times

faster than the GVF since there are two partial differential

equations for the GVF to be solved iteratively on the entire image.

Fig. 4 shows an example of the line-drawing image with N = 128.

It is clear that the GVF field in Fig. 4(b) is unmatured at iteration

N=2, so, the runtime reported in Table 1 for GVF is underesti-

mated. This experiment was conducted using MATLAB 2010 on

a Thinkpad T60 notebook with 1.83 GHz CPU, 2.5 GB RAM.

Noise Robustness Using Factor h
To evaluate the noise suppression ability of CONVEF model

using h, we also calculated the CONVEF field on the synthetic

image in Fig. 1. The streamlines generated from the CONVEF

with fixed n~1:0, h~20:0 and h~25:0 are shown in Figs.1 (f) and

(g), respectively. It is clear that the force generated from the strong

edge overwhelms that from the impulse while the weak edge is

preserved in both cases. The reason behind the success of

CONVEF is obvious. Large power of rh (say, 3 in this experiment)

makes KCONVEF decay fast and the weak edge would be preserved;

while large h(say, 20 and 25 in this experiment) weighs less

information from nearby points, therefore, the impulse is less

weighted in generating the force field. Consequently, one can

combine the use of large n with large h to simultaneously suppress

noise and preserve weak edge.

Since the VFC, VEF and GVF snake fails to extract the U shape

in the noisy images in Fig. 2, the CONVEF snake is employed for

this task. Through the observations in Fig. 1, we can increase the

value of h to suppress noise and increase the value of n to preserve

edges. The results of CONVEF snakes at some combinations of h
and n are shown in columns (a) and (b) in Fig. 5. These results are

satisfactory even though the noise is very heavy in the fourth row.

Although the VFC snake fails to overcome the three handicaps in

extracting the U-shape objects in Fig. 2, we propose to presmooth

the noisy images using a 2D Gaussian function with standard

deviation s,Gs x,yð Þ. The results of VFC snakes with m1 x,yð Þ
combined with Gs x,yð Þ are shown in columns (c) and (d). It is clear

this combination would work well when the noise is not very

heavy, see the first and second rows in columns (c) and (d).

However, when the noise is as heavy as that in the fourth row, it

would fail. Although the result in Fig. 5(c3) is fairly good, the result

is sensitive to parameters c and s. We have tried many

combinations of c and s for the noisy image in the third row,

the values of c are {1.8,1.9,2.0,2.5,3.0,4.0}, s varies in a wide

range by step 0.1, we found that there are only two combinations,

i.e., {c~1:9, s~1:2}, {c~2:0, s~1:4}, at which the results are

acceptable. However, the CONVEF snake is more robust to the

Figure 9. Results on an ultrasound image. (a) Ultrasound heart
image, (b) VEF field, (c) convergence of CONVEF snake and (d) its
CONVEF field with n = 2.0, h = 10.0.
doi:10.1371/journal.pone.0110032.g009

Figure 10. Segmentation of the human lung CT image using (a)
VFC snake with ª~1:7, (b) VEF snake, (c) CONVEF snake with
n = 1.5, h = 0.0, and (d) CONVEF snake with n = 3.0, h = 5.0.
doi:10.1371/journal.pone.0110032.g010

Figure 11. Results on a CT image. (a) Cardiac CT image,
convergence of (b) VEF snake, (c) CONVEF snake with n = 1.5, h = 2.0,
and (d) CONVEF snake with n = 2.0, h = 6.0.
doi:10.1371/journal.pone.0110032.g011
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parameters h and n, for example, when n~2:0, h can vary from 9

to 13, at which the results are fairly good. The results of VFC

snakes with m2 x,yð Þ combined with Gs x,yð Þ are shown in columns

(e) and (f). However, the Gaussian filter didn’t help much. The

effectiveness of a Gaussian filter is similar to that of increasing f in

m2 x,yð Þ. For example, the result in Fig. 5(f2) (f~5, s~1:0) is

similar to the result in Fig. 2(e2)(f~6).

Blob-like Concavity Convergence Using Small n
Although the strategy of decreasing the value of n in (16) is not a

good choice for noise suppression, there may be some other

applications in which the CONVEF snake with small n plays an

important role. The problem associated with convergence to blob-

like concavity is one such application. The problem associated

with convergence to U-shape has been intensively studied using

the GVF, VEF and VFC models. However, it is seldom reported

for S-shape, 3-shape, C-shape, and G-shape. The S-shape and 3-

shape are slightly more difficult to be extracted than the U-shape

since they can be considered as two U-shapes assembled in

different ways. However, the C-shape and G shape are more

difficult than the U-Shape. The difference between C-shape

concavity and U-shape concavity is that the C-shape is semi-close,

while the U-shape is open, and there is orientation rotation in the

case of G-shape. It is very easy for the GVF and VEF to form

source within concave regions and the vectors around the neck of

the concave regions are outward; however, for the CONVEF with

small n, the faraway points will be weighted more and the force

field will be affected by more points around, as a result, the

CONVEF field around the neck of the concavity will point inward

the concavity.

Fig. 6 shows the results of the CONVEF, VFC, and GVF

snakes on S-shape, 3-shape, C-shape, as well as G-shape. The

results show that the CONVEF snake evolves into the concave

region progressively and steadily and locate these blob-like objects

correctly. However, the GVF and VFC snakes failed. The success

of the CONVEF snake is attributed to weighting more on faraway

points with small n. The VFC snakes with m2 x,yð Þ fails to

converge to these concavities although the f in m2 x,yð Þ is large

enough and boundary leakage occurs. Another observation in row

(c) for the GVF snake is that the initial contours are very close to

the objects. The reason behind this observation is that the capture

range of GVF is not large enough and there are critical points [58]

which should be outside the initial contours.

Neighboring Objects Separation Using Large n
Fig. 5 demonstrates the use of large n for edge preserving when

the CONVEF snake is employed to locate objects. One can also

employ large n to separate two closely neighboring objects,

especially when one edge is weak and the other is strong. In fact, to

separate objects is essential to preserve the edge of each object. We

demonstrate this particular application using a synthetic image.

Fig. 7(a) shows the original image, where there are one gray disk

and one white rectangle on the black background and there are

just three pixels between two objects. The edge of the disk is weak

and that of the rectangle is strong. Fig. 7 (b) shows that the VEF

snake moves across the weak edge and sticks to the strong one.

Fig. 7 (c) shows the result of the CONVEF snake with n~3:0 and

h~0:0. It is clear that the CONVEF snake correctly tells apart

these two closely neighboring objects. Fig. 7(d) shows the result of

VFC snake using m2 x,yð Þ with f~3. Since the VFC snake prefers

large f to enlarge the capture range, but f is just 3 in this example

and the capture range is very low, so the initial contour is close to

the disk. However, the snake contour still leaks out to the

rectangle.

Common properties: enlarged capture range, subject
contour convergence and initial insensitivity

We utilize the room image, which are also employed in [29]

[46] [48], to verify the performance of the CONVEF snake in

capture range enlargement, subject contour convergence and

insensitivity to initialization. Fig. 8 shows the results on the room

image. It can be seen from this experiment that the CONVEF

snakes converge to object boundaries and stay on the gaps on the

boundaries whenever the initial contour is inside, or outside, or

across the boundary. These experiments manifest the CONVEF

snake has a large capture range and is insensitive to initialization.

Real Medical Images
The CONVEF snake is also applied to real noisy medical

images. The first example is an ultrasound heart image with weak

edges on the upper-left region. The original image and the VEF

field are shown in Figs. 9(a) and (b), respectively. It can be seen

from Fig. 9(b) that the VEF field overwhelms the weak edge and

flows into the blood pool. It is sure that the VEF snake cannot

extract the endocardium correctly whatever is the initial contour.

The evolution and the corresponding force field of the CONVEF

snake are shown in Figs. 9(c) and (d), respectively. Although the

speckle noise is troublesome, the CONVEF field within the blood

pool is fairly regular and the CONVEF snake works well. This

shows once again that the CONVEF snake provides a superior

alternative to the VEF snake.

Fig. 10 shows the segmentation results of the VFC, VEF and

CONVEF snakes on a human lung CT image. The purpose of this

example is to extract the parenchyma in the left part and the

cancer in the right part, and the difficulties reside in the weak edge

and closely-neighboring boundaries. The results of VFC and VEF

snakes are shown in Figs. 10 (a) and (b), respectively, and the

convergent contours of both snakes leak out although the VEF

snake behaves much better than the VFC snake. Figs. 10 (c) and

(d) show the results of the CONVEF snakes with different

parameter settings. Once again this experiment exemplifies the

abilities of the CONVEF snake for weak edge preserving and

neighboring objects separation.

A third example is a cardiac CT image with inhomogeneity,

shown in Fig. 11(a). We also aim at extracting the endocardium of

the left ventricle (LV). The difficulty for this task is the strong edges

stemming from the bones nearby the LV. Fig. 11(b) shows the

evolution of the VEF snake while Figs. 11(c) and (d) show the

results of the CONVEF snakes with different parameter settings.

These results show that the VEF snake leaks out and moves across

the endocardium boundary and sticks to the bones, whereas the

CONVEF snakes converge correctly to the boundary of the

endocardium.

Conclusions

In this paper, we have introduced a novel external force for

active contours, namely, convolutional virtual electric field

(CONVEF). This CONVEF model is derived from the VEF

model by designing a more effective convolution kernel. It can also

be considered as an extension of the VFC model. The CONVEF

snake possesses some desirable properties of the GVF, VEF and

VFC snakes, such as large capture range, insensitivity to

initialization, and convergence to U-shape concavity and subject

contours. Meanwhile, the CONVEF model can also be imple-

mented in real-time by using FFT. What’s more, the CONVEF

snake behaves much better than the GVF, VEF and VFC snakes

in noise suppression, weak edge preserving, blob-like concavity

convergence, and neighboring objects separation. These proper-
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ties of the CONVEF model have been tested on both synthetic

and real medical images. It is shown that the CONVEF model can

serve as a superior alternative to the GVF, VEF and VFC models.

In addition, one can also integrate this CONVEF model into the

geometric active contour as done in [34], the texture distinctive-

ness [50] can also be combined with the CONVEF model, and

there may be potential applications of the CONVEF model to

extract the curve skeleton [54] and to find axes of symmetry [55].

The ant foraging algorithms [59–62] can also be employed to

optimize the segmentation results based on active contours, and

this is the topic of further research.
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