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While the underlying genetic alterations and biology of acute myeloid leukemia

(AML), an aggressive hematologic malignancy characterized by clonal

expansion of undifferentiated myeloid cells, have been gradually unraveled

in the last decades, translation into clinical treatment approaches has only just

begun. High relapse rates remain a major challenge in AML therapy and are to a

large extent attributed to the persistence of treatment-resistant leukemic stem

cells (LSCs). The Hedgehog (HH) signaling pathway is crucial for the

development and progression of multiple cancer stem cell driven tumors,

including AML, and has therefore gained interest as a therapeutic target. In

this review, we give an overview of the major components of the HH signaling

pathway, dissect HH functions in normal and malignant hematopoiesis, and

specifically elaborate on the role of HH signaling in AML pathogenesis and

resistance. Furthermore, we summarize preclinical and clinical HH inhibitor

studies, leading to the approval of the HH pathway inhibitor glasdegib, in

combination with low-dose cytarabine, for AML treatment.
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Introduction

Hematopoietic stem cells (HSCs) are the apex of the hierarchically organized blood

cell production system giving rise to multipotent hematopoietic progenitor cells (HPCs),

unipotent HPCs, and finally blood effector cells. Within the supporting bone marrow

microenvironment HSCs are maintained in a delicate balance between self-renewal and

differentiation to ensure life-long steady-state hematopoiesis and HPC and effector cell

replenishment upon, e.g., blood loss or infections (Krenn et al., 2022). Upon

transplantation into a lethally irradiated or immunosuppressed recipient mouse a

single HSC, characterized by lineage negativity and high sca-1, high c-kit, low/absent

CD34 and absent CD38 expression, can fully reestablish the hematopoietic system (Osawa

et al., 1996). Similarly, transplantation of acute myeloid leukemia (AML) patient-derived

CD34+CD38− cells results in the establishment of an AML-like disease including the
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development of leukemic blasts (Bonnet and Dick, 1997). These

seminal studies suggested a residual and skewed hematopoietic

hierarchy in AML originating from a transformed leukemic stem

cell (LSC). Importantly, tumor initiating cancer stem cells

(CSCs), which possess the capacity to self-renew, generate all

tumor cell populations, and cause relapse after chemotherapy,

were also shown to exist in many other tumor entities, such as

breast, skin, brain and gastrointestinal cancers (Batlle and

Clevers, 2017). Due to their partially overlapping

functionality, it was suggested that normal and cancer stem

cells share common signaling pathways required for their

maintenance and pro-longed survival (Koury et al., 2017). In

this review we will specifically introduce and discuss the

Hedgehog (HH) signaling pathway as such a shared but

differentially utilized pathway in HSCs and AML-LSCs and

elaborate on current treatment approaches aiming to abrogate

HH signaling in leukemic cells.

The Hedgehog signaling pathway

The HH signaling pathway, initially discovered as a regulator of

segment polarity in the fruit fly, is a highly conserved signaling

cascade that regulates several aspects of embryonic development

while being largely silenced in adult tissues except for i.e., stem and

progenitor cell maintenance, metabolic control, inflammatory

processes and tissue repair after injury (Nüsslein-Volhard and

Wieschaus, 1980; Echelard et al., 1993; Ingham and McMahon,

2001; Beachy et al., 2004; Pospisilik et al., 2010; Teperino et al., 2012;

Furmanski et al., 2013; Lau et al., 2021). Aberrant pathway activation

has been associated with several human cancers, ranging from

medulloblastoma to basal cell carcinoma (BCC) and

hematological malignancies (reviewed in Teglund and Toftgård,

2010 and Abraham and Matsui, 2021). Oncogenic HH signaling

contributes to several hallmarks of cancer and supports initiation,

progression and metastasis of various tumor entities by impacting

on the cancer cells themselves as well as by modulating the tumor

supporting microenvironment (Gailani et al., 1996; Das et al., 2009;

Alexaki et al., 2010; Hanahan and Weinberg, 2011; Hanna and

Shevde, 2016; Riobo-Del Galdo et al., 2019; Zhang et al., 2021).

Canonical Hedgehog signaling

In mammals canonical HH signaling is initiated through

binding of one of three secreted HH ligands, Sonic hedgehog

(SHH), Indian hedgehog (IHH) or Desert hedgehog (DHH), to

the twelve-transmembrane domain receptor Patched (PTCH)

(Ingham and McMahon, 2001). In an unliganded state, PTCH is

located at the base of the primary cilium, a slim hair-like

organelle indispensable for canonical vertebrate HH signaling

present on the surface of almost all mammalian cells, including

normal blood cells (Rosenbaum and Witman, 2002; Goetz and

Anderson, 2010; Singh et al., 2016). PTCH exerts its inhibitory

function by antagonizing the signal transducer Smoothened

(SMO), a seven transmembrane protein and member of the

G-protein coupled receptor superfamily, allowing the

phosphorylation of the GLI transcription factors, a process

facilitated by the GLI-binding protein Suppressor of Fused

(SUFU) (Ingham and McMahon, 2001; Humke et al., 2010).

Subsequently, phosphorylated GLI is targeted for selective

proteasomal degradation resulting in a truncated repressor

form of GLI (GLIR), which translocates to the nucleus and

inhibits HH-induced target gene expression (Humke et al.,

2010; Gulino et al., 2012) (Figure 1A).

Upon binding of a HH ligand to PTCH, PTCH is inactivated

by internalization in an endosome dependent manner and

degradation in lysosomes (Incardona et al., 2000; Ingham and

McMahon, 2001). Removal of PTCH from the primary cilium

cancels PTCH-mediated repression of SMO allowing SMO

activation and translocation into the primary cilium (Teglund

and Toftgård, 2010; Chen et al., 2011). Activated SMO promotes

accumulation of GLI at the tip of the primary cilium, GLI

dissociation from SUFU and generation of full-length GLI

activator (GLIA) forms. Eventually, GLIA shuttles to the

nucleus where it acts as a transcription factor and induces the

expression of HH target genes including regulators of cell

differentiation, survival and proliferation as well as

components of the HH/GLI pathway itself, such as GLI1 and

PTCH1 (Humke et al., 2010; Tukachinsky et al., 2010; Aberger

and Ruiz i Altaba, 2014). Importantly, HH ligands can be

produced by, act on and activate HH signaling in the same

cell (autocrine HH signaling) or neighboring cells (paracrine HH

signaling) (Fan et al., 2004; Sanchez et al., 2004; Bhowmick and

Moses, 2005; Dierks et al., 2007; Yuan et al., 2007; Hegde et al.,

2008; Yauch et al., 2008; Tian et al., 2009; Amakye et al., 2013; Liu

et al., 2014) (Figures 1B,C). The transcriptional outcome of HH

signaling depends on the ratio of GLIA and proteolytically

processed GLIR within the nucleus. Activator and repressor

functions are fulfilled to varying degrees by the three different

mammalian GLIs, namely GLI1, GLI2, and GLI3. While

GLI1 solely acts as a transcriptional activator, GLI2 functions

as both strong transcriptional activator and modest repressor if

proteolytically processed. By contrast, GLI3 is mainly considered

as transcriptional repressor generated by proteolytic processing,

though GLI3 full-length protein can also induce target gene

expression in a context-dependent manner (Sasaki et al., 1999;

Park et al., 2000; Bai and Joyner, 2001; Buttitta et al., 2003; Pan

et al., 2006; Ruiz i Altaba et al., 2007; Hui and Angers, 2011; Li

et al., 2011).

SMO-independent Hedgehog signaling

GLIA-dependent transcription can additionally be

induced and upregulated in cancer cells in a SMO-

Frontiers in Cell and Developmental Biology frontiersin.org02

Tesanovic et al. 10.3389/fcell.2022.944760

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944760


independent manner via crosstalk with and integration of

oncogenic signaling and epigenetic cues (Teperino et al.,

2014; Doheny et al., 2020). As shown for melanoma and

colon cancer cells, the constitutive activation of RAS-RAF-

MEK-ERK signaling results in increased nuclear localization

and/or transcriptional activity of GLI1 and/or GLI2 (Stecca

et al., 2007; Mazumdar et al., 2011). Similarly, expression,

nuclear localization, protein stability and transcriptional

activity of the GLI transcription factors are enhanced by

the PI3K/AKT/mTOR pathway in, for instance, renal cell

carcinoma, adeno carcinoma, lung squamous cell carcinoma,

pancreatic cancer, and ovarian cancer cells (Kebenko et al.,

2015; Zhou et al., 2016; Aberger et al., 2017; Kasiri et al., 2017;

Singh et al., 2017). As shown in Figure 1D, several druggable

non-canonical HH effectors have been identified as positive

regulators of GLI proteins such as casein kinases (CSNK1,

CSNK2), DYRK1, atypical PKC, SRF-MKL1, BRD4, S6K and

class-I histone deacetylases. Pharmacological targeting of

these effectors provides promising opportunities for the

treatment of HH/GLI-associated cancers in combination

with established HH-antagonists or in settings with a

priori or acquired SMO-inhibitor resistance (Mao et al.,

2002; Canettieri et al., 2010; Wang et al., 2012; Atwood

et al., 2013; Coni et al., 2013; Tang et al., 2014; Gruber

et al., 2016; Singh et al., 2017; Gruber et al., 2018; Purzner

et al., 2018; Whitson et al., 2018; Peer et al., 2021) (for more

details see in-depth reviews of Aberger and Ruiz i Altaba,

2014; Singh and Lauth, 2017; Peer et al., 2019; Pietrobono

et al., 2019).

Hedgehog signaling in normal
hematopoiesis

Although the first link between HH signaling and

hematopoiesis was reported 2 decades ago, a well-defined

role for HH signaling within the hematopoietic system has so

far not been established (Bhardwaj et al., 2001; Lim and

Matsui, 2010; Mar et al., 2011; Aberger et al., 2012). The

vertebrate hematopoietic system develops in three spatially

and temporally distinguishable waves during embryonic

development: 1) primitive hematopoiesis, which takes

place in mesoderm-derived yolk-sac blood islands and

produces embryonic erythrocytes; 2) pro-definitive

hematopoiesis, which originates from the yolk sac

hemogenic endothelium producing bipotent HPCs

required for blood cell production until birth; 3) definitive

hematopoiesis, which originates from hemogenic

endothelium of the yolk sac, placenta and/or aorta-gonad-

mesonephros region giving rise to HSCs required for

multilineage hematopoiesis. Newly generated HSCs

initially seed into placenta and fetal liver for expansion

and maturation and subsequently migrate to bone marrow

for their maintenance ensuring life-long self-renewal and

balanced blood cell production (reviewed in Krenn et al.,

2022).

Already during early gastrulation HH-signaling paves the

way for the initiation of hematopoiesis. Using mouse

embryonic explants, it was shown that visceral-endoderm

secreted IHH upregulates the expression and activity of

FIGURE 1
Activation and distinct regulatory mechanisms of Hedgehog/GLI signaling modes.
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PTCH1, SMO and GLI1 within the epiblast, thereby

contributing to the generation of hemogenic and

vasculogenic mesodermal cells (Farrington et al., 1997;

Dyer et al., 2001). Upon antibody-based inhibition or

genetic deletion of either IHH or SMO these mesodermal

cells were unable to form yolk sac blood islands required for

early embryonic erythropoiesis and vascularization (Byrd

et al., 2002). These severe defects are only partially

recapitulated in vivo as only 50% of IHH-deficient

embryos die at mid-gestation (St-Jacques et al., 1999; Dyer

et al., 2001). This suggests that loss of IHH is compensated by

alternative HH ligands, non-canonical pathway activation or

redundancy with other developmental pathways in vivo.

Possibly due to masking hematopoiesis-independent

defects and/or early embryonic lethality observed in many

conventional HH knockout models (Chiang et al., 1996; Mo

et al., 1997; St-Jacques et al., 1999; Zhang et al., 2001; Cooper

et al., 2005), we do not clearly understand the role for HH

signaling in the generation and function of erythro-myeloid

progenitors or HSCs prior to birth in mouse or human in vivo.

However, considering that HH-mutant zebrafish embryos do

not establish HSCs (Gering and Patient, 2005) and ex vivo

treatment of AGM tissue explants with SHH or IHH increases

HSC activity (Peeters et al., 2009), in vivo studies taking

advantage of now available conditional knockout mouse

models allowing for cell-type specific ablation of HH family

members during development are envisioned and required for

clarification.

Hematopoietic stem and progenitor cells (HSPCs)

isolated from human newborn cord blood, frequently

termed primitive HSPCs, express PTCH1, SMO, SHH,

IHH, GLI1, GLI2 and GLI3 mRNA (Bhardwaj et al., 2001;

Kobune et al., 2004). While function-blocking antibodies

targeting HH ligands reduced in vitro proliferation and

differentiation of primitive HSPCs, treatment with

recombinant SHH or DHH or co-culture with bone

marrow-derived stromal cells secreting IHH increased

their in vitro proliferation and in vivo repopulation

capacity upon transplantation into nonobese-severe-

combined immunodeficient (NOD-SCID) mice.

In line with these observations, adult mice harboring a

heterozygous Ptch1 deletion (Ptch1+/−), which results in

increased HH pathway activity, revealed an expansion of

HPCs in the bone marrow under steady-state conditions

compared to wild-type littermates. When treated with 5-

fluorouracil, which depletes HPCs and effector cells,

thereby leading to a strong activation and proliferation of

HSCs (Lerner and Harrison, 1990; Wilson et al., 2008), the

peripheral blood cell pool of Ptch1+/− mice recovered faster,

suggesting increased HSC regenerative potential. However, as

shown by serial transplantation of Ptch1+/− HSPCs, the

increased HSPC proliferation resulted in reduced HSC self-

renewal and maintenance (Trowbridge et al., 2006; Dierks

et al., 2008). Inducible deletion of the Ptch1 gene in adult mice

also increased HSPC proliferation rates but additionally

resulted in a rapid decrease in T and B cell numbers,

suggesting possible differentiation defects (Uhmann et al.,

2007). In agreement with adult HSPCs not expressing the

HH downstream transcription factors GLI1, GLI2 or GLI3

(Gao et al., 2009), PTCH1-mediated HSPC maintaining

signals are not HSPC-intrinsic but provided by the HSPC

supporting bone marrow microenvironment (Uhmann et al.,

2007; Siggins et al., 2009).

Due to the embryonic lethality of Smo−/− mice, the role of

SMO for adult hematopoiesis was analyzed in conditional

knockout mouse models or by transplantation of fetal liver-

derived Smo−/− HSPCs into irradiated recipient mice. These

studies have, however, produced conflicting results. While

conditional deletion of Smo in hematopoietic and endothelial

cells using the Vav-Cre transgene significantly reduced the

numbers of long-term repopulating HSCs in the bone marrow

(Zhao et al., 2009), conditional deletion of Smo in

hematopoietic cells, osteoblasts, and perivascular MSCs but

not bone marrow endothelial cells using the inducible Mx1-

Cre transgene did not alter adult hematopoiesis and HSC

function under steady-state or stress (Gao et al., 2009;

Hofmann et al., 2009). Similarly, hematopoiesis was

restored normally after transplantation of fetal liver-derived

Smo−/− HSPCs into sublethally irradiated recipient mice

(Dierks et al., 2008). Reconciling this discrepancy, a

unifying hypothesis could be that SMO-mediated HH

signaling within endothelial cells is crucial for HSPC

maintenance in bone marrow. Of note, the pharmacological

inhibition of SMO with a high-affinity antagonist did not

impair in vitro nor in vivo HSPC differentiation and

proliferation under steady-state conditions (Hofmann et al.,

2009). However, SMO-antagonist treated HSCs were not

tested for their repopulation capacity in transplantation

experiments.

Gli1null mice, although viable and presenting normal

peripheral blood counts, display reduced HSPC

proliferation, impaired myeloid differentiation, and

defective 5-FU- or G-CSF-induced stress hematopoiesis.

The increased quiescence of the HSPC compartment

resulted in increased HSC-mediated long-term

repopulation of lethally irradiated recipients upon

transplantation (Merchant et al., 2010). However,

considering that neither GLI1 mRNA nor protein have

been detected in adult HSPCs (Gao et al., 2009), the data

suggests that direct HH signaling is restricted to cells of the

bone marrow microenvironment, which support HSPCs.

Together, these studies highlight a so far unappreciated

role of microenvironment-mediated HH signaling for HSPC

development and function. Future work will not only have to

dissect the individual contribution of distinct bone marrow

microenvironment components and HSPCs to HH signaling
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but also clarify if and how HH signaling contributes to adult

hematopoiesis compared to embryonic hematopoiesis.

Acute myeloid leukemia

Acute myeloid leukemia (AML) is a heterogeneous clonal

hematologic disorder characterized by multiple cytogenetic and

molecular abnormalities leading to the production and

accumulation of undifferentiated myeloid progenitors, so-

called leukemic blasts, which displace the normal

hematopoietic system in the bone marrow (Zhou et al., 2016).

The establishment of LSCs, the source of leukemic blasts, and

coinciding development of AML is a multistep process based on

acquired genetic and epigenetic alterations within normal HSCs

or early HPCs. Early mutations, often affecting epigenetic

regulators, enhance the self-renewal potential of HSCs while

simultaneously impairing differentiation causing the clonal

expansion of pre-leukemic HSCs. At later disease stages

mutations affect and deregulate crucial signaling pathways

involved in proliferation and differentiation, thereby

contributing to the full transformation of HSCs into LSCs

(Corces-Zimmerman et al., 2014; Shlush et al., 2014; Vetrie

et al., 2020). Within the bone marrow, LSCs hijack and

remodel HSC niches to ensure not only LSC maintenance and

support (Behrmann et al., 2018) but also chemoresistance

(Shlush et al., 2014; Thomas and Majeti, 2017; Boyd et al.,

2018). While initial studies suggested that AML-LSCs are

restricted to the rare quiescent CD34+CD38− cell population,

follow-up studies demonstrated that, especially in relapsed AML,

LSCs are present within all bone marrow HSPC populations and,

in part, highly proliferative (Iwasaki et al., 2015; Ho et al., 2016;

Pollyea and Jordan, 2017). This phenotypic heterogeneity most

likely reflects individual LSC subpopulations contributing to

chemoresistance and relapse.

The early clinical manifestation of AML is directly

attributable to the loss of functional hematopoietic effector

cells with patients exhibiting fatigue, pallor, anemia,

susceptibility to infections, easy bruising, or hemorrhage.

Secondary organ infiltration of leukemic cells provokes the

development of additional symptoms, such as splenomegaly,

hepatomegaly, or lymphadenopathy (Löwenberg et al., 1999;

Redaelli et al., 2003). AML is mainly a disease of the elderly

with the median age at diagnosis being 68 years (Shallis et al.,

2019). Besides increasing age, risk factors for the development of

AML include inherited genetic disorders, elevated white blood

cell count, preceding cytotoxic therapy, preceding hematologic

disorders and genetic alterations (Dohner et al., 2015). Once

diagnosed with AML, the 5-years survival rate is ~29% across all

AML patients and drops to ~7% in AML patients aged 65 years

and above (SEER-database, 2021). The individual patient

survival, however, strongly depends on the tumor driving

genetic alterations, which where therefore incorporated into

the currently valid World Health Organization (WHO) and

European LeukemiaNet (ELN) patient classifications and

treatment recommendations for AML (Arber et al., 2016;

Döhner et al., 2017; Hwang, 2020). Whereas cytogenetic

profiling of large structural chromosomal abnormalities

remains the backbone of AML patient classification, detection

of recurrent mutations in AML, facilitated by easier access to

next-generation sequencing approaches, has added an additional

layer of heterogeneity among patients. The most frequently

reported genetic abnormalities in AML affect the fms like

tyrosine kinase 3 (FLT3), nucleophosmin (NPM1), DNA

methyltransferase 3A (DNMT3A), isocitrate dehydrogenase

1 or 2 (IDH1, IDH2), Neuroblastoma RAS viral oncogene

homolog/Kirsten rat sarcoma viral oncogene homolog (NRAS/

KRAS), runt-related transcription factor 1 (RUNX1), Tet

methylcytosine dioxygenase 2 (TET2), p53, CCAAT/enhanced

binding protein α (CEBPA), and/or mixed-lineage leukemia

(MLL) genes (Falini et al., 2005; Marcucci et al., 2011; Ferrara

and Schiffer, 2013; Ley et al., 2013). Mutations affecting FLT3,

NPM1 and IDH1/2 are associated with increased leukemic cell

proliferation and survival by upregulation of JAK/STAT, PI3K/

AKT and/or MEK/ERK signaling (Brandts et al., 2005;

Breitenbuecher et al., 2009; Marcucci et al., 2011; Heydt et al.,

2018), activation of several HOX genes ensuring a stem cell-like

phenotype (Alcalay et al., 2005; Verhaak et al., 2005; Heath et al.,

2017) and altered genome-wide or gene-specific DNA

methylation, respectively (Ley et al., 2010; Im et al., 2014; Qu

et al., 2014). Importantly, mutations may co-occur or exclude

each other, thereby individually or in interplay modulating AML

pathways contributing to disease progression or resistance (Ley

et al., 2013).

The standard induction therapy for young and/or fit AML

patients has remained largely unchanged for the last decades and

consists of an intense chemotherapy with 7 days of cytarabine

and 3 days of an anthracycline, such as daunorubicin or

idarubicin (7 + 3 regimen), resulting in about 70% of

patients <60 years and less than 50% of patients >60 years
achieving complete remission (CR) (Wiernik et al., 1992;

Ferrara and Schiffer, 2013; Aberger et al., 2017). Once CR is

achieved, consolidation therapy is mandatory to eradicate

residual LSCs and avoid relapse (Cassileth et al., 1988; Ferrara

and Schiffer, 2013). However, considering the heterogeneous

nature of AML, a single treatment approach cannot target all

AML subtypes. Therefore, more selective and personalized

therapies incorporating drugs targeting mechanisms induced

by recurrent AML mutations have been studied in various

clinical trials and led to the approval of AML treatment

regimens including hypomethylating agents (HMAs;

azacitidine, decitabine), pro-apoptotic agents (venetoclax),

FLT3 kinase inhibitors (gilteritinib, midostaurin, sorafenib,

quizartinib, crenolanib), and IDH inhibitors (ivosidinib,

enasidinib). Recently, the first HH inhibitor glasdegib was

approved for combination treatment with low-dose cytarabine
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for AML patients who are not eligible for high-dose

chemotherapy. The impressive therapeutic effect of this

combination therapy underscores the clinically relevant role of

HH/GLI signaling in this lethal form of leukemia (Kantarjian

et al., 2021).

Hedgehog signaling in AML

Groundwork establishing HH signaling as a therapeutic

target in AML include multiple studies investigating the

expression of HH components in primary patient-derived

whole mononuclear leukemic cells, CD34+ cells and/or bone

marrow tissue. Consistent with AML heterogeneity, it was shown

that the core components that mediate the HH signal response,

PTCH1, SMO, GLI1, GLI2, and GLI3, are differentially expressed

among AML patient samples (Bai et al., 2008; Kobune et al., 2009;

Kobune et al., 2012; Wellbrock et al., 2015; Chaudhry et al.,

2017). Noteworthy, increased expression of GLI2 was associated

with the presence of FLT3 mutations and correlated with a

significantly shortened event-free, relapse-free, and overall

AML patient survival (Wellbrock et al., 2015). This finding

suggests that in the context of continuous FLT3 activity

GLI2 acts as a tumor promoting transcriptional activator.

Consistently, AML patients harboring a high LSC frequency,

identified by a high amount of GPR56 positive cells (Pabst et al.,

2016), presented increased HH signaling and GLI2 activity (He

et al., 2022). Similarly, increased GLI1 expression has been shown

to correlate with reduced overall AML patient survival (Zhou

et al., 2021).

Studies investigating the expression of HH ligands have

produced conflicting results. Whereas multiple studies were

able to detect SHH and/or IHH mRNA in patient-derived

leukemic cells (Bai et al., 2008; Kobune et al., 2009; Kobune

et al., 2012; Chaudhry et al., 2017), a study by Wellbrock and

others could neither detect SHH nor IHH or DHH transcripts

within the leukemic cell fraction. However, Wellbrock and others

convincingly showed that DHH is produced and shed into the

blood by bone marrow endothelial cells and osteoblasts

(Wellbrock et al., 2015). Likewise, Kobune et al. show that

AML bone marrow stroma cells upregulate expression of IHH

and downregulate expression of HH-interacting protein (HHIP),

a negative HH regulator and transcriptional target of HH

signaling, to support leukemic cell proliferation. Pretreatment

FIGURE 2
Model of oncogenic Hedgehog/GLI signaling in AML and its possible therapeutic targeting.
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with azacitidine induced demethylation of the HHIP gene,

partially restored HHIP expression, and reduced the leukemia

promoting effect of the primary AML stromal cells (Chuang and

McMahon, 1999; Kobune et al., 2012) (Figure 2). Taken together,

these datasets suggest a paracrine and tumor promoting

interaction between leukemic cells and the bone marrow

microenvironment via the HH signaling pathway.

Preclinical in vitro studies targeting
Hedgehog signaling in AML

Functionally, several in vitro studies have shown a correlation

between HH signaling and AML cell resistance to chemotherapy

and radiation. Inhibition of HH signaling using cyclopamine,

GANT61, recombinant HHIP or anti-hedgehog neutralizing

antibodies resulted in increased apoptosis, reduced

proliferation, and restored chemosensitivity to cytarabine of

CD34+ but not CD34− leukemic cell lines or primary AML

cells (Kobune et al., 2009; Long et al., 2016). Interestingly, the

targeting of GLI1 with GANT61 resulted in myeloid

differentiation of the CD34− AML cell fraction (Long et al.,

2016). Further evidence for the contribution of HH signaling

in drug resistance was obtained by Zahreddine and others who

analyzed leukemic blasts from relapsed patients treated with

ribavirin, an inhibitor of the eukaryotic translation initiation

factor eIF4E. In this study, UDP glucuronosyltransferase

(UGT1A), an enzyme capable of inactivating ribavirin and

cytarabine by glucuronidation and increasing chemoresistance,

was significantly upregulated in a GLI1-dependent manner

(Zahreddine et al., 2014).

Activation of the HH pathway, characterized by increased

expression of SMO and GLI1, was identified in myeloid cell

lines with acquired radiation and drug resistance. Upon

inhibition of HH signaling with the SMO antagonist

sonidegib (LDE225), these cells were resensitized to

irradiation by downregulation of the PI3K/AKT/NFκB and

DNA repair pathways (Li et al., 2016). This is in line with a

recent study by Zhou et al. showing that overexpression of

GLI1 promotes chemotherapy resistance and leukemic cell

proliferation via upregulation of cell cycle regulators, such as

cyclin D and cyclin-dependent kinases (CDK) and PI3K/AKT

signaling. Combined inhibition of GLI1 and CDK4/

6 synergistically promoted cytarabine sensitivity in cell

lines and AML patient samples. RNA sequencing data from

relapsed AML patient-derived bone marrow samples further

confirmed that GLI1, PTCH1, SMO, and components of the

PI3K/AKT signaling cascade were upregulated in relapsed

AML patients compared to AML patients achieving

complete remission. Furthermore, patients with high

expression of GLI1, PIK3R1, and AKT3 had reduced

overall survival (Zhou et al., 2021). In contrast to these

studies highlighting that increased GLI1 expression

contributes to AML pathophysiology, GLI3 expression

seems to be actively downregulated in AML patients by

epigenetic silencing to not only reduce GLI3R HH repressor

function (Chaudhry et al., 2017) but also upregulate the

cytarabine chemoresistance-inducing genes SAMHD1,

CDA, and MRP8 (Freisleben et al., 2020). HMA decitabine-

induced GLI3R re-expression resulted in decreased

GLI1 expression levels in AML cell lines and increased

their sensitivity to the SMO inhibitor glasdegib, thereby

reducing AML cell viability and proliferation (Chaudhry

et al., 2017). Further studies supporting the idea of dual

inhibition of HH and epigenetic regulators suggest

combination therapy of the histone deacetylase inhibitor

vorinostat and the SMO inhibitor SANT-1 or the

BRD4 inhibitor ZEN-3365 and the GLI1-inhibitor

GANT61, both resulting in increased apoptosis and

reduced proliferation of AML cells (Hay et al., 2017;

Wellbrock et al., 2021) (Figure 2).

Preclinical in vivo studies targeting
Hedgehog signaling in AML

Using AML xenograft models, it was shown that in vivo

application of glasdegib was unable to eradicate the bulk

tumor cells but specifically targeted re-transplantable and

self-renewing LSCs. Dissecting the underlying mechanism

in vitro, Fukushima et al. showed that glasdegib reduces the

LSC-containing CD34+CD38− population and increases the

proliferative cell fraction in patient-derived AML samples.

Glasdegib treatment also resensitized MOLM-14 AML cells to

cytarabine and the FLT3-kinase inhibitor sunitinib

(Fukushima et al., 2016). Similarly, the GLI1 inhibitor

GANT61 in combination with the FLT3-kinase inhibitor

sunitinib and PI3K-inhibitor PF-04691502 was shown to

downregulate GLI1 expression in and reduce the

proliferation and survival of FLT3-mutated AML cells,

thereby prolonging the survival of AML xenografts

(Latuske et al., 2017). Conclusively, in a FLT3-ITD-driven

AML mouse model concomitant, constitutive activation of

HH signaling promoted the expansion of myeloid HPCs via

activation of STAT5 signaling leading to accelerated AML

development. Combined SMO and FLT3 kinase inhibition

using saridegib and sorafenib curbed leukemic cell growth and

prolonged AML mouse survival (Lim et al., 2015) (Figure 2).

Apart from the well-established GLI and SMO inhibitors,

the naturally occurring small molecule triptonide was recently

shown to downregulate GLI2 and FLT3 protein expression

and to induce apoptosis and inhibit proliferation of FLT3-

ITD+ AML cells in a dose dependent manner. Treatment of

MOLM-13 transplanted AML xenografts with increasing

dosages of triptonide significantly reduced the in vivo

tumor burden (Xu et al., 2021).
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TABLE 1 SMO inhibitors in clinical trials for the treatment of AML.

SMO
inhibitor

SMO
inhibitor
dosage

Combination (Preliminary) Results Clinical
trial

Phase Status References

Vismodegib 150 mg/day Ribavirin, decitabine — NCT02073838 II Unknown —

150 mg/day (Cytarabine) Vismodegib well-tolerated; lower-
than-expected efficacy for
vismodegib monotherapy; no
combination therapy performed

NCT01880437 Ib/II Terminated Bixby et al. (2019)

Not defined Not defined — NCT03878524 Ib Recruiting —

Sonidegib 2 × 400 mg/day or
800 mg/day

— 100% of patients
experienced ≥1 AE, 71% of patients
experienced serious AEs; low CR
rate (1.45% of patients), disease
progression in 62% of patients

NCT01826214 II Completed —

400 mg/day Azacitidine AEs within the expected range;
remission rates comparable to
azacitidine monotherapy,
promising progression-free and
overall survival

NCT02129101 I/Ib Completed Tibes et al. (2017)

Glasdegib 5, 10, 20, 40, 80,
120, 180, 270,
400 or
600 mg/day

- EstablishedMTD: 400 mg/day; AEs
within the expected range; two
patients experienced DLT (80 and
600 mg/day); clinical activity in
49% of patients

NCT00953758 I Completed Martinelli et al. (2015a)

25, 50 or
100 mg/day

LDAC, azacitidine,
cytarabine/daunorubicin

Glasdegib + LDAC, well-tolerated;
glasdegib + azacitidine, well-
tolerated; glasdegib + cytarabine/
daunorubicin, manageable despite
increased severe AEs; low remission
rates in glasdegib only cohort,
increased in combination cohorts

NCT02038777 I Active Minami et al. (2017)

Ib: 100 or 200 mg/
day; II:
100 mg/day

LDAC, decitabine,
cytarabine/daunorubicin

Phase Ib: glasdegib in combination
with LDAC or decitabine, well-
tolerated; glasdegib + cytarabine/
daunorubicin, increased severe
AEs, manageable; 31% remission
rate across all groups; Phase II:
Glasdegib + cytarabine/
daunorubicin, high CR rate;
glasdegib + LDAC, drastically
improved CR rate and OS in
combination compared to LDAC
only (17 vs 2.3% and 8.8 vs.
4.9 months)

NCT01546038 Ib/II Completed Cortes et al. (2016);
Cortes et al. (2018);
Savona et al. (2018);
Cortes et al. (2019b)

100 mg/day Azacitidine Well-tolerated; 20% of AML
patients achieved CR

NCT02367456 Ib Completed Sekeres et al. (2019)

— Cytarabine/
daunorubicin,
azacitidine

No improvement of OS through
addition of glasdegib

NCT03416179 III Completed Cortes et al. (2019a)

50, 75 or
100 mg/day

Azacitidine — NCT04842604 III Active —

Not defined Bosutinib, decitabine,
enasidenib, ivosidenib,
venetoclax, gilteritinib

— NCT04655391 Pilot/Ib Withdrawn —

100 mg/daily CPX-351 (cytarabine/
daunorubicin)

— NCT04231851 II Recruiting —

100 mg/day Gemtuzumab
ozogamicin

— NCT04168502 III Recruiting —

100 mg/day Decitabine — NCT04051996 II Terminated —

100 mg/day Gemtuzumab
ozogamicin

— NCT04093505 III Recruiting —

Not defined Gemtuzumab
ozogamicin

— NCT03390296 Ib/II Active —

100 mg/day Decitabine, azacitidine,
venetoclax

— NCT03226418 II Recruiting —

AE, adverse event; CR, complete remission; DLT, dose-limiting toxicity; LDAC, low-dose cytarabine; MTD, maximum-tolerated dose; OS, overall survival.

Frontiers in Cell and Developmental Biology frontiersin.org08

Tesanovic et al. 10.3389/fcell.2022.944760

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944760


In summary, these studies demonstrate that increased HH

pathway activation is associated with poor prognosis and

increased resistance to conventional treatment approaches in

AML. Therefore, rational combinations of HH inhibitors with

established therapeutic agents targeting the leukemic cell

population represent a promising strategy to improve CR

rates in chemonaïve and relapsed AML patients.

Clinical trials targeting Hedgehog
signaling in AML

Therapeutic targeting of HH signaling has been explored for

various cancer entities over the last decades with most studies

focusing on the inhibition of SMO. The first discovered SMO

inhibitor was the naturally occurring alkaloid cyclopamine that

has been extensively studied but failed clinical entrance due to

poor solubility, bioavailability, and off-target effects. Intensive

efforts to improve pharmacokinetics facilitated the development

of clinically suited SMO antagonists such as vismodegib,

sonidegib and glasdegib (Jamieson et al., 2020).

Vismodegib
Vismodegib (Erivedge, GDC-0449) was the first HH

pathway inhibitor approved by the FDA for the treatment

of locally advanced or metastatic BCC in 2012 (Axelson et al.,

2013). A single-arm, open-label phase Ib study assessing the

safety and efficacy of vismodegib in patients with relapsed

AML was terminated due to lack of efficacy (NCT01880437)

(Table 1). Although the drug was well-tolerated, with the most

common adverse events (AE) being fever, nausea, taste

distortion and nosebleed, all patients discontinued

treatment because of disease progression (Bixby et al.,

2019). Study failure may be attributed to the use of

vismodegib as a single agent as preclinical studies suggested

a beneficial effect of vismodegib administration during

chemotherapy. Despite promising in vitro data (Zahreddine

et al., 2014), no data from clinical studies combining

vismodegib with chemotherapy in AML patients is available

to date.

Sonidegib
Sonidegib (Erismodegib, LDE225, Odomzo) is the second SMO

inhibitor approved for treatment of advanced BCC and is currently

being investigated for treatment of other cancers (Casey et al., 2017).

Although in vitro assays demonstrated a synergistic effect between

sonidegib and azacytidine in AML, combination treatment resulted

in promising progression-free and overall patient survival rates but

surprisingly did not enhance complete remission rates in AML

patients in a phase I/Ib study (NCT02129101) (Tibes et al., 2015;

Tibes et al., 2017). In a phase II study evaluating the efficacy, safety,

and tolerability of sonidegib in relapsed AML (NCT01826214), all

patients experienced at least 1 AE and over 70% of the patients

experienced serious AEs such as febrile neutropenia, general physical

health deterioration, pyrexia, asthenia, anemia, pneumonia, sepsis,

increased creatine phosphokinase, and epistaxis. While around 18%

of patients discontinued treatment due to these AEs, 62% of patients

had a progressing AML under sonidegib treatment, which also

resulted in treatment termination.

Glasdegib
After clinical trials for the use of previously approved SMO

inhibitors in AML therapy failed, glasdegib (PF-04449913,

Daurismo) in combination with low-dose cytarabine (LDAC)

was the first SMO inhibitor to receive FDA approval for the

treatment of AML at the end of 2018.

As determined during safety and pharmacokinetic profiling of

orally applied glasdegib, the maximum tolerated dose was 400 mg

per day with a mean plasma half-life of 24 h. In light of the

commonly observed AEs, such as taste distortion, decreased

appetite and hair loss, the recommended dose was lowered to

below 200 mg per day (NCT00953758) (Martinelli et al., 2015b).

Combination of glasdegib with standard of care treatments was

assessed in a phase Ib study (NCT01546038) in patients with AML

or high-risk MDS. Newly diagnosed patients ineligible for intensive

induction therapy received glasdegib with LDAC (group A) or

decitabine (group B), whereas fit patients received glasdegib with

cytarabine and daunorubicin (group C). The CR/CR with

incomplete blood count recovery (CRi) rate was 31% across all

patients, 9% in group A, 29% in group B and 55% in group C.

Median overall survival (OS) was 4.4 months in group A,

11.5 months in group B and 34.7 months in group C. All

treatment arms were generally well-tolerated with low grade AEs.

Whereasmost AEs were consistent with AML-related complications

during standard-of-care therapy, glasdegib treatment-relatedmuscle

spasms, dysgeusia, and alopecia were also observed. Of note and in

line with the clinical trial NCT02038777, severe AEs were frequently

observed but manageable in patients receiving glasdegib in

combination with cytarabine and daunorubicin. As the

maximum administered dose (MTD) was not reached for

glasdegib within this study, the recommended phase II dose for

glasdegib of 100 mg per day was based on the observed tolerability

for the combination therapy (glasdegib + LDAC or intensive

chemotherapy), successful inhibition of HH signaling, and

glasdegib pharmacokinetics (Savona et al., 2018). A subsequent

phase II study (NCT01546038) evaluating the efficacy of 100 mg

daily glasdegib administered in combination with standard

cytarabine and daunorubicin chemotherapy in patients with

untreated AML or high-risk MDS revealed that 46.4% of all

patients achieved CR and increased the median OS to

14.9 months. While the most common treatment-related AEs

were tolerable diarrhea and nausea, around 20% of patients had

to discontinue treatment due to treatment-related pneumonia or

sepsis. Importantly, there were no significant associations between

recurrent AMLmutations and clinical response (Cortes et al., 2018).

Unfortunately, preliminary data from a phase III trial investigating
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the outcome of patients receiving glasdegib in combination with

cytarabine and daunorubicin suggest no improvement of patient

overall survival (17.3 months OS for glasdegib + cytarabine/

daunorubicin and 20.4 months OS for cytarabine/daunorubicin;

NCT03416179). In a simultaneously conducted second phase II

study (BRIGHT AML 1003, NCT01546038) LDACwith or without

glasdegib was evaluated in patients with untreated AML or high-risk

MDS ineligible for intensive chemotherapy. 20 mg LDAC was

administered on 10 days per 28-days cycle with or without

100 mg glasdegib daily for 28 days. Impressively, 15 patients

(17%) achieved CR under LDAC + glasdegib therapy compared

to only 1 patient (2.3%) in the LDAC-only group. Median OS was

8.8 and 4.9 months for LDAC + glasdegib and LDAC treatment,

respectively. The most common non-hematologic sever AEs were

pneumonia, fatigue, dyspnea, hyponatremia, sepsis and syncope in

the LDAC + glasdegib arm and pneumonia in the LDAC-only arm.

Despite the high frequency of sever AEs (80%), the safety profile was

considered manageable and a favorable benefit-risk profile was

demonstrated with this study, thereby leading to the FDA

approval of glasdegib in combination with LDAC for the

treatment of newly diagnosed AML patients unsuitable for

intensive induction chemotherapy (Cortes et al., 2016; Cortes

et al., 2019b). Post hoc analysis of this study further revealed a

clinical benefit even for LDAC + glasdegib treated patients who did

not achieve CR and confirmed the prolonged median OS for

patients who achieved CR (26.1 months LDAC + glasdegib;

12.9 months LDAC-only) (Cortes et al., 2020). Noteworthy, the

superior clinical efficacy of LDAC combined with glasdegib

compared to LDAC-only was observed for all cytogenetic risk

groups. Furthermore, a subgroup analysis revealed a more

pronounced survival benefit of LDAC + glasdegib in patients

with secondary AML and relapsed AML patients not receiving

HMA therapy (Heuser et al., 2021). Overall, the BRIGHT AML

1003 trial applying LDAC in combination with glasdegib

demonstrated impressive clinical efficacy in difficult to treat

patients. Further studies evaluating the combination of glasdegib

with various drugs are ongoing or planned (Table 1). Hence the

acquisition of resistance mechanisms upon HMAmonotherapy and

the success of combination treatments with an HMA backbone, the

results of trials combining SMO inhibitors with either azacitidine or

decitabine are eagerly awaited. Preliminary data obtained from

studies (NCT02367456 and NCT03416179) evaluating clinical

efficacy of glasdegib in combination with azacitidine in untreated

AML patients suggested improved CR rates. However, first analysis

of patient overall survival data revealed no beneficial effect of adding

glasdegib (10.3 months OS for glasdegib + azacitidine and

10.6 months OS for azacitidine) (Cortes et al., 2019a; Sekeres

et al., 2019). A more detailed analysis of the partially available

data is required for further conclusions.

The combination of glasdegib with already established

inhibitors targeting IDH1/2, BCL-2 or FLT3 in AML are

obviously of high interest and have been incorporated into a

clinical trial draft (NCT04655391). Unfortunately, this study was

stopped prior to patient enrollment due to limited drug

availability. An additional AML study investigating the

combinational effect of glasdegib with, e.g., venetoclax on CR

rate and mortality is currently recruiting patients

(NCT03226418).

Conclusion and outlook

Adapting AML treatment to a patient’s individual needs

requires a growing arsenal of small molecule inhibitors,

HMAs, and chemotherapeutic agents to simultaneously

target multiple oncogenic pathways and tumor-promoting

processes. As reviewed here, successful preclinical and

clinical AML studies inhibiting HH signaling have recently

led to the FDA approval of the SMO inhibitor glasdegib in

combination with LDAC for the treatment of newly

diagnosed and unfit AML patients. Ongoing clinical trials

are further evaluating the benefit of SMO inhibitor

combination therapies with HMAs, IDH inhibitors,

tyrosine kinase inhibitors and/or pyrimidine analogues.

These studies will reveal if and how AML patient

subgroups benefit from HH inhibiting treatment

approaches and position glasdegib and other HH inhibitors

in the landscape of AML therapy. Furthermore, combination

therapies targeting canonical and non-canonical HH

signaling simultaneously are envisioned and might offer

new therapeutic approaches preventing the development of

drug resistance. Although the clinical efficacy of glasdegib is

undeniable, the exact tumor targeting mechanism of HH

signal inhibition in AML is still not clear. Whether the

anti-leukemic effects are exclusively attributable to

abrogating AML (stem) cell intrinsic HH signaling or to

blocking HH signaling within the tumor supporting bone

marrow microenvironment remains to be clarified and calls

for a more detailed analysis of HH signaling components and

regulators in AML patient-derived blasts, LSCs and bone

marrow stromal and endothelial cells. This will also be

crucial for the identification of biomarkers predictive for

HH inhibitor response of AML patients.
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