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Abstract 

Background: The concomitant occurrence of the symptoms intravascular hypovolemia, peripheral edema and 
hemodynamic instability is typically named Capillary Leak Syndrome (CLS) and often occurs in surgical critical ill 
patients. However, neither a unitary definition nor standardized diagnostic criteria exist so far. We aimed to investigate 
common characteristics of this phenomenon with a subsequent scoring system, determining whether CLS contrib-
utes to mortality.

Methods: We conducted this single-center, observational, multidisciplinary, prospective trial in two separately run 
surgical ICUs of a tertiary academic medical center. 200 surgical patients admitted to the ICU and 30 healthy vol-
unteers were included. Patients were clinically diagnosed as CLS or No-CLS group (each N = 100) according to the 
grade of edema, intravascular hypovolemia, hemodynamic instability, and positive fluid balance by two independent 
attending physicians with > 10 years of experience in ICU. We performed daily measurements with non-invasive body 
impedance electrical analysis, ultrasound and analysis of serum biomarkers to generate objective diagnostic criteria. 
Receiver operating characteristics were used, while we developed machine learning models to increase diagnostic 
specifications for our scoring model.

Results: The 30-day mortility was increased among CLS patients (12 vs. 1%, P = 0.002), while showing higher SOFA-
scores. Extracellular water was increased in patients with CLS with higher echogenicity of subcutaneous tissue [29(24–
31) vs. 19(16–21), P < 0.001]. Biomarkers showed characteristic alterations, especially with an increased angiopoietin-2 
concentration in CLS [9.9(6.2–17.3) vs. 3.7(2.6–5.6)ng/mL, P < 0.001]. We developed a score using seven parameters 
(echogenicity, SOFA-score, angiopoietin-2, syndecan-1, ICAM-1, lactate and interleukin-6). A Random Forest predic-
tion model boosted its diagnostic characteristics (AUC 0.963, P < 0.001), while a two-parameter decision tree model 
showed good specifications (AUC 0.865).

Conclusions: Diagnosis of CLS in critically ill patients is feasible by objective, non-invasive parameters using the CLS-
Score. A simplified two-parameter diagnostic approach can enhance clinical utility. CLS contributes to mortality and 
should, therefore, classified as an independent entity.
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Background
Critically ill patients regularly present with the con-
comitant symptoms of intravascular hypovolemia 
needing fluid resuscitation and leading to positive fluid 
balance, considerable edema and hemodynamic insta-
bility. This phenotype is recognized in clinical routine 

and described as capillary leak syndrome (CLS). To this 
day, however, no consensus definition for CLS is avail-
able. This has not changed despite previous attempts to 
evaluate determinants of CLS in critically ill patients 
[1]. Although various studies describe mechanisms 
to modulate endothelial permeability [2–5], neither 
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diagnostic criteria nor uniformed clinical terminology 
is available. It remains unclear whether CLS merely 
represents an epiphenomenon of critical illness or if 
it needs to be regarded as an independent pathogenic 
entity. Of note, the use of the term CLS in our study is 
not synonymous with “Clarkson’s disease” (sometimes 
also referred as “idiopathic systemic capillary leak syn-
drome”) which describes a rare, but severe pathology of 
unknown etiology. Patients with a history of Clarkson’s 
syndrome were excluded from our study. The use of the 
term CLS in our manuscript goes in line with previous 
work in the intensive care literature [1, 6].

CLS in the ICU may not be limited to sepsis [7], but 
can also be seen in patients after cardiopulmonary bypass 
[8–10], anaphylaxis [11], and thermal injury [12]. Inves-
tigations into its pathophysiology have revealed mecha-
nisms related to CLS: while a pro-inflammatory state 
increases vascular endothelial permeability [13], integ-
rity of inter-cellular junctions of endothelial cells become 
compromised [4] and glycocalyx is shedded [14–17]. For 
prevention and treatment of CLS, experimental phar-
macological approaches to attenuate these mechanisms 
showed promising results in pre-clinical models [18–20]. 
It has been hypothesized that novel strategies for adjunc-
tive sepsis therapy should focus on endothelial perme-
ability [14, 21].

Despite common perception of its high relevance [22], 
the authors are not aware of any clinical study assess-
ing the effect of CLS on organ dysfunction and mortal-
ity. This may be due to the fact that no diagnostic criteria 
exist. However, its concomitant circumstances such as 
a proinflammatory state as well as a positive fluid bal-
ance have been linked to increased mortality in the ICU: 
Concentrations of serum cytokines tend to be higher 
in non-survivors of critical illness [23], while a positive 
fluid balance reflects an independent prognostic factor in 
patients with sepsis [24].

We hypothesized that CLS patients present with dis-
tinct characteristics and differ from patients without 
CLS. It was the aim of this study to identify patterns and 
establish a scoring system with prognostic strength.

Methods
Design and setting
The trial was designed in a prospective, multidiscipli-
nary, observational approach. Reporting complied with 
the TRIPOD (Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis) 
statement [25]. Surgical patients were recruited from 
two intensive care units at the Medical Center of the 
University of Freiburg, Germany from October 2017 to 
July 2019. The study was approved by the institutional 
review board (Freiburg, EK-Nr. 68/17) and was registered 

(DRKS No. 00012713). All healthy volunteers, patients, 
their respective next-of-kin or legal guardian needed to 
provide consent for study inclusion. Patients were clini-
cally classified as CLS or No-CLS according to expert 
evaluation (two independent consultant physicians 
with > 10  years of experience in intensive care medicine 
according to the following clinical criteria: edema, intra-
vascular hypovolemia, positive fluid balance and hemo-
dynamic instability). The experts were blinded, were not 
allowed to access data other than aforementioned param-
eters, not involved in the patient care, and not aware of 
patient outcomes. Two hundred and twenty patients 
were screened for study inclusion. Thirty healthy volun-
teers were, furthermore, included to determine reference 
values for study measurements.

Study population
We assessed the eligibility of patients admitted to our 
intensive care units. They were categorized as CLS and 
No-CLS patients based on the early presentation in the 
ICU by clinical criteria (N = 100 per group). Inclusion 
criteria were defined as age ≥ 18 years, estimated length 
of stay in the ICU ≥ 48 h and informed consent. Patients 
were excluded if one or more of the following criteria 
applied: Refusal to participate, infection with HIV, viral 
hepatitis, idiopathic capillary leak syndrome (“Clarkson’s 
disease”), hereditary C1-esterase deficiency, recurrent 
angioedema, pre-existing chronic kidney failure requir-
ing dialysis, and pre-existing hepatic impairment with a 
MELD score ≥ 20.

Patient care
Daily evaluation and measurements were performed after 
morning rounds in the respective ICU. Fluid therapy was 
guided by a clinical examination, a positive fluid chal-
lenge or passive leg raise test with an increase in blood 
pressure or cardiac index, respectively. Available physi-
ologic variables were taken into consideration as well as 
other noninvasive or invasive monitoring, as available. 
Only balanced crystalloid solutions were used for fluid 
resuscitation in our patients.

Data collection
For an in-depth evaluation of fluid homeostasis, bio-
electrical impedance (BIA) measurements were per-
formed daily. For BIA, the Nutriguard-MS system was 
used (Data Input GmbH, Poecking, Germany) [26–28]. 
Measurement was conducted in a hand-to-foot approach 
with the patient strictly supine and free from measure-
ment confounders. Data analyses was performed using 
the customized  NutriPlus© software (Data Input GmbH, 
Poecking, Germany). Ultrasound was used to quantify 
peripheral and pulmonary edema. Using standardized 
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views, echo free space was evaluated by measuring the 
tissue-free, subcutaneous distance [29]. Routinely avail-
able parameters such as demographics, medication, and 
laboratory values were collected from the patients’ elec-
tronic charts. Patients’ serum was collected to perform 
subsequent ELISA and FACS analyses (see Additional 
File 1).

Statistical analysis
Analyses were performed with SPSS® Statistics (V26, 
Chicago, USA) and GraphPad Prism (V8, San Diego, 
USA). P values ≤ 0.05 were considered statistically sig-
nificant. For variables without a consensus-based ref-
erence range (e.g., body impedance electrical analysis, 
ultrasound parameters, and endothelial biomarkers), data 
from healthy volunteers were collected, analyzed and the 
5–95% percentile was expressed as the reference for our 
study. The study data was then analyzed in a univariate 
approach: if continuous data showed normal distribution, 
Student’s t test was used. For non-normally distributed 
variables, we used Mann–Whitney U test. Categorial 
data was analyzed with X2 test. Continuous variables 
were dichotomized according to the 75% percentile. Only 
the variables showing statistically significant differences 
were included in further analyses. A Kaplan–Meier curve 
was created for survival analysis and the log-rank score 
was calculated. A stepwise multivariate binary logistic 
regression model was built to determine odds ratios and 
95% confidence intervals. A forward selection was fol-
lowed by a backward conditional approach for confirma-
tion of results. Consecutively, a linear scoring system was 
built from the parameters showing promising predictive 
values: SOFA-Score, echogenicity of subcutaneous tis-
sue, serum-lactate, angiopoietin-2, syndecan-1, IL-6, and 
ICAM-1. For the seven parameter scoring system, one 
point was each given for values above the  75th percentile 
of the whole patient cohort with a score cutoff of  ≥   2 
(out of 7 possible points). Receiver Operating Character-
istic (ROC) analysis was performed and the area under 
the curve (AUC) was calculated. The score was then re-
evaluated within our data set.

For data mining and machine learning, KNIME 
(V4.1.2, Zurich, Switzerland) was used. If any of the 
patients missed an attribute necessary for model fitting, 
this patient was removed from the analysis. Models were 
trained with standard parameters and were evaluated in 
10 × tenfold cross validations. For every training fold, 
data was standardized (Z-score normalized). Standardi-
zation of the test set was performed separately accord-
ing to parameters of the training data to avoid carrying 
information from the test data into the training data. 
This training data was then fed to the machine learning 
algorithms with default model parameters. Specifically, 

we used a Decision Tree (Gini index, no pruning, min. 
2 records per node, average split point), a Support-Vec-
tor Machine (polynomial kernel with bias, gamma, and 
power of 1.0), a Deep Neural Network (Multilayer Feed-
forward Network with RProp training, 3 hidden layers 
with 10 neurons per layer), a Random Forest (100 trees, 
Information Gain Ratio), Gradient Boosted Trees (100 
trees, learning rate 0.1, maximum tree depth 4), a Proba-
bilistic Neural Network (following the Dynamic Decay 
Adjustment, theta minus 0.2, theta plus 0.4) and a Naïve 
Bayes Learner (default probability and minimum stand-
ard deviation 0.0001, threshold 0.0). For all models, pre-
dictive confidence was extracted to enable ROC AUC 
calculation and their statistical significance was analyzed 
following a Wilcoxon–Mann–Whitney test. Individual 
AUC values were acquired and we report mean values, 
standard deviation, and maximum P value as aggregate 
statistics for the ten separate analyses. As an additional 
test of robustness, we reimplemented the most predic-
tive Random Forest model in Google Colab using the 
scikit-learn library and confirmed a similar ROC AUC 
values of 0.96 in tenfold cross validation. For predictors, 
we selected all available classification models available 
through the KNIME data analytics software (V4.0.2). To 
assess the diagnostic specifications of our models, the six 
different machine-learning algorithms were evaluated 
regarding its predictive capabilities for the promising 
7-parameter data set. This evaluation used tenfold cross 
validations to enable the contextualization of model per-
formance on data that was not used for model fitting.

Results:
250 individuals were assessed for eligibility (see Fig.  1). 
30 healthy volunteers were included to define a reference 
range of study parameters. 12 patients declined to partic-
ipate and 8 patients met exclusion criteria. 100 patients 
were recruited each in the CLS and in the No-CLS group. 
Within the No-CLS group, four patients withdrew con-
sent and one patient was discharged early, leaving 95 and 
100 patients, respectively, to be included in the analysis.

Assessing 30-day mortality, twelve patients died in the 
CLS group compared to one patient in the No-CLS group 
(12% vs. 1%, log-rank P = 0.002, see Additional File 2). 
The majority of patients died from septic shock or ARDS 
(see Additional File 3).

Our group of healthy volunteers, which was needed to 
reference study measurements showed 50% males and a 
median age of 22 [22–24] (see Additional File 4).

Patient characteristics (see Table  1) revealed that 
patients presenting with CLS were older (67 ± 13 vs. 
62 ± 17, P = 0.021) and showed a higher body-mass 
index prior to diagnosis of CLS (28 ± 6 vs. 26 ± 5, 
P = 0.044). In our cohort of CLS patients, chronic 
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obstructive pulmonary disease was significantly more 
frequent compared to the No-CLS group (12 vs. 
3%, P = 0.031). Prior medication included the use of 
ß-Receptor-Blockers in 47% in the CLS group com-
pared to 22% among No-CLS patients (P = 0.001). 
Diuretics were used among 27% of CLS and 12% of No-
CLS patients (P = 0.011). In the CLS group, patients 
were more frequently diagnosed with sepsis (56 vs. 5%, 
P < 0.001), acute respiratory distress syndrome (6 vs. 0%, 
P = 0.03), acute kidney injury (58 vs. 32%, P = 0.003), 
and shock of any cause (41 vs. 11%, P < 0.001). Among 
the patients undergoing surgery prior to admission, 
blood loss was higher in the patients classified as CLS 
(650 [139–2050] vs. 300 [175–525] mL, P = 0.003) and 

fluid balance was increased (4700 [3500–8300] vs. 
3250 [2150–5338] mL, P = 0.002). The No-CLS group 
included more patients with pancreatic surgery (13 vs. 
1%, P = 0.001), while emergency laparotomy (17 vs. 1%, 
P < 0.001) and vascular surgery (6 vs. 0%, P = 0.015) was 
more often in the CLS group.

Our study measurements can be summarized as fol-
lows (see Fig.  2 and Additional File 5): CLS patients 
required more catecholamine support than No-CLS 
patients (day 1: 95 vs. 85%, P = 0.022), had a higher 
fluid balance (day 1: 1613[345–3153] vs. 812[140–1437] 
mL, P < 0.001), increased need for fluid input (day 1: 
3280[2226–4854] vs. 2077[1421–2945] mL, P < 0.001), 
higher lactate levels (day 1: 1.5[1–2.2] vs. 0.9[0.7–1.2] 

Fig. 1 Study flow chart
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mmol/L, P < 0.001), and a lower hemoglobin con-
centration (day 1: 8.6[8–9.8] vs. 10.6[8.5–12.1] g/dL, 
P < 0.001). Disease severity scores showed a higher 
SAPS II (day 1: 36 [28–45] vs. 19[13–24], P < 0.001), 
SOFA (day 1: 6[4–9] vs. 1[0–3] mL, P < 0.001), and 

APACHE II score (day 1: 12[9–16] vs. 6[4–9] mL, 
P < 0.001).

Body impedance electrical analysis revealed increased 
extracellular water (day 1: 26[22–32] vs. 21[18–24] L, 
P < 0.001) and body water (day 1: 51[45–59] vs. 47[41–52] 

Table 1 Patient characteristics in the No-CLS and CLS groups

Bold numbers reflect statistical significance (P ≤ 0.05)

BMI body mass index, NSAID non-steroidal anti-inflammatory drugs, ARDS acute respiratory distress syndrome, AKI acute kidney injury, ALF acute liver failure

No-CLS (N = 95) CLS (N = 100) P value

General patient characteristics

 Age (mean ± SD) 62 ± 17 67 ± 13 0.021
 BMI (mean ± SD) 26 ± 5 28 ± 6 0.044
 Male (%) 55 (58%) 58 (58%) 0.749

 Died on ICU (%) 1 (1%) 12 (12%) 0.003
Past medical history

 Hypertension (%) 48 (51%) 54 (54%) 0.774

 Myocardial infarction (%) 4 (4%) 6 (6%) 0.750

 Chronic obstructive pulmonary disease (%) 3 (3%) 12 (12%) 0.031
 Chronic heart failure (%) 0 (0%) 1 (1%) 1

 Atrial fibrillation (%) 10 (11%) 20 (20%) 0.112

Prior medication

 ACE inhibitors (%) 25 (26%) 29 (29%) 0.874

 ß-Receptor-Blockers (%) 21 (22%) 47 (47%) 0.001
 Calcium channel blockers (%) 6 (6%) 5 (5%) 0.760

 Diuretics (%) 11 (12%) 27 (27%) 0.011
 Statins (%) 13 (14%) 17 (17%) 0.693

 Aspirin (%) 17 (18%) 23 (23%) 0.484

 NSAIDs (%) 6 (6%) 5 (5%) 0.760

 Antidiabetics (%) 12 (13%) 10 (10%) 0.508

 Antiasthmatics (%) 1 (1%) 0 (0%) 0.469

 Psychopharmaceuticals (%) 3 (3%) 12 (12%) 0.031
Diagnosis on ICU

 Sepsis (%) 5 (5%) 56 (56%)  < 0.001
 ARDS (%) 0 (0%) 6 (6%) 0.030
 AKI (%) 32 (34%) 58 (58%) 0.003
 ALF (%) 0 (0%) 1 (1%) 1

 Shock (%) 10 (11%) 41 (41%)  < 0.001
Characteristics during surgery

 Blood loss, mL (median ± IQR) 300 (175–525) 650 (139–2050) 0.003
 Fluid balance, mL (median ± IQR) 3250 (2150–5338) 4700 (3500–8300) 0.002
 Gastric surgery 3 (3%) 0 0.073

 Pancreatic surgery 12 (13%) 1 (1%) 0.001
 Hepatobiliary surgery 9 (10%) 2 (2%) 0.05

 Bowel resection 22 (23%) 31 (31%) 0.219

 Tumor Debulking 12 (13%) 9 (9%) 0.414

 Cystectomy 3 (3%) 0 0.073

 Thoracoabdominal surgery 7 (7%) 4 (4%) 0.199

 Emergency Laparotomy 1 (1%) 17 (17%)  < 0.001
 Vascular surgery 0 6 (6%) 0.015
 Gynecological surgery 8 (8%) 4 (4%) 0.199

 Other 18 (19%) 26 (26%) 0.239
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L, P = 0.001) among CLS patients, whereas the phase 
angle was lower (day 1: 2.6[2–3.2] vs. 4.7[3.8–5.3], 
P < 0.001). Ultrasound measures confirmed body edema: 
skin-bone distance was increased in CLS patients 
(day 1 upper extremity: 0.7[0.5–1] vs. 0.4[0.3–0.5] 
cm, P < 0.001), echogenicity (day 1 upper extremity: 
29[24–41] vs. 19[16–21], P < 0.001) and echo free space 
were higher (day 1 upper extremity: 0.2[0.1–0.4] vs. 0, 
P < 0.001), while more pulmonary B-lines (day 1: 4[3–5] 
vs. 2[1–3], P < 0.001) were counted. Ultrasound meas-
ures of edema showed strong correlation with results of 
body impedance electrical analysis (Spearman ρ 0.71, 
P < 0.001).

Endothelial biomarkers were increased in the serum 
of CLS patients: Angiopoietin-2 (day 1: 9.9[6–17] vs. 
3.7[3–6] ng/mL, P < 0.001), VE-Cadherin (day 1: 2[1.5–
2.7] vs. 1.7[1.4–2.1] ng/mL, P < 0.001), Syndecan-1 (day 1: 
234[132–506] vs. 66[47–103] ng/mL, P < 0.001), Heparan 
sulfate (day 1: 4.3[3–6] vs. 3[2–4] ng/mL, P < 0.001), and 
ICAM-1 (day 1: 386[269–576] vs. 216[176–313] ng/mL, 
P < 0.001) were higher among CLS patients. HMGB-1 
showed no statistical differences between the groups.

Serum–creatinine (day 1: 97[62–168] vs. 80[62–88] 
µmol/L, P < 0.001) and urea (day 1: 21[13–31] vs. 10[8–
14] mmol/L, P < 0.001) were increased in the CLS group, 
and prothrombin time (day 1: 41[35–49] vs. 34[29–38] 
sec, P < 0.001) was prolonged.

Inflammatory biomarkers showed increased cytokine 
levels in CLS patients: TNF-α (day 1: 1.8[0–3] vs. 0.5[0–
1] ng/L, P = 0.038), IL-1ß (day 1: 0.4[0–1.2] vs. 0.2[0–0.5] 
ng/L, P = 0.019), IL-6 (day 1: 164[66–385] vs. 90[40–212] 
ng/L, P = 0.001), IL-8 (day 1: 115[68–272] vs. 54[30–106] 
ng/L, P < 0.001), and IL-10 (day 1: 7[3–16] vs. 4[2–7] 
ng/L, P < 0.001) showed higher serum concentrations 
in CLS patients. No statistically significant differences 
in IL-12 were seen. White blood cell count was higher 
in CLS patients (day 1: 14[9–18] vs. 11[8–14]  103/µL, 
P = 0.001).

Multivariate binary logistic regression showed sig-
nificant results for the parameters SOFA-score (OR 
16.4 [5–57], P < 0.001), angiopoietin-2 (OR 15.1 [2–120], 
P = 0.01), phase angle (OR 12.2 [2–77], P = 0.008), 
echogenicity of the upper extremity (OR 8.3 [1–51], 
P = 0.035), extracellular mass (OR 5.9 [2–24], P = 0.011), 
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Fig. 2 Study parameters in the No-CLS and CLS groups on ICU days 1 and 2 (Box plots with 5–95% whiskers)
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Parameter

Echogenicity (UE)
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Angiopoietin-2

Syndecan-1

ICAM-1
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A
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15.14 (1.92 - 119.66)

12.22 (1.94 - 76.95)

8.28 (1.35 - 50.66)

5.94 (1.5 - 23.62)

7.64 (1.57 - 37.21)

4.43 (1.12 - 17.51)

1.93 (0.54 - 6.85)
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syndecan-1 (OR 7.6[2–37], P = 0.012), and ICAM-1 (OR 
4.4 [1–18], P = 0.008; see Fig. 3A).

From multivariate analysis, parameters were evalu-
ated regarding its discriminatory power for differentiat-
ing CLS and No-CLS patients (see Fig. 3B–E). As a single 
biomarker angiopoietin-2 with a set cutoff of 5.5 ng/mL 
showed an area under the ROC curve (AUC) of 0.873 
(P < 0.001) leading to a diagnostic sensitivity of 0.796, a 
specificity of 0.747, a positive-predictive value (PPV) of 
0.774 and a negative-predictive value (NPV) of 0.772.

A score was built using the seven parameters echo-
genicity, SOFA-Score, angiopoietin-2, syndecan-1, 
ICAM-1, lactate and IL-6 (with 1 point given for values 
above the  75th percentile of the whole patient cohort). 
With a score cutoff of ≥ 2 (out of 7 possible points), the 
following characteristics are reported: AUC was 0.899 
(P < 0.001) leading to a diagnostic sensitivity of 0.786, 
specificity of 0.884, PPV of 0.88 and NPV of 0.792.

Developing the scoring system further, a machine-
learning based model was created to increase discrimi-
natory power. In a first approach, two data sets including 
a variation of parameters were analyzed (see Additional 
File 6). This showed an AUC of 0.964 (P < 0.001) for 
27-parameter approach in the random forest prediction 
model, while a serology-only approach led to an AUC 
of 0.882 (P < 0.001) in the same model. Using routinely 
available biological markers (i.e., parameters from the 
patients’ complete blood count, serum chemistry, etc.), 
an AUC of 0.685 (P = 0.002) was calculated.

To increase clinical utility, the seven previously iden-
tified parameters, which are easily and non-invasively 
accessible were included into a new model (echogenicity, 
SOFA-Score, angiopoietin-2, syndecan-1, ICAM-1, lac-
tate, IL-6; see Fig.  4A, B). First, a decision tree analysis 
was performed, showing good predictive characteristics 
with only two parameters; these are echogenicity and 
angiopoietin-2 level. Its AUC was 0.865 (P < 0.001), show-
ing a sensitivity of 0.815, a specificity of 0.824, a PPV of 
0.846 and a NPV of 0.798.

To further assess the diagnostic power, six different 
machine-learning algorithms (Random Forest, Gradi-
ent Boosted Trees, Probabilistic Neural Network, Naïves 
Bayes, Support Vector Machines, and Deep Neural Net-
works) were evaluated regarding its predictive capabili-
ties for the promising 7-parameter data set (see Fig. 4C). 
This evaluation used tenfold cross validations to enable 
the contextualization of model performance on data 
that was not used for model fitting. The Random Forest 
Model showed the best discriminatory characteristics 
with an AUC of 0.963 (P < 0.001), an accuracy of 0.88, and 
a Cohen’s κ of 0.76. Its diagnostic characteristics were 
flagged with a sensitivity of 0.893, a specificity of 0.875, a 

PPV of 0.885, and a NPV of 0.884—thus showing the best 
characteristics.

Discussion
The results from our study can be summarized as fol-
lows: (A) The clinical evaluation and discrimination of 
patients into CLS and No-CLS was supported by labo-
ratory and technical findings in our cohort. (B) Using 
multivariate and ROC analyses of our measurements, 
various parameters showed significant results and were, 
therefore, included in a novel score (“CLS-Score”). (C) 
This score demonstrated high predictive value showing 
sufficient sensitivity and specificity. Machine-learning 
further enhanced its diagnostic power. (D) CLS showed 
characteristic properties in critically ill patients—being 
associated with an increased 30-day mortality compared 
to No-CLS patients.

By stating that “… microvascular leak is not a mere 
byproduct of sepsis, but instead a major contributor to its 
morbidity and mortality” [22], Goldenberg et  al. shifted 
the focus of attention to the consequences of CLS for 
critically ill patients. Despite their conclusion that CLS 
is responsible for outcome, no sound clinical evidence 
for this association has been demonstrated so far. How-
ever, the underlying mechanism of CLS (i.e. inflamma-
tion, positive fluid balance etc.) have been negatively 
correlated with outcome among critically ill patients 
[23, 24, 30]. CLS likely reflects the pathologic state in 
the continuum of extracellular fluid exchange between 
the extravascular and intravascular compartments. In 
health, this exchange is essential, while its dysregulation 
may lead to the clinical picture of CLS [31]. Impeding any 
clinical investigation of this context, no definition of CLS 
has been established yet. Marx et  al. previously char-
acterized CLS as a loss of intravascular fluids to ‘third 
spaces’, thereby increasing edema and hemodynamic 
instability with the need for intravascular fluid replace-
ment [1], while Cordemans et al. evaluated the Capillary 
Leak Index using the serum markers C-reactive protein 
and albumin [6]. In their attempt to diagnose CLS, Marx 
investigated six patients in septic shock by techniques, 
such as indocyanine green measurements, chromium-51 
labeled erythrocytes, and colloid osmotic pressure. They 
concluded that measurement of extracellular water and 
the response to colloid osmotic pressure may help to 
identify CLS patients. Again, these findings have not 
led to any accepted definition. To facilitate a sustain-
able classification, various parameters involved in CLS’ 
pathophysiology and measurements which are easy-to-
access were identified as an integral part of our scoring 
approach. To interpret our results’ prognostic relevance, 
we suggest to consider the CLS as an independent entity; 
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not just a transient epiphenomenon in intensive care 
units.

Recent experimental investigations have shed light into 
the pathophysiological process of altered endothelial per-
meability in critical illness. Increased permeability may 
pre-dispose to organ dysfunction impairing capillary 
exchange process [4]. In general, edema (i.e. interstitial 
hypervolemia) from CLS is formed by fluid shift from 
intra- to extravascular space. Extravascular fluid returns 
back to the circulation by lymphatic pathways which 
can be influenced by drugs used in intensive care medi-
cine [32]. With an approximated surface area of 7,000m2 

[33], the endothelium accounts for a considerable area 
of exchange. Especially the cleavage of inter-endothelial 
adhesion (i.e. loss of cellular junction proteins) and shed-
ding of glycocalyx have been described as milestones 
leading to CLS [4, 14]. By acknowledging the revised 
Starling principle, the integrity of the endothelial gly-
cocalyx presents a major determinant of intravascular 
fluid homeostasis [34]. Flemming et  al. showed that the 
cleaved endothelial junction protein VE-Cadherin was 
elevated in the serum of seven sepsis patients [35]. This 
was confirmed in our study for CLS patients. Angiopoi-
etin-1/2 dysbalance was associated with vascular leak, 
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with high angiopoietin-2 levels increasing barrier perme-
ability [36, 37]. In sepsis, angiopoietin-2 levels correlated 
with severity of organ failure in critically ill children, 
while non-survivors showed higher angiopoietin-2 con-
centration [38]. Angiopoietin-2 was, furthermore, evalu-
ated as a biomarker for sepsis and its sequelae [39, 40]. 
Importantly, CLS patients in our study showed increased 
levels of angiopoietin-2. In further attempts to under-
stand CLS pathophysiology, an increase in inflammatory 
phenotype was identified to compromise endothelial gly-
cocalyx [41]. Martin et  al. demonstrated that critically 
ill patients show a high concentration of cleaved glyco-
calyx molecules in serum depending on disease sever-
ity [42]. To further sustain its relevance, Chappell et  al. 
showed significant shedding of glycocalyx in patients 
being exposed to ischemia and reperfusion injury [15]. 
From our data, we can report an increase of syndecan-1 
and heparan sulfate in our cohort of CLS patients. These 
pathophysiological aspects led to our hypothesis that 
measurement of endothelial biomarkers can be useful for 
a clinical definition of CLS, and were, therefore, included 
in our scoring system. According to our data, angiopoi-
etin-2, VE-cadherin, ICAM-1 and syndecan-1 were spe-
cifically shown to be of high prognostic relevance—both 
in multivariate and ROC analyses.

Scores may present a good tool for straightforward 
diagnostics. However, they may carry disadvantages as 
they tend to simplify coming to the cost of “individual-
ized and compassionate care”[43]. For our approach, we 
aimed to facilitate straightforward patient classification 
of a complex phenotype. We first examined the clinical 
differences between the patients with CLS and No-CLS. 
As a single biomarker, angiopoietin-2 showed the best 
predictive characteristics for CLS with an AUC of 0.873. 
To account for CLS pathophysiology, we proposed sev-
eral factors to be included into our scoring system: A 
marker for edema (i.e., echogenicity measurement by 
ultrasound), microvascular malperfusion (serum-lactate), 
underlying inflammation (IL-6), endothelial biomark-
ers (angiopoietin-2, ICAM-1, syndecan-1) and the dis-
ease severity (SOFA-Score) were, therefore, combined 
to create a novel score (the “CLS-Score”). These param-
eters were selected due to their properties: non-invasive 
nature, easy to implement in a hospital-based laboratory 
setting, and the lack of special knowledge and equip-
ment needed for practical execution. To enhance the 
utility of our score we used the widely available ultra-
sound to quantify the grade of edema which correlated 
well with BIA measurements. The authors appreciate that 
the insight provided by BIA may reveal a more sophis-
ticated picture of extravascular hypervolemia and the 
composition of fluid compartments [28]. Our 7-param-
eter scoring system was flagged with sufficient diagnostic 

characteristics resulting in an AUC of 0.899. In an effort 
to prioritize and contextualize these parameters for CLS 
patients, we employed machine learning (ML) to further 
refine our CLS score. In a simplified approach, we studied 
a decision tree model which revealed promising results 
working with two parameters only: first, the grade of 
edema was determined followed by angiopoietin-2 meas-
urement. The specifications of the 2-parameter approach 
(AUC 0.865) showed similar results to the 7-param-
eter score. Such a simplified, rule-based approach can 
be easily applied by healthcare professionals and could 
potentially be integrated into clinical decision making 
without the need for any additional hardware. We sought 
to further boost predictive power using more complex 
ML algorithms. The best predictive value among all algo-
rithms was obtained using a Random Forest approach 
showing excellent characteristics with an AUC of 0.963. 
A standard laboratory-only approach led to less favorable 
diagnostic strength, stressing the need for more specific 
test. Given that the evaluation of these ML algorithms 
was performed using cross-validation experiments, 
while the other statistical methods were evaluated on the 
complete data set, the better performance of ML might 
be even more substantial than the raw AUC numbers 
suggest. Characterized as a sub-group of artificial intel-
ligence methodology, ML may carry great potential [44] 
and enables enhanced diagnostics for Intensive Care 
Medicine [45]. The models used for our study can easily 
be incorporated into a patient-data management system 
facilitating easy diagnostics (with further possibilities of 
cohort-specific calibration). Random forest models are 
also rapidly re-trained, so that an adaptive system might 
be conceived in the future that continuously includes 
additional data acquired in a specific healthcare setting 
for a specific cohort or, alternatively, aggregated from 
multiple ICUs to further improve general predictive 
power. In addition, a mobile app-based development can 
be outlined.

Certain limitations have to be discussed. First, due to 
the study design an arbitrary, but clinically relevant clas-
sification of CLS was necessary (as utilized in everyday 
clinical routine). Therefore, we used the accepted charac-
teristics of CLS, i.e., edema, intravascular hypovolemia, 
positive fluid balance and hemodynamic instability [1], 
and used this as a surrogate at the discretion of physi-
cians with more than 10 year experience in intensive care 
medicine. No set cutoff values were defined. The aim of 
our study was to find common characteristics for CLS 
which necessitated this binary clinical classification. We 
reached our goal to support subjective perception with 
data and ML derived classification to create a score ena-
bling an objective diagnosis.
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Second, some patients may have already experienced their 
individual peak of vascular leak, while others potentially 
were to experience aggravation of CLS. Therefore, a longi-
tudinal study approach was used evaluating the dynamics, 
revealing decreasing severity of study parameters in most 
patients over time. This dynamic approach needs to be clari-
fied more in detail using longitudinal studies.

Third, it has to be kept in mind that our scoring sys-
tem is derived from one single cohort. Due to matters of 
recruiting, a significant number of patients underwent 
prior abdominal surgery. Identified differences between 
the CLS and No-CLS cohort regarding higher blood loss 
during surgery and use of ß-Receptor-Blockers deserve 
further attention. It seems inevitable to study more data 
sets from different cohorts (including non-surgical ICU 
patients) for further validation.

Fourth, the groups of CLS and No-CLS patients were 
not demographically balanced. This was imminent to the 
study approach in which we identified characteristics in a 
heterogenous group of CLS patients independent of eti-
ology, age or demographic specifics. Further studies are 
warranted to study demographic and patient subgroups 
(e.g. sepsis patients).

Conclusions
CLS presents with distinct characteristics. It may be clas-
sified using objective, non-invasive parameters in criti-
cally ill patients. A scoring system based on seven criteria 
which have shown to be robust in statistical testing dem-
onstrated efficacy in identifying CLS patients. Its prog-
nostic value was enhanced by machine learning and was 
supported by data on increased 30-day mortality. The 
CLS-Score can easily be integrated into an ICU’s patient-
data management system or any other digital applica-
tion. Alternatively, a simplified two-parameter approach 
is offered using a decision tree to enhance clinical utility. 
Further studies are needed to determine the sequelae of 
diagnosing Capillary Leak Syndrome.
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