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Abstract

Previous neuroimaging studies have mainly focused on alterations of static and

dynamic functional connectivity in patients with generalized anxiety disorder (GAD).

However, the characteristics of local brain activity over time in GAD are poorly

understood. This study aimed to investigate the abnormal time-varying local brain

activity of GAD by using the amplitude of low-frequency fluctuation (ALFF) method

combined with sliding-window approach. Group comparison results showed that

compared with healthy controls (HCs), patients with GAD exhibited increased

dynamic ALFF (dALFF) variability in widespread regions, including the bilateral dors-

omedial prefrontal cortex, hippocampus, thalamus, striatum; and left orbital frontal

gyrus, inferior parietal lobule, temporal pole, inferior temporal gyrus, and fusiform

gyrus. The abnormal dALFF could be used to distinguish between patients with GAD

and HCs. Increased dALFF variability values in the striatum were positively correlated

with GAD symptom severity. These findings suggest that GAD patients are associ-

ated with abnormal temporal variability of local brain activity in regions implicated in

executive, emotional, and social function. This study provides insight into the brain

dysfunction of GAD from the perspective of dynamic local brain activity, highlighting

the important role of dALFF variability in understanding neurophysiological mecha-

nisms and potentially informing the diagnosis of GAD.
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dynamic amplitude of low-frequency fluctuations, generalized anxiety disorder, local brain

activity, resting-state fMRI, variability

1 | INTRODUCTION

Generalized anxiety disorder (GAD) is a prevalent mental disorder

characterized by inexplicable, chronic, and persistent worrying

(Tyrer & Baldwin, 2006) Patients with GAD frequently worry about

ongoing things in their daily life or potential future outcomes (Li,

Duan, Cui, Chen, & Liao, 2019). Most patients often suffer from a

series of physical or psychological somatic symptoms, such as
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restlessness, fatigue, difficulty concentrating, irritability, and sleep dis-

turbances (American Psychiatric Association, 2013). Considering the

high morbidity, severe distress (Molent et al., 2018), high financial bur-

den, and low remission rate after treatment compared to those for

other anxiety disorders (Christine Buff et al., 2016; Kinney, Boffa, &

Amir, 2017), the pathological mechanisms underlying GAD should be

elucidated to facilitate more effective therapeutic development.

Previous neuroimaging studies have revealed brain functional

abnormalities in patients with GAD, which were frequently character-

ized by task and resting-state functional magnetic resonance imaging

(fMRI) findings. Task-related fMRI studies have reported hyp-

oactivation of the prefrontal cortex (PFC), anterior cingulate cortex

(ACC) (Palm, Elliott, McKie, Deakin, & Anderson, 2011; Wang et al.,

2018), parietal cortex, and fusiform (Moon & Jeong, 2015; Wang

et al., 2018), as well as hyperactivation of the amygdala (Fonzo et al.,

2015; McClure et al., 2007; Park, Kim, Jeong, Chung, & Yang, 2016)

and hippocampus (Moon & Jeong, 2015; Park et al., 2016) in GAD

patients when confronting emotion-inducing stimuli, especially

processing stimuli with negative emotional valence. Consistent with

these findings, resting-state fMRI studies have demonstrated that

patients with GAD show widespread abnormal resting-state func-

tional connectivity (rsFC) involving regions of the prefrontoparietal

cognitive control network such as the PFC, ACC, and parietal cortex

(Andreescu, Sheu, Tudorascu, Walker, & Aizenstein, 2014; Etkin,

Prater, Schatzberg, Menon, & Greicius, 2009; Roy et al., 2013); limbic

regions including the amygdala, hippocampus, thalamus, and insula

(Chen & Etkin, 2013; Cui et al., 2016; Etkin et al., 2009; Makovac

et al., 2016; Qiao et al., 2017; Roy et al., 2013); and regions associated

with socioemotional processing such as the striatum, fusiform gyrus,

and subregions of the temporal lobe (Cui et al., 2016; Etkin et al.,

2009; Qiao et al., 2017). Most of these studies rely on the implicit

assumption that brain activity remains stationary during fMRI scan-

ning. However, an increasing number of recent studies propose that

brain activity is dynamic over time (Allen et al., 2014; Hutchison et al.,

2013; Li et al., 2018).

Dynamic characteristics of brain activity have been associated

with cognitive adaption (Fornito, Harrison, Zalesky, & Simons, 2012;

Wang, Ong, Patanaik, Zhou, & Chee, 2016), brain development

(Faghiri, Stephen, Wang, Wilson, & Calhoun, 2018), and mental disor-

ders (Li, Liao, et al., 2018; Liao et al., 2018; Zhang et al., 2018), which

have been investigated in several neurological and psychiatric disor-

ders, including depression (Pang et al., 2018), autism (Guo et al.,

2018), schizophrenia (Damaraju et al., 2014), and GAD (Li et al., 2019;

Yao et al., 2017). These studies demonstrate the utility of brain

dynamics in deepening our understanding of the diseased brain and

highlight its potential role in improving diagnostic accuracy. As

recently reported, dynamic functional connectivity (dFC) can be used

to distinguish patients with GAD from healthy controls (HCs) and

exhibits high accuracy (Yao et al., 2017). However, most of these

studies have focused on reoccurring patterns of connection among

brain regions using the dFC method. To date, the dynamic characteris-

tics of local brain activity have rarely been investigated. Local brain

activity reflects aspects of the intrinsic property of brain fluctuation

organization (Ralchle & Snyder, 2007) and associated with mental and

cognitive processes (Britz, Pitts, & Michel, 2011; Hutchison & Morton,

2016). The amplitude of low-frequency fluctuations (ALFF) is an effec-

tive approach to measure local brain activity (Zang et al., 2007). Com-

bining the ALFF with “sliding-window” approaches, the dynamic ALFF

(dALFF) method was proposed to measure the variance of ALFF over

time. The dALFF provides a new avenue to depict time-varying local

brain activity (Liao et al., 2019) and has been applied in patients with

depression (Li, Duan, et al., 2019) and schizophrenia (Fu et al., 2018;

Li, Duan, et al., 2019) reported that abnormal patterns of dALFF vari-

ability in depression could be used to predict patients' suicidal idea-

tion (Li, Duan, et al., 2019). However, whether patients with GAD

exhibit abnormal dynamic local brain activity remains unclear. Identi-

fying such abnormalities would promote our understanding of the

neuropathological mechanisms underlying GAD.

In the present study, we explored the dynamic local brain activity

in patients with GAD using the ALFF method combined with sliding-

window approach. We expected that patients with GAD would show

altered dALFF patterns compared to those of HCs, and that such

abnormalities may underline clinical symptomatology in GAD and

could be used as features to distinguish patients with GAD from HCs.

2 | METHODS

2.1 | Participants

In total, 56 patients with GAD were recruited from the Clinical Hospi-

tal of Chengdu Brain Science Institute, University of Electronic Sci-

ence and Technology of China, and 55 HCs were recruited from the

local community through advertisements. All patients were inter-

viewed by two experienced psychiatrists and met the diagnostic

criteria for GAD as defined by the Structured Clinical Interview for

DSM-IV (SCID-IV patient edition). The clinical states of patients were

assessed using the 14-item Hamilton Anxiety Rating Scale (HAMA).

Exclusion criteria included major depressive disorder, obsessive–

compulsive disorder, post-traumatic stress disorder, substance or

alcohol abuse disorder, and any history of head trauma or uncon-

sciousness. We excluded patients with comorbid anxiety and depres-

sion to reduce the heterogeneity of patients, since GAD and GAD

with comorbid depression have been reported to have different neu-

ropathological mechanisms (O'Garro-Moore, Adams, Abramson, &

Alloy, 2015; Tully & Cosh, 2013). In total, 45 patients received medi-

cation treatment, of which selective serotonin reuptake inhibitors

were prescribed for 37 patients, including fluoxetine (n = 3), sertraline

(n = 6), paroxetine (n = 15), citalopram (n = 1), escitalopram (n = 11),

and fluvoxamine (n = 1); serotonin and norepinephrine reuptake inhib-

itors were prescribed for eight patients, including venlafaxine (n = 4)

and duloxetine (n = 4). N indicates the number of patients. The HC

group was screened using the SCID nonpatient edition. The two

groups were matched for age, sex, years of education, handedness,

and mean framewise displacement (FD) for head motion (see FD cal-

culation in Section 2.3). The detailed clinical and demographic data of
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the two groups are listed in Table 1. All subjects were provided infor-

mation about the procedure and aims of the study, and provided their

written informed consent before experimentation. This study was

approved by the ethical committee of the University of Electronic Sci-

ence and Technology of China and registered at ClinicalTrials.gov

(Identifier: NCT02888509).

2.2 | Data acquisition

fMRI data for all subjects were acquired using a 3 T GE DISCOVERY

MR750 scanner (General Electric, Fairfield Connecticut) equipped

with an eight-channel prototype quadrature birdcage head coil. Partic-

ipants were instructed to keep their eyes closed, not think of any-

thing, not fall asleep, and keep the head motionless during fMRI

scanning. Resting-state fMRI data were obtained using an echo-planar

imaging sequence with the following parameters: repetition time/

echo time = 2,000/30 ms, matrix size = 64 × 64, field of

view = 240 × 240 mm2, voxel size = 3.75 × 3.75 × 3.2 mm3, flip

angle = 90�, 43 slices, no gap, and 255 volumes. The entire fMRI scan

procedure lasted for 8 min and 30 s.

2.3 | Data preprocessing

Resting-state fMRI images were preprocessed using the Data

Processing and Analysis of Brain Imaging (DPABI) toolbox (http://

rfmri.org/dpabi). The preprocessing steps included: (a) discarding the

first 15 volumes to stabilize the signal of the scanner and enable sub-

jects to adapt to the environment; (b) slice timing correction for the

remaining 240 fMRI images; (c) head motion correction (participants

were excluded if their maximal head motion exceeded 3 mm displace-

ment or 3� of rotation); (d) spatial normalization to standard Montreal

Neurological Institute space and resampled to 3 × 3 × 3 mm3 resolu-

tion; (e) spatial smoothing using a Gaussian kernel with full-width at

half-maximum of 6 mm; (f) detrending; (g) regression of nuisance

covariates including the Friston-24 motion parameters, white matter

signals, cerebrospinal fluid signals, and global signal; (h) temporal

TABLE 1 Characteristics of
demographic and clinical variables of HC
and patients with GAD

Variables HC (n = 55) GAD (n = 56) Statistics p-Value

Age (years) 32.98 ± 11.06 35.39 ± 8.67 1.28 .20a

Sex (male/female) 25/30 20/36 — .30b

Handedness (left/right) 1/54 4/52 — .18b

Education (years) 13.29 ± 3.75 12.06 ± 3.37 1.86 .07a

Mean FD 0.10 ± 0.05 0.10 ± 0.07 0.12 .90a

Duration of illness (months) — 51.16 ± 64.68 — —

Age of first onset (years) — 31.14 ± 9.46 — —

No. anxiety episodes — 2.16 ± 1.25 — —

Duration of single anxiety episode — 4.80 ± 3.52 — —

HAMA score — 23.75 ± 5.67 — —

GAF — 61.50 ± 9.28 — —

Medical

Medication load index 1.55 ± 0.85

Medications No. patients

SSRIs

Fluoxetine 3

Sertraline 6

Paroxetine 15

Citalopram 1

Escitalopram 11

Fluvoxamine 1

SNRIs

Venlafaxine 4

Duloxetine 4

Note: Values are mean ± SD.

Abbreviations: FD, framewise displacement; GAD, generalized anxiety disorder; HAMA, 14-item

Hamilton anxiety rating scale; HC, healthy controls; SNRIs, serotonin and norepinephrine reuptake

inhibitors; SSRIs, selective serotonin reuptake inhibitors.
aTwo-sample t test (two-tailed).
bChi-square t test.
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band-pass filtering at a frequency band of 0.01–0.08 Hz; (i) calculating

the mean FD of each subject to evaluate the head movement

(He et al., 2019; Lu et al., 2017); and (j) motion scrubbing to remove

the “bad” time points and their 1-back and 2-forward time points on

the basis of FD threshold of 0.5 mm (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2013).

2.4 | dALFF analysis

The sliding window method was applied to evaluate the dALFF for each

participant using the DynamicBC toolbox (Liao et al., 2014). Previous

studies proposed that the window length is an open but essential param-

eter in sliding-window-based resting-state dynamics computation

(Li et al., 2018; Li, Duan, et al., 2019; Liao et al., 2019) To avoid the intro-

duction of spurious fluctuations, the minimum window length should be

larger than 1/fmin, where fmin is the minimum frequency of time series

(Leonardi & Van De Ville, 2015; Li, Wang, et al., 2018). Here, a window

length of 50 TR was considered as the optimal parameter to maintain

the balance between capturing a rapidly shifting dynamic relationship

and obtaining reliable estimates of the correlations between regions (Li,

Liao, et al., 2018; Li, Wang, et al., 2018; Pang et al., 2018). Hence, we

selected 50 TR (100 s) as sliding-window length and five TR (10 s) as

step size to calculate the dALFF of each participant. The time series of

each participant was divided into 39 windows, and the ALFF map was

computed within each window, generating a set of ALFF maps for each

participant. Subsequently, we measured the variance of these maps using

SD to evaluate the temporal variability of dALFF (dALFF variability).

Finally, for each participant, the dALFF variability of each voxel was fur-

ther transformed into z-scores by subtracting the mean and dividing by

the SD of global values. Finally, for each participant, the dALFF variability

of each voxel was further transformed into a z-score by subtracting the

mean and dividing by the SD of global values. The static ALFF (sALFF)

map for each participant was obtained to verify whether dALFF and

sALFF exhibited similar or complementary information to provide addi-

tional insight into the neuropathological mechanisms underlying GAD.

2.5 | Statistics analysis

The dALFF variability value was averaged at each voxel across sub-

jects within GAD and HC groups to obtain dALFF variability distri-

bution in both groups. Two-sample t test was performed to assess

the group differences in dALFF variability between the GAD and

HC groups, with age, sex, education level, and mean FD as

covariates. Similarly, the sALFF distribution in the two groups was

obtained by averaging sALFF values at each voxel across subjects

of each group (GAD and HC). A two-sample t test with the same

covariates was applied to assess group differences in sALFF

between patients with GAD and HCs. Multiple comparison correc-

tion was performed for two-sample t tests using a voxel-wise false

discovery rate (FDR) approach, with a threshold of p < .05 and clus-

ter size >20.

2.6 | Multivariate pattern analysis

Multivariate pattern analysis (MVPA) is a useful classification

approach that can identify the features contributing the most to the

classification and classify patients at the individual level (Chen et al.,

2016). In the present study, the region of interest (ROI)-wise MVPA

was used to test the abilities of abnormal dALFF and abnormal sALFF

in classifying patients with GAD and HCs. In detail, two sets of ROIs

were functionally defined by clusters with significant group differ-

ences in dALFF variability and sALFF, termed dALFF's ROIs and

sALFF's ROIs, respectively. The mean dALFF variability values of each

dALFF's ROIs and mean sALFF values of each sALFF's ROIs were

extracted for each participant. Two classification analyses were con-

ducted, in which the features were separately set to be (a) the dALFF

variability values of dALFF's ROIs; and (b) the sALFF values of sALFF's

ROIs. The leave-one-out cross-validation (LOOCV) method was uti-

lized to evaluate the performance of classifiers in both classification

analyses, to produce a robust and reliable model. This method is

proven to be an unbiased strategy and is suitable for small sample

sizes (Finn et al., 2015; Shen et al., 2017). We assumed the presence

of n samples in our study. In each LOOCV trial, n − 1 subjects' data

were selected as the training set to train the classifying model, and

the remaining subject's data was regarded as a test set to test the

model. This procedure was repeated n times. The accuracy, sensitivity,

specificity, and classification weights were reported for LOOCV

analysis.

2.7 | Medication information assessment

To test whether the dALFF variability of patients would be affected

by medication, we calculated the medication load index of each

patient to reflect the dosage of medication taken. The total medica-

tion load index was measured using an approach employed by previ-

ous studies (Almeida et al., 2009; Hassel et al., 2008; Versace et al.,

2008) For each patient, we coded the dose of each medicine taken as

0 (absent), 1 (low), or 2 (high) based on previously developed criteria

(Sackeim, 2001). Individuals on Levels 1 and 2 of these criteria were

coded as low-dose; those on Levels 3 and 4 were coded as high dose.

A no-dose subtype was added for patients who were not taking these

medications. Two medications (escitalopram and duloxetine) that are

not included in the criteria of Sackeim (2001) were coded as 0, 1, or

2 according to the midpoint of the daily dose range recommended by

the Physician's Desk Reference. The total medication load for each

patient was obtained by summing all medication codes.

2.8 | Clinical correlation analysis

To further investigate the potential associations of abnormal dALFF

variability and sALFF with symptom severity of patients with GAD,

the mean dALFF variability values of each dALFF's ROI and mean

sALFF values of each sALFF's ROI were extracted to calculate the
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Pearson's correlation coefficient with HAMA scores in GAD patients.

In addition, Spearman's rank correlations between abnormal dALFF

variability, abnormal sALFF, and total medication load index were also

calculated to test the potential influence of medication treatment on

the results. A statistically significant threshold of p < .05 (uncorrected)

was set for all correlation analyses.

2.9 | Validation analysis

To verify our findings of dALFF variability obtained from sliding-

window length of 50 TR, we performed auxiliary analyses with differ-

ent sliding window lengths. We recalculated the main results by using

two other window lengths (30 and 80 TR).

3 | RESULTS

3.1 | dALFF variability and sALFF results

Patients with GAD and HC exhibited similar spatial distribution of

dALFF variability, as shown in Figure 1. Brain regions with high dALFF

variability were mainly located in the PFC, temporal–parietal junction,

temporal pole, posteromedial, and occipital cortices. Brain regions

with low variability were mainly located in the sensorimotor, inferior

temporal, and limbic cortices. The group comparison results of dALFF

variability showed that patients with GAD exhibited increased dALFF

variability in the bilateral dorsomedial PFC (dmPFC), hippocampus,

thalamus, and striatum; and left orbital frontal gyrus (OFC), inferior

parietal lobule (IPL), temporal pole (TP), inferior temporal gyrus (ITG),

and fusiform gyrus (p < .05, FDR corrected; Figure 1). The group com-

parison results of sALFF revealed that patients with GAD exhibited

increased sALFF in the bilateral hippocampus, striatum, and left thala-

mus; and decreased sALFF in the bilateral postcentral and occipital

cortices, and right fusiform (p < .05, FDR corrected; Figure S1).

3.2 | Multivariate pattern analysis

The results of the two classification analyses are shown in Figure 2.

Using abnormal dALFF variability as features, the classification analy-

sis revealed that the dALFF variability values of the bilateral dmPFC

and striatum, left TP and IPL, and right hippocampus contributed the

most to differentiating patients with GAD from HCs, achieving an

accuracy of 87%, sensitivity of 82%, and specificity of 93%. However,

the highest accuracy achieved by the classification analysis using

abnormal sALFF as features was 78%, with a sensitivity of 70% and

specificity of 87%. These results indicated that abnormal dALFF vari-

ability may be more powerful than abnormal sALFF for distinguishing

patients with GAD from HCs.

3.3 | Correlation results

The abnormal dALFF variability of the right striatum was positively

correlated with the HAMA scores of patients with GAD (r = .273,

p = .042; Figure 3). However, the relationship between abnormal

sALFF and HAMA scores in patients with GAD was not significant.

F IGURE 1 Pattern of dALFF variability in the HC and GAD groups (a) and brain regions with significant group differences in dALFF variability
(b). Group differences in dALFF variability between the GAD and HC groups were identified using a two-sample t test. The statistical significance
level was set at p < .05, false discovery rate (FDR) corrected, K > 20. Patients with GAD showed increased dALFF variability in the bilateral
hippocampus, thalamus, and striatum; and left OFC, IPL, TP, ITG, and fusiform. Abbreviations: ALFF, amplitude of low-frequency fluctuation;
dALFF, dynamic ALFF; HC, healthy control; GAD, generalized anxiety disorder; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; L, left;
OFC, orbital frontal cortex; R, right; TP, temporal pole

CUI ET AL. 1671



No significant correlation was observed between either abnormal

dALFF variability or abnormal sALFF and medication load index in

GAD patients (for all correlation analyses, p > .1) (Tables S1 and S2),

indicating that no significant medication effect on local brain activity

was observed in this study.

3.4 | Validation results

We validated our main results by using different sliding window

lengths in this study. The findings of the sliding window length of

30 and 80 TRs were similar to the main results of 50 TR in our study.

All validation analysis results are presented in Supplementary Mate-

rials (Figures S2 and S3).

4 | DISCUSSION

This study is the first to investigate the temporal variability of local

brain activity in GAD using a novel dALFF method. Patients with GAD

exhibited increased dALFF variability in the hippocampus, thalamus,

striatum, fusiform, and widespread prefrontal and parietal cortices.

The dALFF variability in these regions could be used to classify

patients with GAD and HCs, achieving an accuracy of 87%. The

F IGURE 2 The results of classification analyses. The classification with altered dALFF variability as features achieved an accuracy of 87%,
sensitivity of 82%, and specificity of 93% (a). The classification with altered static amplitude of low-frequency fluctuation (sALFF) as features
achieved an accuracy of 78%, sensitivity of 70%, and specificity of 87% (b)

F IGURE 3 Dynamic amplitude of
low-frequency fluctuation (dALFF)
variability in the right striatum was
positively correlated with HAMA scores
of patients with GAD; r = .273, p = .042

1672 CUI ET AL.



classification accuracy was superior when using dALFF variability

compared to that using sALFF as features. Additionally, the abnormal

dALFF variability in the striatum was correlated with symptom sever-

ity of GAD. These findings highlight the importance of considering

dynamic local brain activity in GAD.

GAD showed increased dALFF variability in the hippocampus and

thalamus, limbic regions which are involved in emotion processing. Of

note, emotional dysfunction is the most prominent feature of GAD

(Mochcoyitch, da Rocha Freire, Garcia, & Nardi, 2014; Via et al.,

2018), such as reduced capacity for engaging emotion-regulation

brain networks when viewing and adjusting feelings toward positive

and negative affective pictures (Blair et al., 2012), attenuated blood

oxygen level-dependent response of the PFC and ACC to emotional

expressions (Palm et al., 2011), and inability to adapt to emotional

conflict (Etkin, Prater, Hoeft, Menon, & Schatzberg, 2010). The hippo-

campus is involved in the ventral affective neural systems (Moon &

Jeong, 2015) and plays a critical role in mediating anxiety states in

coordination with other limbic regions (Caliskan & Stork, 2018). GAD

has been reported to exhibit hyperactivation in the hippocampus dur-

ing processing anxiety-inducing distractors (Moon & Jeong, 2015;

Park et al., 2016). Such hyperactivation was correlated with pathologi-

cal anxiety responses and considered to be associated with emotional

dysregulation in GAD (Moon & Jeong, 2015). The thalamus is a relay

center for sensory information transmission (Sherman, 2007). It has

connections with widespread cortical and subcortical regions (Qiao

et al., 2017) and participates in multiple cognitive and emotional pro-

cesses (Jiang et al., 2018). Previous studies reported hyperactivation

of the thalamus in GAD during imagining disorder-related scenarios

(Buff et al., 2018), and increased rsFCs of the thalamus in GAD

patients (Etkin et al., 2009; Qiao et al., 2017). Consistent with func-

tional impairments, GAD also exhibits structural abnormalities in the

limbic system, such as reduced gray matter volume in regions includ-

ing the hippocampus, thalamus and insula (Abdallah et al., 2013;

Moon, Kim, & Jeong, 2014; Moon, Yang, & Jeong, 2015). Our findings

of increased dALFF in limbic regions are consistent with previous find-

ings that patients with GAD show overhyperactivation in the limbic

system, which may underscore the excessive sensitivity to emotional

stimuli, especially those of negative valence, a typical clinical manifes-

tation of GAD (Novick-Kline, Turk, Mennin, Hoyt, & Gallagher, 2005).

Increased dALFF variability was also observed in the dmPFC and

IPL, components of the frontoparietal cognitive control network

(Niendam et al., 2012). Several studies have highlighted the important

role of emotional dysregulation in the development and maintenance

of GAD (Blair et al., 2012; Etkin et al., 2010; Mochcoyitch et al., 2014;

Wang et al., 2018). Previous neuroimaging studies have demonstrated

that the difficulty of emotion regulation in GAD may result from the

failure to recruit prefrontoparietal networks to downregulate emo-

tional responses (Wang et al., 2018). GAD is underscored by elevated

static regional neural activity in the dmPFC and aberrant rsFC of the

dmPFC with limbic regions, temporal lobe, vmPFC, and precentral

gyrus (Wang, Hou, et al., 2016). Enlarged gray matter volume (GMV)

(Schienle, Ebner, & Schaefer, 2011) and weakened emotion

regulation-related activity of the dmPFC have been also reported in

GAD (Etkin et al., 2010; Wang et al., 2018). Additionally, the IPL was

hypoactivated during cognitive reappraisal of emotion tasks in

patients with several subtypes of anxiety disorders (Wang et al.,

2018) and exhibited decreased cortical thickness in GAD (Abdallah

et al., 2012). The increased dALFF variability in dmPFC and IPL

observed in the current study indicates aberrant temporal fluctuations

of local brain activity in these regions. Such abnormal patterns may

disrupt the capacity to engage the prefrontoparietal network in emo-

tion regulation in GAD.

Regions previously involved in high-level socioemotional function,

including the OFC, striatum, fusiform gyrus, TP, and ITG, also

exhibited increased dALFF variability in GAD. As key nodes of the

reward system, the OFC and striatum are strongly engaged in reward

processing. Impairments of the brain reward system are evident in

GAD, including reduced OFC GMV (Strawn et al., 2013) and disrupted

functional connectivity of the striatum (Qiao et al., 2017). The fusi-

form gyrus is involved in facial recognition (Park et al., 2016) and

affective stimuli perception (Geday, Gjedde, Boldsen, & Kupers,

2003), and the TP and ITG are implicated in theory of mind (TOM).

These regions play crucial roles in the perception and reasoning of

social cues, such as other persons' beliefs and emotions, which are

essential for social functioning (Cui et al., 2017; Kohn et al., 2014).

The abnormal dALFF detected in these regions is consistent with pre-

vious studies suggesting that GAD patients exhibit impaired TOM rea-

soning for negative social stimuli (Kohn et al., 2014), with structural

and functional abnormalities in regions associated with social cogni-

tion, such as abnormal rsFC of the fusiform gyrus with limbic regions

(Cui et al., 2016; Molent et al., 2018) and aberrant cortical morphol-

ogy and white matter integrity of the ITG and TP (Hilbert et al., 2015;

Molent et al., 2018; Strawn et al., 2013).

Static and dALFF revealed similar group differences. However,

dALFF contributed more than sALFF to distinguishing between

patients with GAD and HCs. With dALFF variability values as features,

classification achieved a relatively high accuracy of 87%. In addition,

increased dALFF variability in the striatum was positively correlated

with symptom severity, suggesting that the increased dALFF variabil-

ity in this brain region may be important for understanding the devel-

opment of anxiety. These findings suggest that dynamic local brain

activity may be a powerful neuroimaging indicator for probing patho-

logical changes in GAD and provide a new avenue to distinguish

patients from the healthy population.

This study has several limitations. First, the selection of the sliding

window length remains a topic of debate, and optimal length for

obtaining the dynamics of brain activity is unclear. We selected 50 TR

as window length on the basis of the criteria that the minimum length

should be larger than 1/fmin, which was proposed by previous studies

(Leonardi & Van De Ville, 2015; Li, Duan, et al., 2019). The results of

different sliding window lengths were similar to the main results of

50 TR, demonstrating that our findings of dALFF variability were rela-

tively stable. Second, given the high comorbidity of anxiety and

depression, excluding individuals with depressive disorder may

decrease the generalizability of our findings. More comorbid samples

are required to replicate and complement our findings. Future studies
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will benefit from the systematic investigation of common and distinct

neural mechanisms underlying anxiety and anxiety comorbidity in

other affective disorders to obtain deeper understanding of the neural

mechanisms underlying GAD. Third, most of our patients took medi-

cations, which may affect the reliability of our results. Although the

correlations between abnormal dALFF variability and medication load

index were not significant, our results should be confirmed by future

studies with medication-naive patients.

5 | CONCLUSION

In summary, patients with GAD exhibited increased temporal vari-

ability of dALFF in regions implicated in executive, emotional, and

social function. The abnormal dALFF variability was correlated with

symptomatology of GAD and contributed to distinguishing patients

with GAD from HCs with higher accuracy than that achieved using

abnormal sALFF as features. This study sheds new insight into the

brain dysfunction underlying GAD from the perspective of dynamic

local brain activity, highlighting the important role of alterations in

dALFF variability in understanding the neuropathological mecha-

nisms underscoring GAD and potentially informing the diagnosis of

this disease.
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