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Microglia, the resident tissue macrophages of the brain, are increasingly implicated in the
pathophysiology of psychiatric disorders with a neurodevelopmental origin, including
schizophrenia. To date, however, our understanding of the potential role for these cells in
schizophrenia has been informed by studies of aged post-mortem samples, low
resolution in vivo neuroimaging and rodent models. Whilst these have provided
important insights, including signs of the heterogeneous nature of microglia, we
currently lack a validated human in vitro system to characterize microglia in the context
of brain health and disease during neurodevelopment. Primarily, this reflects a lack of
access to human primary tissue during developmental stages. In this review, we first
describe microglia, including their ontogeny and heterogeneity and consider their role in
brain development. We then provide an evaluation of the potential for differentiating
microglia from human induced pluripotent stem cells (hiPSCs) as a robust in vitro human
model system to study these cells. We find the majority of protocols for hiPSC-derived
microglia generate cells characteristically similar to foetal stage microglia when exposed to
neuronal environment-like cues. This may represent a robust and relevant model for the
study of cellular and molecular mechanisms in schizophrenia. Each protocol however,
provides unique benefits as well as shortcomings, highlighting the need for context-
dependent protocol choice and cross-lab collaboration and communication to identify the
most robust and translatable microglia model.

Keywords: microglia, neuroinflammation, human induced pluripotent stem cells, neurodevelopmental disorders,
schizophrenia, autism
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MICROGLIA—A SHORT INTRODUCTION

Microglia are the primary immunocompetent cells of the central
nervous system (CNS). In the adult brain they are thought to play
key roles in shaping the local tissue response to injury, infection,
damage, and in maintaining CNS homeostasis (1). Microglia also
are also increasingly appreciated to play a key role in brain
development (2). As a result, functional disruption of these cells
has been linked to the pathogenesis of a variety of brain disorders
(3). Following their description in the early 20th century by Del
Rıó Hortega (4), microglia have conventionally been studied en
bloc using low-resolution in vivo positron emission tomography
(PET) and post-mortem tissue from human and rodent brains,
but evidence of the heterogeneous nature of these cells is
accumulating (5). Notably, until recently, in vitro studies of
microglia have relied on immortalized cell lines derived from
either mouse or human sources. These immortalized microglia
cell lines such as, mouse BV2 or human SV40 cell lines, whilst
useful for generating hypotheses for further study are no longer
considered representative of primary microglia, since they do not
express core microglial signature genes (6–8). The great majority
of data and hence our understanding of microglia biology also
comes from rodents and it is unclear how these data generalizes
to humans (9). Collectively, these points suggest a need for a
flexible and reliable human in vitro model system, with which to
study microglia biology in the context of health and disease
including neurodevelopmental stages. Access to human primary
tissue, particularly foetal tissue, is however very limited.
Furthermore, it is unclear to what extent microglia harvested
from peri-lesional areas during surgical resections in the adult
brain may reflect “normal” microglia. In this review, we address
the potential of microglia derived from human induced
pluripotent stem cells (hiPSCs) as a potential candidate model
system to address this gap. In doing so we first describe
microglia, including their ontogeny and heterogeneity and
consider their role in brain development. We then provide an
evaluation of published protocols for differentiating microglia
from hiPSCs and their potential use as a robust in vitro human
model system to study these cells and characterize them in the
context of health and psychiatric disorders with a putative
neurodevelopmental origin, including schizophrenia (SZ). The
potential for hiPSC-derived microglia in modelling age-related
neurodegeneration has been recently reviewed elsewhere (10).
MICROGLIA ONTOGENY

The origin of microglia spans two major theories, arguing
whether the microglia precursors originate in the mesoderm or
the neuroectoderm. The neuroectoderm theory places microglia
in the same lineage as astrocytes and oligodendrocytes (11–14),
while the mesoderm theory suggests a hematopoietic yolk sac
(YS) origin (15–17). Critically, following lineage tracing studies it
is becoming increasingly evident that under normal conditions
the latter YS origin is the sole source of microglia during
development (18). This also suggests that when compared to
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non-CNS macrophages, microglia uniquely derive from tissue-
resident erythromyeloid-derived macrophage precursors, which
infiltrate into the developing brain parenchyma through blood
vessels between rodent embryonic day (E) 8.5–9.5 (18, 19). A key
characteristic of this lineage is Myb (MYB Proto-Oncogene,
Transcription Factor)-independence, a transcription factor
which is required for non-YS macrophage and monocyte
development, since expression of other key transcription
factors, such as PU.1 and Irf8 respectively regulates microglial
fate determination and influences microglial progenitor survival
(15, 20). A schematic diagram of microglia maturation from the
YS is shown in Figure 1A.

The appearance of macrophage precursors predates
neurogenesis, making microglia one of the first residents of the
brain (16). Ramified microglia-like cells are observed at post-
conception (pc) week 6 in the hindbrain, following the peak of
YS haematopoiesis (22). Microglia in an amoeboid-like state are
however, observed in the intermediate, telencephalic ventricular,
and marginal zones at PC week 4.5. Functionally, these foetal
stage microglia gain the ability to detect and react to local
environmental changes in the mouse at E16.5 (approx. PC
week 8 in humans) and are characterized by high expression of
several genes termed the microglial “sensome” (23, 24). In
humans, at PC week 9, amoeboid–like microglia are also
observed in the spinal cord before their appearance with
similar morphology in the mesencephalon around PC week 19,
reaching peak density and displaying a ramified morphology,
around the time oligodendrocyte and astrocyte precursors
appear around PC week 20–22 (25–27). To summarize these
data, Figure 1B highlights the appearance microglia in different
CNS regions by PC week. Whilst data from human brain
material exists, most accumulated data on microglial
infiltration into the brain is predominantly inferred from
rodent models. Species differences in microglia ontogeny are
however reported to exist and further studies are required to
substantiate if these exist and how important they may be (9).
HETEROGENEITY OF MICROGLIA

Following the degeneration of the yolk sac (PC week 9),
microglia exploit their capacity for clonal expansion to increase
and then maintain the brain population at a steady state during
development. In this period, neurogenesis and neural migration
also occurs, creating local cues that influence the form and
function of microglia. Data from rodents suggest that in turn
the microglia may well then actively play a role in shaping brain
connectivity by several means, including modulation of axon
growth cone guidance and synaptogenesis (28–30). This initial
neuron-microglia contact may represent the beginning of a long-
lasting diversification of microglia into brain region-specific
phenotypes. Consistent with this view, foetal murine microglia
are highly heterogeneous as indexed by single cell RNA
sequencing (31). Such diversity of microglia has been observed
as early as mouse E18.5. This also corresponds to a period of
male/female differentiation, with the acquisition of sexually
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dimorphic transcriptomic signatures characterized by an
increase of differentially expressed genes (DEGs) primarily on
the X and Y chromosomes, which only becomes more different
with age and could underpin reported sex differences in
microglia form and function (24, 32). Although there is
considerable similarity between human and murine microglia,
it is notable that several genes that are not part of the mouse
microglia signature are highly expressed in human microglia.
These include, for example, genes associated with the cell cycle
(TAL1), and proliferation (IFI16) (31, 33, 34). To further
emphasise the potential relevance of species differences, in
Table 1 we highlight a number of species differences in
microglia that may be of relevance to psychiatric disorders. It
is unknown however, to what extent these apparent species
differences influence the cellular functions of human microglia
cells during development, reinforcing the need for further studies
in human model systems.

While microglia in the adult rodent brain are potentially
much less diverse as compared to the developing brain, there
is some evidence that apparent regional transcriptional
heterogeneity is maintained, which may be further enhanced
during ageing (41). For example, Grabert and colleagues (40)
provide evidence for such heterogeneity in the adult mouse brain
Frontiers in Psychiatry | www.frontiersin.org 3
based on microarray gene expression mapping of microglia
isolated from fore-, mid-, and hindbrain regions (41). Basal
ganglia specific signatures from anatomical features to
transcriptome differences dependent on local cues have also
been shown in the mouse brain (28). These molecular
observations are however consistent with earlier post-mortem
work detailing regional diversity in microglia density and
morphology in the rodent brain (46, 47). Translating these
findings to humans, mass cytometry analysis of surface protein
markers expressed on microglia suggests that subventricular
zone microglia in the human brain represent a distinct
population as compared to other brain regions, although
phenotypic variability between donors was also reported (48).
A deeper analysis of this dataset suggested additionally that the
sub-ventricular zone (SVZ) and thalamus (THA) contain similar
microglial phenotypes, not observed in the other brain regions
examined (48). Moreover, the temporal and frontal lobes are
enriched in yet other distinct microglia phenotypes (48). Finally,
the microglia profile in the cerebellum (CER) also appeared to be
quite distinct from the other brain regions examined (48). These
data, particularly for the cerebellum are in good agreement
with extant mouse transcriptional data, which also suggests a
marked difference between cerebellar and forebrain microglia
FIGURE 1 | Microglial Ontogeny. (A) The mesodermal theory of microglial origin, where erythroid progenitor cells (EMP) are directed through progenitor stages A1
and A2 by transcription factors PU.1, RUNX1, and IRF8 during E8.5–9.5. They are independent of Myb influence, which direct hematopoietic stem cell (HSC) lineage.
Progenitor microglia assemble at M0 stage in the brain until E14.5, where they self-renew. (B) Microglia infiltration into the developing brain at different regions over
the course of gestation. Amoeboid state microglia are shown in red and ramified microglia are show in blue. Time is shown in post-conception weeks. Image in
Figure 1 (A) contains a modified form of this image: https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-017-0307-x/figures/1 by (21), used under
CC BY 4.0: (http://creativecommons.org/licenses/by/4.0/), colours changed from original and new elements added. Image in Figure 1 (B) contains a modified form
of this image http://commons.wikimedia.org/wiki/File:EmbryonicBrain.svg by Nrets, used under CC-BY-SA: http://creativecommons.org/licenses/by-sa/2.5/ colours
changed from original.
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phenotypes (41). Building on these data, single-cell RNA
sequencing work, combined with mass cytometry confirms
distinct transcriptional profiles of microglia within human
temporal lobe tissue biopsies from epilepsy and glioma patients
(49). At the cellular level, hippocampal microglia density
differences are reported in neurodegenerative disease samples
(50). Transcriptional profiling studies have also further
distinguished this heterogeneity between grey-white matter
specific profiles (49, 51) and specific time-and region dependent
subtypes (43). The generation of such regional microglia subtypes
may be reliant on unique molecular programs induced by
exposure to specific regional cues. For example, Kana et al. (52)
demonstrate that cerebellar microglia identity appears to be
driven by high local levels of Colony Stimulating Factor-1
protein (CSF-1), with only forebrain microglia remaining intact
when CSF-1 was depleted genetically from nestin-positive cells
(52). Consistent with the idea of diverse molecular machinery,
homeostatic microglia density is retained in a space- and time-
dependent manner even after acute chemical ablation (53). Hence
both intrinsic and local signals must contain information to
repopulate to region-specific densities of microglia. The
functional significance of this heterogeneity is currently unclear.
On the other hand, such heterogeneity would be consistent with
the evolutionary pressure for innate immune cells to be able to
respond flexibly to different pathogens or tissue injuries.
Regardless, it is evident that local cues play important roles in
defining microglia phenotype at both the transcriptional and
protein expression levels. At present, the extant human data on
microglia heterogeneity is based on post-mortem samples collected
from adult individuals, with little or no information available from
foetal or embryonic brain tissue. Whilst mouse models attempting
to characterize these early periods provide extremely useful data,
the potential for species-related heterogeneity is still a challenge
for the field. Accordingly, a human-relevant model system, where
microglia subtypes in the context of the foetal, developing brain
can robustly be characterized under basal and disease conditions
remain a pressing need.
Frontiers in Psychiatry | www.frontiersin.org 4
MICROGLIA “ACTIVATION” AND
NEUROINFLAMMATION

Brain-resident microglia are part of the innate immune system,
which provides the brain with a rapid, non-specific first line of
defense against pathogens. This should be distinguished from
the adaptive immune system, which primarily involves T-
lymphocytes and is slower and antigen specific (54, 55).
Microglia activation is thus classified as a shift away from
homeostasis and activation of a defense response, which occurs
downstream of different stress signals, collectively know as
“pathogen-associated damage patterns” (PAMPs) and “damage
associated patterns” (DAMPs) that are recognized via pattern
recognition receptors (PRRs) (54, 56). These PRRs expressed in
microglia include Toll-like receptors (TLR), which sense
components of bacterial (TLR4) or viral (TLR3, 7, 8)
pathogens. Hence LPS (a TLR4 agonist) is commonly used as a
tool to induce microglia activation in vitro (57), in vivo in
experimental animals (58) and healthy humans (59). Such
microglial activation is characterized by a shift in morphology,
a shift to anaerobic metabolism, increased reactive oxygen
species (ROS) production, increased synthesis and release of
cytokines and chemokines, microglial clustering, and/or
migration and phagocytosis. Based largely on in vitro studies,
following activation, for example, by LPS, microglia have been
categorized into either “protective” (termed M2) or “toxic”
(termed M1) states (60). This classification however has
recently been challenged, since in vivo studies clearly show that
microglia in the rodent brain can express genes associated with
both M1 and M2 states simultaneously (3). Furthermore, it is
unlikely that similar transcriptional profiles will be adopted in
heterogeneous microglia across different brain regions (49), or
where the microglia may be hypersensitive to stimulation,
described as “primed” microglia, for example, following early
developmental insults such as childhood CNS or severe systemic
infection, or as a function of ageing and age-related disorders
(55, 61, 62). Nonetheless, pro-inflammatory stimulation may be
TABLE 1 | Overview of species differences between human and mouse microglia of potential relevance to using human iPSC-derived microglia for studying neuropsychiatric
disorders.

Phenotype Species differences of potential relevance to studyingmicroglia involvement in human psychiatric
disorders with a neurodevelopmental onset

References

Microglia turnover and
maintenance

• Rates of turnover for rodent microglia vary from 0.05 to 0.7% depending on the method used
• Human microglia may be longer-lived with slower turnover relative to the lifespan of the host species

although chimeric model data suggest fast turnover and proliferation of human microglia in the
neonatal rodent brain

Lawson et al. (35);
Askew et al. (36)
Reu et al. (37); Xu et al.
(38)

Microglia gene expression
signature (homeostatic state)

• High correlation in gene expression signature between microglia isolated from human post-mortem
and surgically resected brain tissue (r = 0.94)

• Only >50% overlap to rodent microglia with species specific differences in gene expression (either
unique in mouse or human)

Galatro et al. (33);
Gosselin et al. (39)
Dubbelaar et al. (40)

Microglia diversity along
spatial and developmental
dimensions

• Single cell RNA sequencing confirm that rodent microglia show regional and time dependent
heterogeneity, which is maximal during development

• Human microglia show similar heterogeneity but formal comparisons to mouse datasets are lacking,
qualitatively a partial overlap is reported

Grabert et al. (41);
Hammond et al. (42)
Masuda et al. (43)

Response to interferon-g /
LPS stimulation in vitro

• Rodent microglia become rounded/amoeboid, retract processes, increasing TSPO and iNOS/
Arginase1 expression

• Human microglia in contrast extend processes, becoming bipolar, decrease TSPO expression and
iNOS/Arginase1 is not induced

Healy et al. (9);
Nakamura et al. (44);
Owen et al. (45)
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used to assess several aspects of microglia activation in
the context of health and disease, including phagocytosis,
cytokine expression, reactive oxygen species production,
synaptic pruning, and neuronal survival, which may all be
viably assayed in vitro, which can form the basis for in vivo
validation (57, 63). Different pro-inflammatory stimulants may
however yield both common and distinct phenotypes in vitro in
such assays and thus choice of stimulation paradigm or testing of
multiple stimulation contexts is essential to generate meaningful
results (64). Recent studies using human microglia-like cells
(MGLs) differentiated from hiPSCs demonstrate that these cells
have a clear activation response following stimulation with
lipopolysaccharide (LPS) and interferon-g, but also that this
may be influenced by disease-relevant mutations, for example
in triggering receptor expressed on myeloid cells-2 (TREM2)
(57, 63). Notably however, this activation response differs across
species (Table 1). These data suggest a view that studying the
response of hiPSC-microglia derived from individuals with
schizophrenia following stimulation with different PAMPs/
DAMPs may be useful. Specifically, this could help to assess if
there is a general difference in microglial activation as a function
of SZ diagnosis or whether this is only relevant for particular
individuals, depending on their genetic and/or environmental
risk exposures. Studies on the role of the inflammasome may be
particularly relevant in this context. Inflammasomes are multi-
protein complexes that form following stimulation of PRRs
by PAMPs/DAMPs in microglia of which, the NLRP3
inflammasome is the best-described (65). Upon stimulation,
the sensor molecule NLPR3 recruits pro-caspase-1 via the
adaptor molecule apoptosis-associated speck-like protein
(ACS), resulting in cleavage of the cytokine precursors pro-IL-
1b and pro-IL-18 into mature IL-1b and IL-18 and their
subsequent release from microglia (65). This is relevant in the
context of this review, since there is evidence for the involvement
of both IL-1b and IL-18 in schizophrenia pathophysiology. For
example, elevated serum and post-mortem brain IL-1b levels
have been reported in SZ and are associated with both symptom
severity and disease progression (66, 67). Hypothetically at least,
such phenomena could occur downstream of NLPR3
inflammasome activity in activated microglia (55). To date, we
are not aware of any published studies on inflammasomes that
have been carried out in MGLs derived from patients with SZ or
other psychiatric disorders, using a protocol that recapitulates
appropriate human microglia ontogeny. Given the predicted key
roles of microglia in brain development (as described in the next
section) and the links between SZ risk and early developmental
insults such as maternal, childhood CNS, or severe systemic
infection (55), this is a key gap in our knowledge that remains to
be addressed.
ROLES OF MICROGLIA IN BRAIN
DEVELOPMENT

In addition to carrying out fundamental immune and
homeostatic responses, microglia play two major roles in brain
Frontiers in Psychiatry | www.frontiersin.org 5
development; the phagocytosis of unwanted neurons and
modulating synaptic connections. The latter occurs in the dual
context of not only promoting synapse formation but also in
synapse elimination, which may occur in a time and region-
specific manner (68). For example, through the production of
reactive oxygen species (ROS), which is linked to their expression
of DNAX-activation protein 12 (DAP12) and CD11b, microglia
promote the engulfment of cerebellar Purkinje neurons and
hippocampal neurons during development (69, 70). Moreover,
CSF-1 deficiency and the subsequent alteration of cerebellar
microglia are reported to be associated with reduced numbers
of Purkinje cells, altered neuronal function, and defects in motor
learning and social novelty interactions (52). Microglia
regulation of neuronal progenitor pools is also retained from
development to adulthood, with there being evidence of
homeostatic phagocytosis in the subgranular zone neurogenic
niche (71).

The functional role of microglia in regulating synaptic
connections was first suggested by Blinzinger and Kreutzberg
following in vitro experiments (72). Recent studies have now
provided in vivo evidence of the contact between microglia and
synaptic structures, describing both filopodia formation and
elimination in an activity and complement dependent manner in
the developing mouse cortex (73–75). The nature of these
interactions appears to be both region- and time-dependent. For
example, filopodia formation following microglia contact appears
to occur at early periods of synaptogenesis in the developing
somatosensory cortex at postnatal day 8–10, possibly driven by
neuronal activity in this period (76). Microglia have also been
posited to remodel or refine mature existing synapses through
their elimination. Studies in the mouse brain provide evidence for
the engulfment of synaptic material in an activity and complement
dependent manner, which is exacerbated in mice with pathology
associated with neurodegeneration, such as amyloid-b plaque
formation (74, 77). Moreover, loss of microglia-neuron cross talk
via genetic deletion of the fractalkine receptor (CX3CR1) also
negatively impacts on putative synaptic pruning by microglia
leading to abnormal brain development and the emergence of
impairments in brain connectivity and social behavior in the adult
animal (73, 78). In contrast, synaptic plasticity in the visual cortex
does not appear to be affected by CX3CR1 deletion (79, 80). Hence
the regional specificity of putative microglia-mediated synapse
elimination remains to be established. The precise nature of the
interaction between microglia and neurons leading to remodelling
of synapses is also suggested not to represent engulfment per se, but
may be best described as “trogocytosis” (81, 82).

Translating these data to humans, induced microglia (iMG)
generated from peripheral blood mononuclear cells (PMBCs)
engulf synaptic material in vitro, which is enhanced in iMG from
individuals with a diagnosis of SZ (7, 83). There are however no
studies modelling human microglia-synapse interactions in vitro
that incorporate microglia with the correct YS ontogeny, which
will be helpful to confirm the aforementioned exciting findings
from iMG. Moreover, the evidence for engulfment of synaptic
material by microglia in both rodent and human models is
principally based on imaging of fixed tissues, whereas imaging
August 2020 | Volume 11 | Article 789
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dynamic microglia-synapse interactions would be desirable.
Finally, the precise molecular mechanisms driving these
microglia-neuron interactions remain to be characterized in
detail. For example, if microglia do “prune” synaptic
connections during development, what are the molecular
signals that regulate this process? Whilst CX3CR1 and the
complement system are clearly leading candidates based on
schizophrenia genetics, much work remains to be done in this
area. In particular, little has been done to assess the impact of
environmental risk factors, linked to the innate immune system
that are associated with increased risk for SZ and other
psychiatric disorders. For instance, as alluded to in the
previous section, early developmental insults following
maternal or childhood brain and/or severe systemic infection
are associated with increased risk for SZ in the affected offspring/
children (54, 55). In this context, data from a mouse model of
maternal immune activation (MIA) provides evidence for
increased spine density in the hippocampus of MIA-exposed
male offspring early in development (post-natal day 15) and
decreased expression of CX3CR1 (84). In contrast, a loss of post-
synaptic proteins has been reported in the hippocampus of male
MIA-exposed offspring in the pubescent period (post-natal day
35), which was maintained into adulthood (post-natal day 90)
(85). Other groups have also reported elevated levels of
complement factors involved in synaptic pruning, namely, C1q
and C4 in rodent offspring exposed to MIA in utero (86, 87). The
data on microglial activation in rodent models of MIA is
however, by no means unequivocal, with evidence for both
persistent microglial activation, or no overt microglial
activation, as reviewed elsewhere (88). Collectively, these data
suggest that part of the risk mechanism that links MIA to
psychiatric disorders, including SZ, may involve abnormal
neuron-microglia interactions and synaptic pruning, which
may differ depending on the neurodevelopmental stage
examined. A flexible, robust, in vitro model of human
microglia-synapse interactions, particularly one amenable to
high speed, multi-photon live imaging would be extremely
useful to investigate this further alongside the effects of genetic
risk factors for SZ on microglia-synapse interactions. Ideally, as
already stated, such a model would benefit from microglia that
show correct human ontogeny, as evidence for microglia
generated from hiPSCs (57). Before considering this question
in more detail however, it is important to first briefly reflect on
the evidence base for microglial activation in SZ.
EVIDENCE FOR MICROGLIAL ACTIVATION
IN PSYCHIATRIC DISORDERS WITH A
NEURODEVELOPMENTAL ORIGIN

SZ is a complex debilitating neurological disorder affecting
approximately 1% of the population, presenting with positive
and negative symptoms, cognitive dysfunctions, and reduced
psychosocial function. The exact causes of SZ remain elusive, but
it is highly heritable, albeit with a complex, polygenic architecture.
Highly penetrant rare variants, particularly copy number variants
Frontiers in Psychiatry | www.frontiersin.org 6
(CNVs) do however exist that are associated with a significantly
increased risk for SZ. For example, 22q11.2 deletion syndrome
(DiGeorge Syndrome) is associated with a 20-fold increased risk
for SZ in carriers (89). Peripheral neuroinflammation,
characterized by raised circulating pro-inflammatory cytokines
is a hallmark of several psychiatric disorders, including SZ, (90). In
the CNS, there are also converging lines of evidence from genetics,
neuroimaging, and post-mortem studies for microglial activation
in these disorders, although this evidence is by no means
unequivocal (91). It remains unclear however, to what extent
microglial activation is causative for psychiatric symptoms, or
simply a homeostatic defence response to the diseased brain state.
In support of the latter view, isolation of microglia from post-
mortem brain tissue of individuals with bipolar disorder suggests
these cells are not activated (92). Notably, such data for SZ brain
tissue is currently lacking in the literature. On the other hand,
consistent with the key roles that microglia are thought to play in
shaping brain development, gain or loss of microglia function
during critical periods of brain development could plausibly lead
to abnormal neural circuit formation and the later emergence of
psychopathology. In support of this view, there is strong genetic
evidence for a link between increased numbers of complement
C4A alleles and higher risk for SZ (93). Notably, C4A knockout
leads to abnormal synaptic pruning in mice (93). Furthermore,
while not establishing a causal relationship between SZ risk
variants and synaptic pruning, Sellgren and colleagues reported
that the C4 risk variant of SZ is associated with an increased
capacity of blood-derived iMG to phagocytose synaptic material
in vitro (83). It would however be desirable to confirm these
exciting findings using human microglia that are generated with
an authentic, yolk-sac ontogeny, as already alluded to in the
preceding section. Such a model would also be useful to address a
number of other gaps in our knowledge mentioned throughout
this review. It is now possible to generate hiPSC-derived microglia
and cortical neurons in a functional co-culture system, within
which the microglia transcriptionally show resemblance to foetal
microglia (57). Yet to date, there are no published reports
describing a phenotype in hiPSC-derived microglia from
individuals with psychiatric disorders, including SZ, with the
primary focus having been to date on neurodegeneration (10).
Importantly however, the work of Sellgren and colleagues clearly
underscores the potential of novel human in vitromicroglia model
system in determining the effect of genetic risk factors for
psychiatric disorders on microglia phenotypes, which may also
be extended to environmental risk factors such as MIA including
how this interacts with genetic risk. We therefore consider this
potential in the next sections in more detail.
THE POTENTIAL AND LIMITATIONS OF
hiPSC-DERIVED MICROGLIA MODELS
FOR MODELLING PSYCHIATRIC
DISORDERS

As already stated, most research on microglia in the context
of psychiatric disorders, such as SZ utilizes human in vivo
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neuroimaging methods [e.g. radioligand targeting of
Translocator Protein (TSPO) expressed by microglia detected
by PET] or is heavily reliant on analysis of post-mortem tissue
from human brain banks and rodent in vivo and in vitromodels.
Concerns have arisen however over the specificity of TSPO for
imaging putative microgliosis in vivo, since this protein is also
expressed in astrocytes and endothelial cells (94). Furthermore,
the results of TSPO PET studies in SZ are by no means
unequivocal. Moreover, it is impossible to link changes in
TSPO radio-ligand binding in humans to microglial
phenotypes in vivo, hence we lack a detailed understanding of
how a change in TSPO binding as measured by PET relates to
microglia functional state and whether this is beneficial or
detrimental in SZ compared to healthy controls. Post-mortem
data, whilst informative, is subject to numerous confounds
including age-related changes in controls and prolonged
exposure to psychotropic medications. For example, chronic
antipsychotic drug exposure is reported to directly affect
microglia morphology and density in the rat brain in a time
and dose-dependent manner (95, 96). As yet however, we do not
understand if this reflects beneficial or detrimental changes, or
whether these findings translate to humans (97). Whilst rodent
models offer much more experimental scope and flexibility,
potential species-specific differences in microglia remains an
important, yet weakly addressed issue (9) (see also Table 1).
Hence, again, the case for a relevant human in vitro model to fill
this gap is reinforced.

A clear candidate to fill this gap are hiPSC-derived microglia,
which offer the potential for a patient-specific model system,
with the capacity to study the effects of genetic mutations
associated with SZ (and other psychiatric disorders). These
cells also have clinical applications including gene therapy,
drug testing, and autologous cell replacement therapy.
Derivation of neuronal cells from hiPSC has already been
demonstrated by many laboratories to successfully capture
differences in genotype and phenotype in cells derived from
individuals with psychiatric disorders, including SZ, that
originate during neurodevelopment (98–102). Yet non-
neuronal cells, including microglia remain understudied,
despite the aforementioned evidence for their potential
involvement in SZ (103).

To date, several protocols have been published in the literature
describing the generation of hiPSC-derived microglia-like or
macrophage-like cells from human tissues within the last 5
years (see Table 2). These protocols all share common
advantages in providing high yields of cells and overall, the
phenotype of the cells produced appears to be aligned with tissue
resident macrophages and brain-localized microglia, albeit
perhaps more closely aligned to foetal microglia, as evidenced
by transcriptional profiling (57, 63, 106). The majority of
published protocols supplement hiPSC with growth factors to
specify mesodermal fate, leading to development of primitive
haematopoietic progenitors, followed by maturation along
the myeloid lineage using specific growth factor cocktails (see
Table 2) (113). This has led to some contention in the field
however, based on debate regarding what constitutes “authentic”
Frontiers in Psychiatry | www.frontiersin.org 7
microglial ontogeny, as compared to that of peripheral
macrophages. As already mentioned in this review, microglia
ontogeny is thought to be via EMP that arise from the YS in a
Myb-independent, but PU.1 and RUNX.1 dependent manner
(see Figure 1A) (15, 18, 112, 114). Based on these data, recent
studies have presented refined protocols that recapitulate a YS-
microglia ontogeny, which may be suggested to reflect true
microglia-like cells (10, 57, 63). Nonetheless, the debate
continues as to which protocol may offer the most “optimal”
solution as well as how we should accurately define what is a
“true” microglial cell derived from hiPSC.

A second important question in the field, aside from debate
around microglia ontogeny, is what phenotype should, microglia
or microglia-like cells (MGLs) derived from hiPSC be considered
“ideal”? As with ontogeny, considerable debate exists in the
literature on this point. It may be considered that ultimately,
the answer to this question depends on the nature of the scientific
problem under investigation. For example, if one is studying the
role of infiltrating macrophages upon injury, utilizing cells with
brain-specific developmental ontogeny might not be necessary.
Nonetheless, rational suggestions for what might constitute a
“basic” work-up of hiPSC-derived MGLs in monoculture have
recently been proposed (113). First, the protocol should ideally
replicate an authentic, primitive YS ontogeny of human
microglia, rather than following the haematopoietic lineage.
Second, the cells generated should have a plausible microglia
phenotype. That is to say, they should have a ramified
morphology, express key surface markers (CD11b, CD45),
proteins (Iba1, Tmem119, P2ry12, PU.1), and microglia
signature genes (MERTK, PROS1, GPR34, TMEM119 and so
on), as well as any disease relevant genes of interest (57). The
cells should also perform key microglial functions (including
phagocytosis and secretion of cytokines in response to immune
stimulation) as well as respond to adenosine triphosphate
(ATP) stimulation via P2Y purinoceptor 12 (P2RY12) to
produce intracellular calcium transients (57, 63, 113). Third,
the protocol should be reproducible and reliable, within and
between laboratories. On this point, there has been a limited
effort to compare MGLs generated in any given protocol, to
those generated by another, for example at the level of
transcriptional profiling by RNA sequencing (115). A
systematic comparison of such data across all protocols
however, to the best of our knowledge, has yet to be
performed. Clear cross-lab collaboration, data sharing, protocol
comparisons, and communication are thus required in order to
identify the best methods and small molecules for the
differentiation of microglia from hiPSCs (10).

So far however, this only considers simple 2D monocultures
of MGLs. This does offer the advantage of studying microglia
phenotypes without interference from other cell types, as
exemplified by recent work in the context of neurodegenerative
diseases (63, 115). It may equally be argued however, that
important phenotypic information is also lost due to the
absence of interactions with other cell types including neurons
and astrocytes, which is also required for evaluation of synaptic
pruning (116). This has led to the development of more complex
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TABLE 2 | Overview of published hiPSC-derived microglia models. While all these protocols can be concluded to produce microglia-like phenotypes, co-culture models
that provide cues associated with a CNS environment are the most promising.

Article Overview of protocol Notable findings Notable disadvantages

Almeida
et al. (104)

Not described in publication First to produce hiPSC-
microglia

Transcriptomic profile not unlike
immortalized microglia cell lines (BV-
2)
Generated through neuronal rather
than myeloid pathway.

Muffat
et al. (105)

Embryoid bodies were generated and resuspended in neuroglial differentiation
media containing (supplement) with the addition of CSF-1/M-CSF and IL-34

First published study with
similar characteristics of fetal
primary human and mouse
microglia.

Appears to generate a mixed
population of cells and is limited to
monoculture experiments.

Abud
et al. (106)

Microglia differentiation media utilizes neuronal base media DMEM/F-12 + +N2+B27
with small molecules M-CSF, IL-34, and TGFb-1. An additional maturation media is
utilized consisting of CD200 and CX3CL1, which is notably secreted by neurons for
the final three days.

Successful transplantation of
already ramified microglia
within Alzheimer’s disease
model mice. Subsequent in
vivo evidence shows ability to
interact with neurotoxic
amyloid b

Requires an isolation step to begin
differentiation part of haematopoiesis
step, making it highly complex
compared to pure single molecule
methods. Not authentic YS ontogeny.

McQuade
et al. (107)

Proprietary composition of initial hematopoietic differentiation media (STEMdiff
hematopoietic kit) for an 11-day period followed by differentiation with IL-34, TGF-
b1, and M-CSF/CSF-1. Includes the additional maturation step with CX3CL1
(fractalkine) and CD200 to induce ramification.

Successfully ramify following
transplantation in mouse
brain.
Suggests IDE1 as a small
molecule able to replace
TGF-b in protocols utilizing
this for differentiation.

Describes itself as resembling
developmental microglia but does not
separate cited fetal vs adult datasets.
Not authentic YS ontogeny

Takata
et al. (108)

Generation of hematopoietic lineage macrophages terminally differentiated with
SCF, IL-3 and CSF-1/M-CSF. Cells then co-cultured with mouse iPSC-derived
neurons to further drive towards microglia phenotype

Described the requirement for
tissue-dependent cues in
order to make cells more
microglia-like.
Demonstrated potential of
modelling infiltrating
macrophages during
adulthood.

Primary characterization with mouse
iPSCs.
Not authentic YS ontogeny

Pandya
et al. (109)

iPSCs were differentiated on OP9 feeder layers with OP9 differentiation medium
(ODM) to myeloid progenitors. CD34+/CD43+ cells were sorted with MACS into
myeloid progenitor media with GM-CSF and subsequently passaged and plated in
astrocyte differentiation medium (ADM-IMDM base medium + GM-CSF, M-CSF and
IL-3) then CD11+ cells were further isolated. Additionally, some experiments used
CD39+ microglia sorted from a specific co-culture system with astrocytes.

Utilizes hematopoietic stem
cells paired with astrocytes to
obtain iPSC-derived
microglia. Mouse iPSC-
derived cells consistent with
primary neonatal microglia
profile.

Gene expression data primarily from
mouse iPSC-derived microglia. The
human microglia model requires an
isolation step. Majority of
characterization done in mouse
model and the system does not
utilize neuronal cells.
Not authentic YS ontogeny

Ormel
et al. (110)

This protocol was adapted from Lancaster and Knoblich (111), with the only
change made in media composition being increasing the concentration of Heparin
(0.1 ug/ml to 1 ug/ml)

Characterizes innate
development of microglia in
hiPSC-derived brain
organoids, which exhibit
some phagocytic function as
synaptic material is present
within the cells.

Replication of these findings is
currently lacking in the literature
regarding the spontaneous
differentiation of microglia in the
organoid.

Haenseler
et al. (10)

Utilizes IL-3 and M-CSF to drive myelopoiesis yielding a pure macrophage
precursor population. Microglia differentiation and ramification of these cells is
successfully induced using a neuronal base media (DMEM/F-12+N2 as a base
media) + small molecules IL-34 and GM-CSF compared to X-VIVO which is used in
the cultivation of monocytes and macrophages. The protocol utilizes X-VIVO and
M-CSF for the maturation to macrophages as comparison.

Once set up, fully matured
microglia can be generated at
2-week intervals for a 5-
month period.
Functional validation
completed in a co-culture
system.
Only protocol to demonstrate
a myeloblastosias proto-
oncogene transcription factor
(MYB)-independent YS origin
using a MYB knockout iPSC
line in previous work (112),

Requires a very sensitive 6–7-week
period before microglia precursors
can be collected.
No assays showing functional
integration into an animal model.
Frontiers in
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culture conditions, involving co-culture with hiPSC-derived
neurons as 2D or 3D organoids (110). Of these, the 2D co-
culture system carries some immediate advantages. It is simpler
to implement and less heterogeneous than organoid models,
particularly if the user combines MGLs with a homogenous
population of forebrain excitatory neurons, for example
generated through over-expression of Neurogenin-2 (Ngn2)
(117). Furthermore, recent data from independent laboratories
suggests that co-culture with neurons is necessary to produce
microglia that are closer to a homeostatic, brain-resident
phenotype (57, 105, 106, 108, 109). It would however
be interesting to examine how embryonic macrophage
progenitors, generated using the protocol of Haenseler and
colleagues (57) migrate into brain organoids using “seeding”
experiments (57). Nonetheless, the 2D neuron-microglia co-
culture model also provides the useful opportunity to conduct
match/mismatch experiments, whereby, the effect of patient-
derived microglia on healthy control neurons may be assessed
and vice versa for specific phenotypes. Sellgren and colleagues
have previously successfully employed this type of experimental
design for example, to demonstrate that factors intrinsic to
PBMC derived iMG influence synaptic pruning independently
of neurons (83). The 2D co-cultures are also amenable to high
speed, multi-photon live imaging, essential for capturing,
live, intricate interactions between microglia and neurons.
For example, using gene-edited reporter lines from both
healthy and SZ donors it would be interesting to examine any
phenotypic differences in both synaptic density and connectivity
within cultures, perhaps also using mix and mis-match
experiments. Taking a different tack, if we accept that
microglial heterogeneity is present in the human brain and
that it is functionally important, it is reasonable to suggest that
hiPSC microglia-neuron co-cultures could be used to investigate
how this may arise, but also if this could be relevant in disease
contexts. For example, one could imagine experiments to test
whether co-culturing microglia with different hiPSC-derived
neuronal cultures, such as cortical or ventral midbrain from
the same donor, might influence human microglia form and
function in a dish. This would offer the means to assess potential
local cues and signalling mechanisms by which different
neuronal populations might influence microglia function and
vice versa, for example through conditioned media experiments.
Such studies would also shed light on whether hiPSC in vitro
models can recapitulate the diversity observed in vivo in human
and rodent microglia, opening up further avenues for study,
particularly in the context of brain disorders and at the same
time, validating the model system further in comparison to
human primary microglia.

Another key characteristic of an “ideal” hiPSC-microglia
model is that it should be genetically modifiable. Advances in
genome editing have rendered it potentially straightforward to
assay genotype differences due to single gene mutations of
disease relevant genes, with appropriate isogenic control lines
as reported recently for Alzheimer’s disease (AD) relevant
genetic variants using MGL monocultures (63, 115). This has,
to the best of our knowledge yet to be extended to neuron-
Frontiers in Psychiatry | www.frontiersin.org 9
microglia co-culture models. In the context of modelling SZ and
other neurodevelopmental disorders there are however some
important considerations around the selection of the disease
relevant mutation to investigate, to which we shall return later.
For now however, there are some immediate genetic risk
candidates that could be investigated. For example, the
fractalkine receptor (CX3CR1), is of immediate interest based
on in vivo findings previously mentioned in this review relating
to synaptic pruning (78). Furthermore, rare single nucleotide
polymorphisms in CX3CR1 are also associated with increased
risk for SZ in humans (118). Importantly, the possibility that
disruptions in microglia-mediated synaptic pruning via CX3CR1
could contribute to neurodevelopmental and neuropsychiatric
disorders has yet to be tested in a human model system. Studies
of microglia-neuron interactions using hiPSC models comparing
individuals with genomic variation in Complement C4a would
also likely be very informative based on existing genetic risk data
for SZ and findings from iMGmodels (7, 83, 93). Here, mix/mis-
match experiments could be highly applicable, for example, one
could pair microglia with C4a or CX3CR1 risk variants with
control neurons, or vice versa and study the effects on both
synaptic density and neural connectivity (98). Studying the effect
of rare CNVs that convey high risk for SZ may also be
informative, for example in 22q11.2 deletion carriers.

As already alluded to, a key question in the context of
modelling SZ is the choice of gene to study, since this is a
highly polygenic disorder, with many common variants of small
effect. Put another way, the mechanisms by which common
risk variants of small effect interact to contribute to SZ
pathophysiology is unclear. Schrode and colleagues (119) offer
one solution to this problem, which is to use isogenic human
hiPSC lines differentiated to neurons, to study the impact of SZ-
associated common variants that are predicted to function as SZ
expression quantitative trait loci (eQTLs) (119). Could a similar
strategy however, be applied to microglia? Here one needs to
consider data suggesting that the expression of common risk
variants for SZ consistently maps onto pyramidal cells, medium
spiny neurons, and specific interneurons, but not consistently to
embryonic, progenitor, or glial cells, including microglia (120).
These findings are in stark contrast to common risk variants for
AD, which are enriched in microglia, among other cell types
(119). This is consistent with the majority of hiPSC studies in SZ
focussing to date on neuronal cells (98, 103, 119). However, this
perhaps downplays the importance of studying non-neuronal
cells using such models (103). For instance, it is conceivable that
a gene could play a role in the pathophysiology of SZ, yet not be
expressed in one of the “key” cell types implicated (120). Genetic
polymorphisms in Complement C4a are a clear case in point,
since there is clear evidence that C4a variants are involved in SZ
neurobiology, yet the expression of C4a is high in microglia, but
also in astrocytes and vascular leptomeningeal cells (93, 120). It
may therefore be premature to exclude microglia (and other non-
neuronal cells) from studies of how genetic risk variants for SZ
affect their form and function. From a different perspective, one
could argue that it would be relevant to examine how the
neuronal phenotype induced by SZ-associated common
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variants may influence microglia phenotype, again using mix-
match experiments. Such studies could be helpful to investigate if
microglial pathology in SZ is a primary, causative, or secondary,
responsive event (91). Another possible approach to circumvent
this issue would be to generate hiPSC from individuals with
either high or low polygenic risk score (PRS) for SZ and study
how this influences microglia and/or microglia-neuron
interactions in co-culture.

One other point worth noting here again is that SZ (and other
neurodevelopmental psychiatric disorders) are thought to arise
from a complex interaction between genetic and environmental
risk factors. Hence, for hiPSC microglia models to truly reflect this
model, studies of how environmental risk factors influence
microglia form and function, but also neuron-microglia
interactions are also essential. One such environmental risk factor
that may be immediately amenable to such studies is MIA a known
epidemiological risk factor for psychiatric disorders, including SZ,
which we have already discussed in this review (121). As
aforementioned, the hiPSC in vitro environment is easily
manipulated. As such, the effect of pro-and anti-inflammatory
cytokines elevated in response to MIA in vivo, or infectious
pathogens that may cross the maternal-foetal interface, can easily
be characterized to determine their influence on microglia
activation states and/or neuron-microglia interactions. Precedent
for such experiments comes from recent work examining how Zika
virus for example, influences neuronal and glial phenotypes using a
tri-culture hiPSC model system (116). Toll-like receptor 3 (TLR3)
activation or application of single cytokines such as IL-6 could for
example be used to phenocopy (to some extent) MIA in vitro using
a human model system. This could then be compared to data from
rodent models, for example the effect on microglia transcriptional
profile and chromatin state, which is known to be abnormal early in
development following MIA (122, 123). Such studies could be
extended to examine how the inflammatory exposure might
interact with specific genetic risk backgrounds, although this likely
would be a complex undertaking.

A final advantage of neuron-microglia stem cell model
systems is that drug screening may also easily be performed in
combination with high content imaging or other high-
throughput assays. As an indicative example, Sellgren et al.
(83) demonstrated a reduced engulfment of synaptic material
by iMG following treatment with the broad-spectrum anti-
inflammatory agent minocycline (83).

A further key limitation however, aside from the key
questions regarding microglia ontogeny and phenotype
generated between different hiPSC-microglia protocols, is
that human primary microglia display major differences in
morphology and gene expression when grown in culture,
including down-regulation of signature microglial genes (39).
Hence, a case may be made that in vitro microglia derived from
hiPSC may not accurately represent resting human primary
microglia. This only serves to confirm the importance of the
context in which the hiPSC microglia are maintained, for
example, with or without neurons in co-culture and so on
(113). In support of this view, transcriptomic studies provide
evidence to suggest that hiPSC-derived microglia when co-
Frontiers in Psychiatry | www.frontiersin.org 10
cultured with neurons align with foetal human primary
microglia and do express key microglia signature genes, even
in monocultures (57, 63, 105–109, 115). On the other hand,
Abud and colleagues (106) compared their hiPSC microglia to
both foetal and adult human primary microglia using
transcriptional profiling revealing more than 2,000 genes with
increased expression in hiPSC microglia as compared to foetal
microglia and >1,000 genes as compared to adult microglia (106,
113). Hence, clearly further work is required to determine how
comparable hiPSC-derived microglial cells are with either early
or late primary human microglia.

One possibility to circumvent this issue is the potential for
transplanting hiPSC-derived microglial precursors into adult
rodent brains to create chimeric model systems (124, 125).
Excitingly, this has also been recently demonstrated using
neonatal mice, as young as postnatal day 0 (38, 126).
Importantly, in both adult and neonatal rodent brains, the
hiPSC-derived microglial precursors integrated successfully and
acquired characteristic microglial morphologies and gene
expression signatures, closely resembling that of human primary
microglia (38, 124–126). Single cell RNA sequencing analysis
confirmed the presence of cellular transcriptional heterogeneity
in the implanted hiPSC-microglia (38, 126), consistent with
observations in human primary microglia (49). These chimeric
models provide powerful new tools for interrogating species-
specific differences between human and rodent microglia at
molecular, functional, and behavioral levels (see Table 1).
Moreover, since transplantation into the neonatal brain is
feasible, studies of the processes in which microglia are intimately
involved during neuronal development, such as neurogenesis,
synaptogenesis, and synaptic pruning is rendered possible for the
first time using human microglia in host brain environment (38).
Such models will therefore be useful to investigate how human and
mouse microglia function differently in shaping neuronal
development using combination of “omics” tools and in vivo 2-
photon imaging (38). Moreover, the chimeric model approach
enables in vivo studies of how microglia derived from individuals
with different psychiatric diagnosis differ from those of otherwise
healthy donors. For example, it would be fascinating to study how
microglia derived from individuals with SZ with high or low
polygenic risk profiles, shape neurodevelopment in vivo (124,
127). This should include, for example, in vivo imaging studies of
microglia-synapse interactions to complement the observations
made in vitro by Sellgren and colleagues (7, 83). As already
mentioned, the transplantation procedure means that the
microglia express a transcriptomic signature that is much closer
to in vivo human microglia, as compared to culture models, even
co-culture or organoid-models, although howmuch this influenced
by the age of the host remains to be characterized in depth (38, 124,
127). Collectively then, experiments done using patient derived
microglia and neurons in vitromay be complemented by parallel in
vivo studies using chimeric models, which will likely improve the
chances of results from such studies translating into effective
human treatments (126). There remain however important
limitations to this technique that still need to be overcome. For
example, whilst microglia can be generated from a variety of patient
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hiPSC lines in a straightforward manner (57), mice expressing
humanized forms of key microglia survival factors such as IL-34
and CSF-1 must be used in order for the xenograft transplantation
of hiPSC-derived microglia to be successful (124, 127). Other
limitations that remain to be addressed include concerns related
to the effect of the murine host cells on the functionality of the
xenotransplanted human microglia. For example, there is only
limited homology between several mouse and human proteins and
the downstream effects such differences may have on cell-to-cell
interactions and microglia activation/inhibition is unknown (127).
The response of the host microglia is also a potential confounding
factor (127) and reliable results may depend on depletion of these
cells using chemical ablation (128) or mice that lack endogenous
microglia (129). Finally, whilst such chimeric models could be used
to study the influence environmental risk factors for SZ using
human xenografted microglia, including MIA, it should be
remembered that the host mice are immune-deficient, which
may be a confounding factor in the response to a systemic
immune stimulus (127). Nonetheless, the potential for chimeric
models to facilitate our understanding of neuron-microglia
interactions in relation to SZ and other neurodevelopmental
disorders is clear.
CONCLUSIONS

At present, we are in the early stages of understanding of
microglia in both health and disease including potential
functional consequences of microglia heterogeneity. The use of
several models is essential to replicate and translate findings to
humans from rodent models. The hiPSC system offers a human-
specific model with the potential to study a diverse population of
microglia either as monocultures or in co-culture with defined
neuronal (and other non-neuronal) cells. Whilst there are many
advantages to this system that could be applied to studying
the role of microglia in psychiatric disorders with a
neurodevelopmental origin, there are also key challenges for the
field to overcome. Specifically, questions and debate remain over
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the precise differentiation protocol to use, particularly with regard
to the question of what constitutes “authentic” microglia
ontogeny. Furthermore, how the field should define what
constitutes an “ideal” microglial phenotype is also far from
clear. Concerns regarding the similarity between hiPSC
microglia and human primary microglia are also on going,
although chimeric models offer one exciting new direction to
address this question. In addition, progress is being made on
several fronts to address the other concerns, including rational
suggestions for phenotypic workup of hiPSC-derived microglia
(113). Data sharing between laboratories is also critical to address
potential questions around reliability and reproducibility.
Nevertheless, we judge that there is sufficient evidence to
suggest that hiPSC-derived microglia-neuron co-culture models
have great potential as a human in vitro model system with
which to test key hypotheses related to neuro-immune
interactions and the pathogenesis of psychiatric disorders with a
neurodevelopmental origin, including SZ.
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