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Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic
function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of
cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle
cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette
smoke extract (CSE). Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial
respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle
cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and
respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation
and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects
systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is
sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity.

1. Introduction

Tobacco use is the leading cause of preventable disease in the
United States [1], leading to pathologies of nearly every organ
in the body, including the oral cavity [2]. Unsurprisingly,
the airway and lungs carry much of the disease burden with
smoke exposure [3, 4]. However, smoke exposure similarly
affects systemic tissues, including the liver [5], pancreas [6],
and skeletalmuscle [7]. Each of these tissues is highly relevant
in maintaining healthy nutrient metabolism throughout the
body, including insulin sensitivity and mitochondrial func-
tion, which highlights the remarkable and deleterious impact
of smoke exposure on metabolic function.

Like cigarette smoke exposure, insulin resistance, which
affects roughly half of all American adults [8], has a hand in
the etiology of many chronic diseases, such as atherosclerosis
[9], diabetes [10], steatohepatitis [11], andmore. Interestingly,

cigarette smoke exposure is similarly linked with these
diseases [12–14]. Indeed, research over the past two decades
has established that smoke exposure is causally connected to
insulin resistance in multiple models [15–17].

In addition to its effects on insulin signaling, cigarette
smoke exposure also detrimentally disrupts mitochondrial
function. Gannon et al. [18] found significant decay of mito-
chondrial function within granulosa cells of mice exposed to
cigarette smoke. Additionally, we have observed a profound
loss of healthy cardiomyocyte mitochondrial function in cell
and animal models of cigarette smoke exposure [19].

Taken together, ample evidence suggests that cigarette
smoke exposure harmsmetabolic function by, at aminimum,
compromising insulin action and mitochondrial physiology.
Nevertheless, despite these known associations, the precise
process whereby airway smoke exposure links to systemic
tissues like skeletal muscle is vague. Although we have
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recently found that alveolar type II cells are relevant cellular
players in transmitting the airway smoke exposure insult
to distal skeletal muscle [7], no work has explored whether
the oral cavity itself is relevant in potentiating this effect in
muscle. Thus, the purpose of this study was to determine the
role of oral gingiva in mediating the deleterious metabolic
effects of cigarette smoke exposure on skeletal muscle and
metabolic function determined by muscle cell mitochondrial
respiration and insulin signaling.

2. Materials and Methods

2.1. Cell Culture. Oral gingival Ca9-22 cells and C2C12
murine myoblasts were maintained in DMEM plus 10%
fetal bovine serum (Invitrogen). For differentiation into
myotubes, C2C12 myoblasts were grown to confluency and
the mediumwas replaced with DMEM plus 10% horse serum
(Invitrogen). Myotubes were used for experiments on day 4
of differentiation.

Cigarette smoke extract (CSE) was generated as previ-
ously described with slight modifications [7]. Briefly, one
2RF4 research cigarette (University of Kentucky, Lexington,
KY) was continuously smoked by connecting the filtered
end of the cigarette to a vacuum pump, pulling the particles
into 5mL of DMEM/F12 and the resulting medium was
defined as 100% CSE and diluted with culture medium to
10%. The total particulate matter content of 2RF4 cigarettes
is 11.7mg/cigarette, tar is 9.7mg/cigarette, and nicotine is
0.85mg/cigarette.

For conditioned medium experiments, Ca9-22 cells were
incubated with CSE for 4 h, washed with warmed growth
medium, and then fed fresh medium for an additional 4 h.
Following this fresh medium incubation, the medium was
transferred to myotubes for 12 h, after which analyses were
performed with the myotubes. This system ensured that CSE
was not present in the myotube culture medium.

2.2. Protein Quantification and Quantitative Real-Time PCR.
Proteins were quantified as described previously [20]. The
following antibodies were used: Akt (9272) and pAkt-ser473
(9271).

2.3. Mitochondrial Respiration Protocol. Cells were prepared
for the mitochondrial respiration assay as described pre-
viously [20]. Briefly, high-resolution O

2
consumption was

determined at 37∘C in permeabilized cells using theOroboros
O
2
K Oxygraph (Innsbruck, Austria) with MiR05 respiration

buffer as described previously [20, 21]. Respiration was
determined by the following substrate-uncoupler-inhibitor-
titration protocol [22]: electron flow through complex I
was supported by glutamate + malate (10 and 2mM,
resp.) to determine oxygen consumption from proton leak
(GML). Following stabilization, ADP (2.5mM) was added to
determine oxidative phosphorylation capacity (GMP). Outer
mitochondrial membrane integrity was tested by adding
cytochrome c (10 𝜇M; not shown). Succinate was added
(GMSP) for complex I + II electron flow into the Q-junction.
To determine full electron transport system (ETS) capacity

over oxidative phosphorylation in cells, the chemical uncou-
pler carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
(FCCP) was added (0.05𝜇M, followed by 0.025 𝜇M steps
until maximal O

2
flux was reached). Lastly, residual oxygen

consumption was measured by adding antimycin A (2.5 𝜇M)
to block complex III action, effectively stopping any electron
flow. This value provides a rate of respiration that is used as
a baseline. Following respiration protocol (outlined below),
samples were removed from the chambers and used for
further analysis, including protein quantification.

2.4. Glycogen Assay. Glycogen was measured from cells indi-
cated according to themanufacturer’s instructions (BioVision
Inc.; Milpitas, CA).

2.5. H2O2 Emission. H
2
O
2
emission was measured using

an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit
(Molecular Probes; A22188). A reaction mixture containing
50 𝜇MAmplexRed and 0.1 U/mLHRP inKrebs-Ringer phos-
phate glucose (KRPG) buffer was prepared (145mM NaCl,
5.7mM sodium phosphate, 4.86mM KCl, 0.54mM CaCl

2
,

1.22mM MgSO
4
, 5.5mM glucose). The reaction mixture

was prewarmed in a 96-well plate with 100𝜇L of mixture
per well. 20𝜇L of cells suspended in KRPG buffer (∼1.5 ×
104) was added to each well. Samples were incubated for
1 h. Fluorescence was measured with a microplate reader
(Molecular Devices; Gemini EM).

2.6. ELISA for TNF𝛼. Culture medium was collected after
incubation with control or CSE-containing medium and
centrifuged at 2,500 rpm for 5min. TNF𝛼was determined by
sandwich ELISA according to themanufacturer’s instructions
(Abcam).

2.7. Statistics. Data are presented as the mean ± SEM. Data
were compared by ANOVA with Tukey’s post hoc analysis
(Graphpad Prism; La Jolla, CA). Significance was set at 𝑃 <
0.05.

3. Results

3.1. Cigarette Smoke Extract Alters Mitochondrial Function
in Gingival Culture Medium-Treated Myotubes. Our initial
observations were a profound mitochondrial disruption
in myotubes treated with CSE-conditioned gingival cell
medium. In particular, we noted reduced oxygen consump-
tion in themyotubes incubatedwith the conditionedmedium
from CSE-treated cells. While respiration rates were similar
between conditions in the leak state (GML) with glutamate
and malate (GM), the disparity became obvious with the
addition of ADP (GMP) and continued throughout the
addition of succinate (GMSP) and uncoupling with FCCP
(GMSE; Figure 1(a)). When comparing post hoc analysis of
mitochondrial respiration, we found that myotubes treated
with conditioned medium from CSE-treated gingival cells
experienced a significant reduction in the respiratory con-
trol ratio (Figure 1(b)), a rough indication of mitochondrial
health. However, the uncoupling control ratio (Figure 1(c))
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Figure 1: CSE-treated gingival cell conditioned medium alters myotube mitochondrial function. Myotubes were treated with conditioned
medium (12 h) from gingival cells that had previously been treated with normal medium (CON) or cigarette smoke extract (CSE). Tomeasure
mitochondrial respiration ((a); 𝑛 = 6), cells were treated with GML: glutamate (10mM) + malate (2mM); GMD: + ADP (2.5mM); GMSD: +
succinate (10mM); GMSF: + FCCP (0.05 𝜇M). Respiratory control ratio (RCR; (b)) and uncoupling control ratio (UCR; (c)) were determined
by the analysis indicated. In separate experiments, myotubes were incubated with MitoTracker and imaged for analysis of H

2
O
2
production

((d); 𝑛 = 5). ∗𝑃 < 0.05: CSE versus CON.

was similar. Lastly, H
2
O
2
production from CSE-conditioned

medium-treatedmyotubes was significantly higher than con-
trol (Figure 1(d)), indicating increased oxidative stress.

3.2. Myotubes Treated with Conditioned Medium from CSE-
Treated Gingival Cells Are Insulin Resistant. Similar to the
experiments above, myotubes were treated with fresh condi-
tioned medium from gingival cells following control (CON)
or CSE treatment. Following myotube incubation with con-
ditioned medium, myotubes were stimulated with insulin
(100 nM) for 10min. While CON cells experienced a robust
increase in Akt phosphorylation, an indication of healthy
insulin signaling, myotubes incubated with CSE-conditioned
medium had no insulin response (Figures 2(a) and 2(b)). As
further evidence, we determined myotube glycogen content,
which is usually increased with insulin. Indeed, CON cells
had significantly higher glycogen levels following insulin
stimulation. In contrast, CSE-conditioned medium from
gingival cells blocked this effect (Figure 2(c)).

3.3. Cigarette Smoke Extract Increases TNF𝛼 Secretion from
Gingival Cells. In an effort to elucidate a potential mecha-
nism for conveying the stress from gingiva to muscle, we

measured the level of TNF𝛼 secretion from gingival cells
treated with CSE compared with control.We found that prior
CSE treatment in gingival cells elicited a highly significant
increase in TNF𝛼 secretion into culture medium that was
subsequently used for myotube incubation (Figure 3).

4. Discussion

Cigarette smoke exposure bears a significant cardiometabolic
burden, increasing the risk of heart disease [19, 23], various
pulmonary disorders [24], and metabolic syndrome [7].
However, the mechanism whereby airway smoke exposure
elicits a systemic metabolic effect is poorly understood. We
have previously found that lung alveolar cells are capable of
transmitting an airway signal to systemic tissues like skeletal
muscle, altering muscle metabolic function [7]. The results
herein are the first to indicate that oral gingival cells may be
similarly relevant in the adverse metabolic effects of cigarette
smoke exposure.

Our observations of reduced insulin signaling in muscle
cells following incubation with conditioned medium from
CSE-treated gingival cells carry particular relevance with
numerous pathologies associated with smoking. While some
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Figure 2: CSE-treated gingival cell conditioned medium alters myotube insulin signaling. Following treatment with conditioned medium,
myotubes were stimulated with insulin (100 nM) for 10min prior to lysing. Western blot for pAkt and total Akt ((a); 𝑛 = 3) was performed
and quantified ((b); 𝑛 = 3). Glycogens levels were also measured in similarly treated cells ((c); 𝑛 = 6). ∗𝑃 < 0.05: CSE versus CON.
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Figure 3: CSE-treated gingival cells release TNF𝛼. Ca9-22 gingival
cells were treated with control (CON) or CSE-treated medium for
4 h, followed by 4 h of fresh medium. At the end of the 4 h, culture
medium was transferred and centrifuged for 5min at 2,500 rpm.
TNF𝛼was analyzed via ELISA (𝑛 = 4). ∗𝑃 < 0.05: CSE versus CON.

smoking-related disorders are unique to the lung, others are
systemic and intimately related to disrupted insulin signaling.
One of the primary manifestations of insulin resistance is the
metabolic syndrome [25–28]. Given the strong causal rela-
tionship with cigarette smoke exposure and insulin resistance

[7, 15, 17], it is not surprising to note that the relationship with
smoke exposure and metabolic syndrome is similarly robust
[13, 29].

Further, our findings of disrupted muscle mitochondrial
function highlight an additional pathological feature of
cigarette smoke exposure. Mitochondria serve an essential
role in almost all cells. Previous work has found that cigarette
smoke exposure elicits a deleterious effect on mitochondrial
physiology, including reduced oxygen use, increased reactive
oxygen species (ROS) formation, and compromised ATP
production [18, 19, 30]. Our evidence indicating increased
ROS formation in muscle cells treated with medium from
CSE-treated gingival cells provides compelling evidence of
the direct link between smoking and oxidative stress in
muscle.

Cigarette smoke is a powerful stimulator of inflammatory
pathways throughout the airway, though the effect proximally
is more modest than that seen distally or systemically [31–
33]. Nevertheless, we found a robust response of gingival
cells to produce and secrete TNF𝛼 in response to CSE. This
is relevant; among the myriad proinflammatory cytokines
that are increased with smoke exposure, TNF𝛼 is paramount
[34]. TNF𝛼 is also a likely mediating mechanism that can
explain the metabolic disruption in the myotubes incubated
with conditioned medium from CSE-treated gingival cells.
In addition to inflammation [35], cigarette smoke is known
to induce multiple metabolic defects, including mitochon-
drial dysfunction [36] and reduced insulin resistance [37].
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Nonetheless, future studies will further elucidate the role
of additional potential mediators, including oxidative stress
[3, 38, 39] or ceramides [7, 19, 36, 40, 41].

Ultimately, our findings add evidence to the well estab-
lished and myriad deleterious consequences of smoke
exposure, including pronounced systemic and whole-body
metabolic deficits. These efforts may potentially yield a ther-
apy to protect metabolic function in those who are habitually
exposed to cigarette smoke or who have trouble quitting.
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