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Abstract

For insects, choosing a favorable oviposition site is a type of parental care, as far as it

increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-

shaped oviposition response to substrate moisture. However, lab experiments with mole

crickets showed a linear oviposition response to substrate moisture. Studies with the house

cricket Acheta domesticus also showed a linear juvenile body growth response to water

availability, thus adult ovipositing females should respond positively to substrate moisture.

We used a field experiment to evaluate the relationship between oviposition preference and

substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition

responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter

cricket species in our study area, using a laboratory study. We offered cotton substrate for

oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water

absorption capacity. We used two complementary metrics to evaluate oviposition prefer-

ence: (i) presence or absence of eggs in each sampling unit as binary response variable,

and (ii) number of eggs oviposited per sampling unit as count response variable. To test for

non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects.

We found that both cricket oviposition probability and effort (i.e., number of eggs laid)

increased linearly with substrate moisture in the field experiment, and for U. telytokous in

the lab experiment. We discarded any non-linear responses. Our results demonstrate the

importance of substrate moisture as an ecological niche dimension for litter crickets. This

work bolsters knowledge of litter cricket life history association with moisture, and suggests

that litter crickets may be particularly threatened by changes in climate that favor habitat

drying.
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Introduction

The distribution of organisms in an environment is influenced simultaneously by top-down

and bottom-up control mechanisms [1, 2], synthesized in the concepts of the ecological niche.

Ecological niche theory predicts that competing organisms have an optimum range of abiotic

conditions, outside of which, results for fitness can be sub-optimal, hazardous or even lethal at

extreme values [3].

The impacts of bottom-up control on population dynamics in oviparous insects are

strongly influenced by maternal oviposition site choice, which can impact both maternal and

offspring survival [4–6]. Maternal survival can be enhanced by avoiding exposure time to

potential predators during breeding or egg laying events, by maximizing the number of eggs

laid rather than egg quality, and by avoiding harsh environments [4, 7]. To maximize offspring

survival, females should prefer to oviposit in sites where egg predation risk [8], desiccation,

and freezing [9, 10] is low, sites with temperatures within the optimal range for egg hatching of

that species [8], and sites with adequate resource availability for the developing eggs and

emerged juveniles [11]. These habitat features positively influence eclosion rates [12] and off-

spring survival probability [5, 13] and consequently, net reproductive rates [14].

Substrate moisture is among the most important bottom-up factors to oviposition site selec-

tion [15, 16], because it exerts effects on physiology, development, and metabolism [17, 18].

Water limitation, especially during embryonic and juvenile stages, can hinder chitin synthesis

and ecdysis in arthropods [19], reduce body size and mass [20–22], alter pigmentation [23],

and hinder locomotion [24, 25], and may affect species distributions and abundances [18].

Excess of water can be lethal, due to pathogen development [26, 27], freezing [28] or drowning

[27]. However, few studies have investigated effects of substrate moisture on insect oviposition

preference [13, 15, 16, 29], instead focusing on effects of temperature on reproductive patterns

[5, 8, 30, 31]. For litter crickets (Orthoptera: Grylloidea), factors known to affect oviposition

preference include chemical compounds in male sperm [32], neural patterns regulated by ovi-

positor sensilla [33], and temperature [34]. However, to our knowledge, litter cricket oviposi-

tion site choice and egg laying frequency in response to substrate moisture has not yet been

assessed. Once oviposition behavior is a crucial element of insect fitness, it is important to

understand where crickets choose to place their eggs.

Linking environment and genotype, phenotypic plasticity [35] and reaction norms [36, 37]

are proximal explanations for oviposition preference in response to environmental conditions,

such as substrate moisture. Phenotypic plasticity is defined as the capacity of a genotype to

produce different phenotypes as a result of environmental interactions [38], while reaction

norms describe the distribution of those phenotypes across varying environments [39]. In

either case, (ecological niche or plasticity/reaction norms), unimodal distribution of pheno-

types is predicted across a gradient of environmental moisture, with lower oviposition rates in

environmental extremes. We would then expect a non-linear, bell-shaped oviposition response

to a gradient of water absorption capacity substrate ranging from zero to 100%. However, a

laboratory study with mole crickets indicated a linear oviposition responses to substrate mois-

ture [29], and a study with house crickets (Acheta domesticus) indicated a linear growth

response to water availability [20], suggesting the possibility of a linear increase in oviposition

in response to substrate moisture.

Here we evaluated, through manipulative experiments in field and lab, the preference of

cricket oviposition in relation to substrate moisture, testing two alternative hypotheses: (i) ovi-

position preference shows a non-linear response to substrate moisture, following classical

niche theory/norm of reaction predictions; or (ii) oviposition increases linearly with substrate

moisture, following available evidence found for other cricket species.

Forest litter crickets prefer higher substrate moisture for oviposition
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Materials and methods

Study organisms

Crickets present high diversity in neotropical forests, where they occur from ground level to

the tree canopy, being particularly abundant in forest litter [40]. Crickets are oviparous,

hemimetabolous insects that oviposit in soil, litter and plant tissues [41]. Litter crickets are

recognized as omnivores, with a primarily herbivorous diet, supplemented with animal tis-

sue, fungi and fruits [41]. Juvenile instars generally share the same habitat and resources as

adults [42]. Most crickets hide during the day under fallen logs, rocks, leaf litter or in holes

in the ground. Singing species stridulate loudly on warm nights, especially after the rain

[43]. Litter crickets have a narrow tolerance range in terms of humidity [20], available

resources [44, 45], specific habitat requirements, and spatial heterogeneity [46]. This depen-

dency on multiple environmental factors may result in a strong response to forest regenera-

tion [47].

The lab experiment was done with adult females of Ubiquepuella telytokous Fernandes,

2015. This species is the most abundant litter cricket in the study area [45, 47] throughout the

year. Very little is known about U. telytokous biology, except its habit to walk very quickly on

the lower part of tree trunks.

Authorization for collection in the Iguaçu National Park was granted by Instituto Chico

Mendes de Conservação e Biodiversidade—ICMBio for NS (SISBIO 46964). These cricket

groups are not red listed as threatened nor under risk of extinction.

Field experiment

The field experiment was carried out in May 2012 in an old-growth Atlantic forest at the

Iguaçu National Park (25˚37’35”S—54˚27’9”W) in Foz do Iguaçu, Paraná, Brazil (Fig 1). The

vegetation of Iguaçu National Park is composed of tropical semi-deciduous forest and ombro-

philous mixed forest, and lies within the Atlantic rain-forest biome. The regional climate is cat-

egorized as humid subtropical mesothermal, with a mean annual temperature of 19˚C and

mean annual rainfall around 1600 mm [48].

Thirty parallel transects were established inside the forest, placed 500 m from the edge.

Each transect was 90 m in length, and the distance between transects was 30 m. Ten plastic

containers (10 x 10 x 3 cm) were placed 10 m apart along each transect (total sampling

effort = 300 containers; true replicate number = 30). Each transect included ten treatment lev-

els for substrate moisture, ranging from 0% moisture (i.e., dry) to 100% water absorption

capacity of the cotton substrate. This was achieved by filling each container with the maximum

capacity (29.2 g) of commercial hydrophilic cotton (Algodão Nathalya, Abreu e Lima, PE, Bra-

zil), and pouring from zero to 198 g of water on the cotton substrate, effectively increasing

water weight by 22 g per treatment level (see Fig 2a). The highest volume water addition corre-

sponded to 100% absorption capacity of the substrate.

Each container was buried in the ground with the opening at litter level. The order of place-

ment for moisture level treatments along transects was randomized. Containers remained in

the field for 48 h to allow litter cricket oviposition. Containers were then collected, packaged,

and transported to the lab, and the cotton substrate from each container was weighed to esti-

mate water evaporation in the field. Grylloidea eggs on cotton substrates were then identified

and counted using a stereo microscope. Eggs were identified based on specific morphological

characteristics, including having pale-yellow coloration and fusiform shape with rounded

edges [49, 50].

Forest litter crickets prefer higher substrate moisture for oviposition
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Laboratory experiment

The laboratory oviposition experiment took place in a climate-controlled room at 25˚C with

80% relative moisture and a 12:12 L:D photoperiod. Experiments were conducted using adults

of the parthenogenetic cricket U. telytokous, collected from Iguaçu National Park, where they

are highly abundant [45, 47]. U. telytokous were kept in a 150 x 50 x 50 cm terrarium with

abundant food and water. The terrarium was kept in a climate-controlled room for acclima-

tion two days prior to the beginning of oviposition trials.

The lab experiment was essentially a replication of the field experiment on a smaller scale,

with controlled environmental conditions and using U. telytokous as the model organism. We

established multiple-choice arenas using transparent, circular trays (30 cm radius x 15 cm

height), which corresponded to the transects in the field experiment (Fig 2b). We used trays

that were circular in shape to avoid effects of cricket preferences for corners (N. Szinwelski,

pers. obs.). Ten small containers (3 cm diameter x 1 cm height) were arranged radially inside

of each arena (Fig 2b), each filled with 0.7 g of commercial hydrophilic cotton. The treatments

consisted of ten moisture levels, ranging from 0% to 100% water absorption capacity of the

cotton substrate, which corresponded to an increase of 1.06 g water weight per treatment level

(max: 9.54 g of water added). As in the field experiment, the order of moisture level treatments

within the arena (transect) was randomly chosen.

In the center of each circular tray, we placed three grams of fish food flakes [41]. After

assembling the multiple-choice arenas, we chose the thirty adult females with the highest body

Fig 1. Iguaçu National Park, Foz do Iguaçu, PR, Brazil. The star represents the geographic coordinates of the experiment location.

https://doi.org/10.1371/journal.pone.0185800.g001
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masses, as heavier individuals tend to be more fertile [51] and are more likely to oviposit in a

laboratory setting. Trials were carried out using a single female to avoid competition and

potential harm by competing females. Females were placed in the center of trays, which were

covered tightly with plastic covering to prevent escape and minimize water evaporation.

After 48 h female crickets were sacrificed, fixed in ethanol [52] and deposited in the

Orthoptera Laboratory of the Museu Regional de Entomologia at the Universidade Federal de

Viçosa. We weighed the cotton substrate of each container to estimate water evaporation over

the experimental period (48 h), and counted eggs.

Data analysis

We used two complementary metrics to evaluate oviposition preference: (i) presence or

absence of eggs in each sampling unit as a binary response variable, and (ii) number of eggs

oviposited per sampling unit as a count response variable. The binary approach provides infor-

mation about female cricket preferences for moisture level for oviposition, while count data

indicate effort expended (i.e., the number of eggs laid). Mixed effects models were fit with

random intercept [53] in all statistical models, and true replicates (a transect with 10 contain-

ers for the field experiment; circular arena for the lab experiment) were treated as random

effects. This random effect was used to account for spatial autocorrelation of nearby containers

within the same transect in the field experiment, as well as for behavioral autocorrelation of

the same individual on each multiple-choice arena in the lab experiment. Although spatial

Fig 2. Experimental design for field (a) and lab (b) experiments. Arrangement of moisture levels in both experiments was randomized.

https://doi.org/10.1371/journal.pone.0185800.g002
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autocorrelation in the field is less likely than behavioral autocorrelation in the lab, we used the

same statistical approach for sake of symmetry.

To test whether oviposition preference followed a non-linear, bell-shaped response to sub-

strate moisture, we adjusted generalized additive mixed models (GAMMs) [54] with substrate

moisture as an integer smooth term varying from zero (no water added) to nine (100% water

absorption capacity of the cotton substrate). We adjusted alternative GAMMs varying the k

value (knots) from two to 10 to account for eventual bias in the adjusted results [54]. The

GAMMs were adjusted separately for each experiment and response variable (binomial and

number of oviposited eggs). If there was evidence of non-linearity, the fitted GAMM should

generate an estimate for degrees of freedom (e.d.f.) that is significantly higher than one [54]. If

non-linearity was excluded, then we adjusted generalized linear mixed models (GLMMs) with

the following explanatory terms: moisture (integer value from zero to nine, for the sake of sym-

metry between field and lab experiment), experiment site (two levels: field and lab), the experi-

ment x moisture interaction, and evaporation (= initial—final weight (g) of the substrate).

Again, random effect was the true replicate.

To analyze presence or absence of oviposition as response variable, we fitted binomial

GLMMs with the canonical logit link function and binomial residual distribution [55]. To ana-

lyze number or oviposited eggs as response variable we fitted Poisson GLMMs with the canon-

ical log link function and Poisson residual distribution. If overdispersion was detected, we

fitted negative binomial GLMMs. The adjusted models were subjected to residual analysis to

evaluate model suitability. All statistical analyses were performed in R version 3.4.0 [56]. Raw

data are provided in the supporting information (S1 Table).

Results

The field oviposition experiment yielded 229 Grylloidea eggs in total, while the lab experiment

yielded a total of 41 (Table 1). The number of eggs per treatment (substrate) varied from zero

to four (field) or zero to seven (laboratory). In the field experiment, 179 substrate units (60%)

had no eggs, 51 units had one single egg, 40 units had two eggs, 22 units had three eggs, and

eight units had four eggs. In the lab experiment, only eight females (30%) oviposited in more

than one substrate unit; there were 267 units (89%) with no eggs, 30 units with a single egg,

two units with two eggs, and one substrate unit with seven eggs.

Table 1. Numbers of eggs oviposited on cotton substrate (values summed per moisture level) after 48

hours in field and lab experiments.

Moisture levels Egg number

Field Lab

0 3 0

1 3 1

2 9 0

3 6 0

4 12 5

5 29 1

6 44 1

7 44 5

8 39 17

9 40 11

Total 229 41

https://doi.org/10.1371/journal.pone.0185800.t001

Forest litter crickets prefer higher substrate moisture for oviposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0185800 October 4, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0185800.t001
https://doi.org/10.1371/journal.pone.0185800


Overall, fewer eggs were deposited in lower moisture substrates (Table 1). In the field exper-

iment, the three highest moisture levels accumulated 123 eggs (54%). The next three highest

moisture levels three accumulated 85 eggs (37%), and the four substrates with lowest moisture

levels accumulated 21 eggs (9%). In the lab experiment, the three highest moisture levels accu-

mulated 33 eggs (80%), while the next highest three moisture levels accumulated seven eggs

(17%); the four substrates with lowest moisture levels contained only a single egg (2%), which

was deposited on the substrate treatment with the second-lowest moisture level.

In the field experiment, 90.83% of the eggs were oviposited on substrate with moisture

higher than 44%; in the lab experiment that figure rose to 97.56%. We found no evidence for

non-linear effects of moisture on oviposition probability, nor on number of oviposited eggs

(e.d.f. varied between 0.999 and 1.001) [57] for field or lab data (P> 0.05). No overdispersion

was detected in the binomial models. There were no significant interactions between experi-

ment site (field or lab) and moisture level, or for site and oviposition probability (χ2 = 0.43,

P = 0.5) or number of eggs oviposited (χ2 = 1.55, P = 0.2). Evaporation in the field experiment

over the 48 h oviposition period ranged from 0 to 16%. There was no evaporation in the lab.

Evaporation reduced the number of oviposited eggs in the field (χ2 = 104.91, P< 0.001). The

probability of oviposition was significantly higher in the field experiment than in the lab

(χ2 = 51.20, P< 0.001, Fig 3a).

For both experiments, the probability of oviposition increased linearly with moisture level

(χ2 = 83.76, P< 0.001, Fig 3a). Numbers of eggs were significantly lower in the laboratory

experiments (χ2 = 99.38, P < 0.001, Fig 3b). Egg numbers increased linearly with moisture

level in the field experiment (χ2 = 77.65, P< 0.001, Fig 3b). Evaporation reduced the number

Fig 3. Cricket oviposition responses to substrate moisture level. (a) represents oviposition probability, a binary response variable with

a value of either 0 (if oviposition did not occur in any replicate containers for that moisture level) or 1 (if oviposition occurred at least one of

the container replicates in that level). Circles represent the field experiment, while triangles represent the lab experiment. The size of circles

and triangles represents the number of observations (= the number of replicates in which the binary response occurred) for the same

moisture level. Curves represent the minimal adequate model of the adjusted logistic regression (solid line for field experiment, dashed line

for lab experiment; n = 30 for each experiment). (b) Numbers of eggs deposited per container by moisture level in field (circles) and lab (filled

triangles) experiments. Curves represent the minimal adequate model of the adjusted regression (GLMM with negative binomial distribution)

for field (solid line) and lab (dashed line) experiments (n = 30 for each experiment). The equations represent the estimated parameters for

each model.

https://doi.org/10.1371/journal.pone.0185800.g003
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of eggs oviposited in the field (χ2 = 104.91, P < 0.001), however, evaporation did not alter the

probability of oviposition (χ2 = 1.55, P = 0.2). The preference for moist substrates was more

accentuated in the lab than in the field, as depicted by the higher estimates for the slopes for

both oviposition probability and number of oviposited eggs (Fig 3).

Discussion

Although we did not identify eggs to species level in the field experiment, we positively identi-

fied all eggs as belonging to Grylloidea, and data from other published studies in the same site

have demonstrated that U. telytokous is by far the most abundant species in the area (cited as

Ectecous sp1 in the original paper [47]). In this study, 650 U. telytokous were captured (55% of

all sampled crickets in that study), while for the second and third most abundant species (Phor-
emia sp1 and Lerneca sp1), only 105 (9%) and 104 (9%) individuals were captured, respectively

[47]. In another study, 563 collected individuals (50% of all sampled crickets in that study)

were U. telytokous (again cited as Ectecous sp1 in the original paper [45]), in contrast to 215

Phoremia zefai Pereira, Sperber & Lhano, 2011 (19%) and 130 Aracamby sp. (12%). Hence,

although the eggs oviposited in the field were not identified to species level, this does not

weaken our conclusions on forest litter cricket oviposition preferences in general.

Litter cricket oviposition was positively and linearly correlated to substrate moisture, indi-

cating that moisture is an important niche dimension for these organisms. The observed linear

response showed that, within the range of moisture levels of this study, there are no negative

effects of extreme high values of substrate moisture. However, if our moisture range included

standing water, i.e., water exceeding substrate capacity, it might have shown an unimodal

response. In other words, the highest levels of moisture in this experiment may have been rec-

ognized as only intermediate moisture by the animals. In the field, it is common to find

flooded regions, were water level exceeds substrate capacity. In such sites, we expect that ovi-

position is precluded.

Substrate moisture has been shown to influence fitness in various insect groups. High sub-

strate moisture prolongs post-hatching survival in cicadas, with a greater proportion of juve-

niles reaching the adult phase [5]. Water availability in the oviposition substrate may also

affect body size (e.g., as in house crickets [20]), and is likely correlated with survival probability

[58]. Body size and mass in crickets are positively correlated with fecundity and desiccation

resistance [23, 51, 59]. Further, female crickets prefer larger males [60, 61], probably because

they are better competitors and tend to occupy territories with plentiful resources and favor-

able environmental conditions, such as grasshoppers [62].

For stridulating species, high moisture content may also facilitate higher fitness in males,

as it allows males to produce louder calls. Moisture has been shown to directly affect stridu-

lation rate in mole crickets [63]: wet soil is less porous and absorbs less sound, thus songs

are louder and reach farther distances; these calls tend to attract more females [29]. In

addition to enhancement of song and other fitness characteristics in males [64–67], females

may also interpret higher male song intensity as a signal of availability of moist oviposition

substrate [29]. Females can also detect substrate moisture through hygroreceptors on the

ovipositor, antennae, and general body surface [68]. Thus, females use various mechanisms

to evaluate substrate moisture, and can choose to oviposit eggs in the most suitable

locations.

Low moisture level may also induce diapause, which is the interruption of embryogenesis

due to unfavorable environmental periods [69, 70]. In katydids, moisture level is one of the fac-

tors that induces (during unfavorable conditions) and ends (when conditions become favor-

able) the physiological process of diapause [71]. Diapause is an important evolutionary
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strategy that allows populations to persist in partially unfavorable environments [31], increas-

ing species geographic distribution [72].

Despite the preference for moist substrates, females also chose to oviposit on dryer sub-

strates. Ovipositing in less moist substrates was higher in the field than in the lab, which can be

due to the following mechanisms: (i) in the field, females could compare the experimental sub-

strate with the surrounding forest soil, so that, whenever the surrounding soil was less moist

than the experimental substrate, the female preferred the experimental substrate, or (ii) for a

female to choose the moistest substrate in the field, it had to walk (or jump) further away

(between 10 and 80 m), leading some females to oviposit before reaching the moistest

substrates.

A further explanation would be that ovipositing in less moist substrates could potentially

represent bet-hedging behavior, in which sites with unpredictable or variable environmental

conditions favor genotypes that spread the risk of reproductive failure by utilizing a wider

range of environmental conditions [73, 74]. Organisms lacking specific reproductive strategies

have higher fitness in this case, due to an increase in the probability of offspring development

in a changing environment [75]. Species that exhibit bet-hedging behavior have decreased fit-

ness in the short-term, however, over a longer time period fitness is increased because popula-

tions have a lower probability of extinction due to environmental variability [76]. Female

crickets that oviposit in both moist and dry substrates may thus have higher reproductive suc-

cess in environments with highly variable moisture compared to females that restrict oviposi-

tion to substrates with similar moisture levels [77]. This may explain the presence of eggs in

nearly all moisture levels in our experiments. An alternative explanation is that oviposition site

selection may be influenced by a multifactorial decision making. For example, Gryllus texensis
females trade-off preferences for oviposition substrate temperature with predation risk [11]. In

our experiment, this trade-off may represent an exchange of suitable moisture for sites with

lower perceived predation risk. This is because although moist substrates are highly suitable

for cricket reproduction, they may also attract competitors and predators, leading some

females to choose less suitable (i.e., dryer) sites for oviposition.

Crickets oviposit at greater soil depths in dry substrates to prevent desiccation [77], repre-

senting an additional bet-hedging mechanism. When substrate moisture is high, females tend

to lay eggs in the surface layers because the risk of desiccation is low and development is faster

due to high water absorption by eggs during embryogenesis (up to 100% of the egg’s weight)

[41, 78, 79]. Additionally, laying eggs in shallower depths when the soil substrate has high

moisture, could indicate a preference for intermediate moisture levels, avoiding excessive

moisture in lower substrate layers, and eventual drowning of the eggs. Further, eggs laid at

lower depths experience lower mortality, as newly hatched crickets can easily dig out of shal-

low substrate. Juveniles that hatch in dryer and deeper soils have more difficulty digging out of

the soil, and survival rates are consequently reduced [5].

Although our results showed that litter crickets oviposit into substrates with a wide range of

moistures, there was a clear preference for moister substrates, as evidenced by the linear rela-

tionship between oviposition and substrate moisture. Moisture inside the forest is variable;

while certain areas can maintain moisture independent of precipitation [80] either by water

retention or evaporation delay [81, 82], moisture levels at other sites may depend on rainfall.

In the field experiment, females preferentially oviposited in containers with higher moisture

levels, suggesting active search for substrates with higher moisture. The negative effect of evap-

oration on the number of oviposited eggs shows that along the oviposition period in the field

experiment (48 h), females re-evaluated the substrate moisture each time they oviposited,

because evaporation is a cumulative process that increases over exposure time. This result is

counterintuitive considering the absence of effects of evaporation on oviposition probability.
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To explain this, we suggest that there may be two behavioral decision making phases. The first

phase involves choosing the sites in which to oviposit, leading to the linear response of oviposi-

tion probability to moisture level (e.g., as seen in the field experiment). The second phase

involves females revisiting previous oviposition sites for evaluation and, if substrate conditions

are suitable, deposit additional eggs. The substrates with reduced moisture level due to evapo-

ration would then be rejected, leading to fewer overall numbers of eggs. This may explain the

observed negative effect of evaporation on numbers of oviposited eggs, but not on the proba-

bility of oviposition.

In the lab, female Endecous chape Souza-Dias & de Mello, 2017, Eidmanacris meridionalis
Desutter-Grandcolas, 1995 and Laranda meridionalis Desutter-Grandcolas, 1994 were found

to oviposit immediately after mating, then either mate again or feed, after which they return to

the same substrate container for further oviposition (M. Fianco & N. Szinwelski, in prepara-

tion). For these species, the same substrate container was used by various females in subse-

quent oviposition events. The low number of oviposited eggs in our field and lab experiments

is not consistent with the reported average number of eggs laid by litter crickets in the natural

environment, which is estimated to vary from 60 to 1000 eggs per night [41]. Our study may

thus underestimate the oviposition potential of litter crickets in the study sites. However,

despite the lower numbers of eggs oviposited compared to that reported in other studies, we

nonetheless found a strong preference for substrates with higher moisture.

There are several factors that may explain the low number of eggs in our study. First, cotton

is not a common substrate for these insects, and would likely be ignored in the presence of

other common oviposition substrates such as soil, twigs, and leaves [9, 41]. It is thought that

female crickets can detect substrate texture prior to oviposition by use of sensory receptors in

the palps and ovipositor [68]. When female do not find a suitable substrate, they may delay

oviposition or reabsorb the eggs to avoid unnecessary energy expenditure [83] or predation

[4], thereby maximizing their own survival. However, cotton is widely used in lab rearing of

crickets and in scientific experiments [8, 11, 84] and, given the absence of alternative sub-

strates, our study showed a clear pattern of female cricket preference for higher moisture sub-

strates, a result in agreement with the common consensus that forest litter crickets are

hydrophilic [85]. Parasitism might be another mechanism leading to low number of eggs.

Parasitized female crickets have a reduced lifespan [86] and consequently lower egg laying fre-

quency, in addition to lower egg numbers due to nutritional depletion or endocrine manipula-

tion [87]. Parasitism was likely not a factor for females used in the lab experiment, as they were

visually examined and determined to be healthy and injury-free, and during this time we

detected no external parasites (acari or fungi). Further, females from the lab experiment were

stored in ethanol solution after conclusion of the experimental period. Females infected with

endoparasitic nematodes would likely have been detectable, as we expect these parasites to exit

the host body immediately after immersion into ethanol (F. Farias-Martins, pers. obs. [88]),

where they would have been detected. However, we do not know the endoparasite infection

status of our field females, as they were not dissected. Finally, the low numbers of eggs in our

study may be partially attributed to seasonality. In another tropical region of New Zealand,

Blank and collaborators [89] showed that female Teleogryllus commodus lay a greater number

of eggs (60–1000 eggs per day) from March to April, which is the favorable season due to hav-

ing higher temperatures. In the following months, the authors observed a strong decline in

oviposition (resulting in 0–9 eggs per day). Thus, there is strong seasonality to oviposition

behavior in this species and region. Our crickets were collected in May, shortly before the

beginning of the colder season (June to August are the coldest months in our study area [90]).

Thus, the low number of eggs found in our experiment may reflect a decline in overall oviposi-

tion effort in association with the end of the more favorable season.
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Conclusion

Our study showed that ovipositing forest litter crickets prefer higher moisture substrates.

Although the experiment was performed with crickets, we expect that high moisture substrate

availability is a limiting factor for oviposition of several forest insect groups, particularly litter

arthropods. Overall reduction in the availability of moist substrate, as is expected with global

climate change, may reduce the abundance and geographical distribution of these organisms,

thereby threatening populations due to decline in recruitment. Our results also indicate sub-

strate moisture as an important dimension of the cricket ecological niche, and suggest that

these organisms are particularly vulnerable to changes in climate leading to habitat drying.
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