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Abstract

Aims Myeloid differentiation protein 1 (MD1) is expressed in the mammalian heart and exerts an anti-arrhythmic effect.
Atrial fibrillation (AF) is closely related to heart failure with preserved ejection fraction (HFpEF). The potential impact of
MD1 on AF vulnerability in an HFpEF model is not clear.
Methods and results MD1 knock-out and wild-type (WT) mice were subjected to uninephrectomy and continuous saline or
D-aldosterone infusion and given 1% sodium chloride drinking water for 4 weeks. Echocardiographic and haemodynamic mea-
surements, electrophysiological studies, Masson staining, and molecular analysis were performed. Aldosterone-infused WT
mice develop HFpEF with left ventricular hypertrophy, moderate hypertension, pulmonary congestion, and diastolic dysfunc-
tion. Aldosterone infusion increased the vulnerability of WT mice to AF, as shown by a prolonged interatrial conduction time,
shortened effective refractory period, and higher incidence of AF. In addition, aldosterone infusion increased myocardial fibro-
sis and inflammation, decreased sarcoplasmic reticulum Ca2+-ATPase 2a protein expression and the phosphorylation of phos-
pholamban at Thr17, and increased sodium/calcium exchanger 1 protein expression and the phosphorylation of ryanodine
receptor 2 in WT mice. All of the above adverse effects of aldosterone infusion were further exacerbated in MD1 knock-out
mice compare with WT mice. Mechanistically, MD1 deletion increased the activation of the toll-like receptor 4/calmodulin-
dependent protein kinase II signalling pathway in in vivo and in vitro experiments.
Conclusions MD1 deficiency increases the vulnerability of HFpEF mice to AF. This is mainly caused by aggravated maladap-
tive left atrial fibrosis and inflammation and worsened dysregulation of calcium handling, which is induced by the enhanced
activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway.
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Introduction

Heart failure (HF) with presented ejection fraction (HFpEF)
has a high prevalence and poor prognosis.1,2 Clinical trials
and registries have shown that atrial fibrillation (AF) is highly
prevalent in HFpEF, and patients with HFpEF are at increased
risk of developing AF.3–5 Independent of several common risk
factors, such as diabetes, obstructive sleep apnoea, smoking,
hypertension, and obesity, there appear to be several

mechanisms that drive HFpEF patients to develop AF.6 It is vi-
tal to note that much of the current understanding of the
mechanisms behind AF in patients with HFpEF has been de-
rived from experiment models of HF with reduced EF (HFrEF).
Unlike HFrEF, in which multiple therapeutic agents have been
shown to improve survival, to date, all drugs and devices that
have been tested rigorously have failed in patients with
HFpEF.7,8 Therefore, there is currently a need for experimen-
tal animal models of HFpEF population and identify valid
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therapeutic targets for improving the prognosis of HFpEF and
preventing the occurrence of AF.

Previous experimental models of HF have also demon-
strated that calcium handling disorder plays a critical role in
arrhythmogenic mechanisms for the initiation of AF. The dys-
regulation of calcium handling in the failing heart can in-
crease the ectopic triggered activity of atrial myocytes.9,10

Calmodulin-dependent protein kinase II (CaMKII), a pro-
arrhythmic signalling molecule, is critically involved in calcium
handling disorder, in which altered sarcoplasmic reticulum
(SR) Ca2+ handling proteins contribute to enhanced SR Ca2+

leak and AF development.11–13 In addition, a recent study
found that the toll-like receptor (TLR4)/CaMKII signalling
pathway can affect calcium homoeostasis in atrial myocytes
and increase the susceptibility of high fat-diet (HFD)-fed mice
to AF.14

Myeloid differentiation protein 1 (MD1) is a type of se-
creted glycoprotein that can form a complex with radiopro-
tective protein 105 (RP105) called MD1-RP105.15 The MD1-
RP105 complex can directly interact with the MD2-TLR4 com-
plex by lateral binding, acting as a negative physiological reg-
ulator of the TLR4 signalling pathway.16 Our previous study
showed that MD1 is widely expressed in the heart, and
MD1 deletion leads to a more pronounced activation of the
TLR4/CaMKII signalling pathway, which may further signifi-
cantly influence the expression levels of Ca2+ handling pro-
teins, increasing the vulnerability of HF mice to ventricular
arrhythmia.17 Therefore, we hypothesized that MD1 deletion
can alter calcium homoeostasis in atrial myocytes and in-
crease susceptibility to AF in HFpEF by enhancing the activa-
tion of TLR4/CaMKII signalling.

To further investigate this possibility, we used loss-of-
function approaches and observed that MD1 deletion can ag-
gravate maladaptive left atrial (LA) fibrosis and inflammation,
deteriorate dysregulation of calcium handling, and increase
the vulnerability of HFpEF mice to AF. Mechanistically, MD1
deletion markedly enhances the activation of the
TLR4/CaMKII signalling pathway.

Methods

An expanded Methods section describing all procedures and
protocols can be found in the Supporting Information.

Myeloid differentiation protein 1 knock-out mice

Myeloid differentiation protein 1 knock-out (MD1-KO) mice
were generated as described in previous studies.17,18 In brief,
MD1-KO mice were purchased from the Japan RIKEN
BioResource Centre Mouse (BRC) (B6.129P2-MD-
1 < tm1Kmiy>). The deletion of MD1 was confirmed in the
obtained MD1-KO mice by western blot analysis of LA tissues.

Experimental Model

The use of all experimental mice were approved by the Ani-
mal Care and Use Committee of Renmin Hospital of Wuhan
University and was consistent with the Guide for the Care
and Use of Laboratory Animals published by the US National
Institutes of Health (the eighth edition, National Resource
Center 2011). The HFpEF mice underwent uninephrectomy
and aldosterone infusion as previously described.19,20 Briefly,
8-week-old MD1-KO mice and wild-type (WT) littermates
were anaesthetized with pentobarbital sodium (50 mg/kg, in-
traperitoneally). They were subjected to uninephrectomy and
intraperitoneal implantation of osmotic mini-pumps (Durect
Corp, Cupertino, CA) that delivered a continuous infusion of
either saline or 0.15-μg/h aldosterone (IA0700, Solarbio Co.,
China) for 4 weeks, accompanied by 1% sodium chloride
(NaCl) intake. The four groups studied were as follows: (i)
the WT-Sal group (n = 20), WT mice infused with saline; (ii)
the KO-Sal group (n = 21), MD1-KO mice infused with saline;
(iii) the WT-Aldo group (n = 20), WT mice infused with aldo-
sterone; and (iv) the KO-Aldo group (n = 21), MD1-KO mice
infused with aldosterone.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5.0
(GraphPad, San Diego, CA). Continuous variables are shown
as the means ± standard error of the mean. Statistical com-
parisons among multiple groups were performed with one-
way analysis of variance followed by Tukey’s post hoc test
and AF incidence across groups was compared using Fisher
exact test. A value of P < 0.05 was considered statistically
significant.

Results

The characteristics of the heart failure with
preserved ejection fraction mouse model

None of the mice died during the 4 weeks of experiment. The
characteristics of WT and KO mice 4 weeks after saline or al-
dosterone infusion are summarized in Tables 1 and 2. First, al-
dosterone infusion significantly increased the heart
weight/body weight (BW) of WT-Aldo and KO-Aldo mice.
There were no significant differences in cardiac hypertrophy
between WT-Sham and KO-Sham mice. However, cardiac hy-
pertrophy in KO-Aldo mice was significantly higher than that
in WT-Aldo mice. There was no difference in LA chamber size
or left ventricular ejection fraction (LVEF) between WT and
KO mice regardless of saline or aldosterone infusion. Second,
haemodynamics revealed that the end-systolic pressure and
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end-diastolic pressure (EDP) were significantly increased after
4 weeks of aldosterone infusion in WT-Aldo (125.08 ± 1.56
and 7.91 ± 0.4; Table 2) and KO-Aldo mice (127.1 ± 2.32
and 10.4 ± 0.56; Table 2) compared with their respective
saline-infused controls. Third, aldosterone infusion signifi-
cantly increased the lung weight (LW)/BW and LW/tibial
length (TL), the indicator of pulmonary congestion, of WT-
Aldo mice vs. WT-Sham mice (P < 0.05) and KO-Aldo mice
vs. KO-Sham mice (P < 0.05; Table 1). There were no differ-
ences in the LW/BW and LW/TL between saline-infused WT
and KO mice. However, the LW/TL of KO-Aldo mice were
markedly higher than that of WT-Aldo mice, indicating more
pulmonary congestion (P < 0.05; Table 1). In addition,
haemodynamics revealed diastolic dysfunction with increased

LVEDP (dp/dt min) and LV pressure isovolumetric relaxation
constant (tau) in Aldo mice vs. sham mice at 4 weeks (Table
2). Finally, serum aldosterone levels in WT-Aldo and KO-Aldo
mice were markedly elevated compared with those in the
saline-infused mice. There was no difference in serum aldo-
sterone levels between WT and KO mice regardless of saline
or aldosterone infusion.

Therefore, all of the above data showed that mice sub-
jected to uninephrectomy and aldosterone infusion for
4 weeks developed HFpEF with LV hypertrophy, moderate
hypertension, pulmonary congestion, and diastolic dysfunc-
tion while maintaining a normal/preserved LVEF, and the
above adverse effects were further exacerbated by MD1
deletion.

Table 1 Characteristics of wild-type or myeloid differentiation protein 1 knock-out mice 4 Weeks after saline/aldosterone infusion

Groups WT-Saline (n = 8) KO-Saline (n = 8) WT-Aldo (n = 8) KO-Aldo (n = 8)

BW (g) 21.56 ± 0.35 22.28 ± 0.31 22.81 ± 0.34 23.59 ± 0.44*

HW/BW (mg/g) 4.56 ± 0.06 4.48 ± 0.07 5.82 ± 0.09* 6.82 ± 0.16*,**

LW/BW (mg/g) 4.98 ± 0.06 5.08 ± 0.1 6.96 ± 0.17* 7.77 ± 0.21*,**

LW/TL (mg/g) 5.85 ± 0.07 6.09 ± 0.1 8.5 ± 0.12* 9.94 ± 0.15*,**

LVEDd (mm) 3.9 ± 0.08 3.83 ± 0.09 3.85 ± 0.1 3.96 ± 0.07
LVESd (mm) 2.18 ± 0.06 2.11 ± 0.07 2.15 ± 0.07 2.35 ± 0.13
LVEF (%) 81.63 ± 0.8 82.12 ± 0.95 80.13 ± 1.91 77.13 ± 2.95
LVFS (%) 44.38 ± 0.01 44.63 ± 0.01 43.88 ± 0.02 40.63 ± 0.03
LAD (mm) 1.55 ± 0.04 1.59 ± 0.04 1.56 ± 0.1 1.59 ± 0.07
Serum aldosterone levels (pg/mL) 235.3 ± 19.09 238.79 ± 15.13 438.47 ± 12.85* 458.48 ± 10.8*

Aldo, Aldosterone; BW, body weight; HW, heart weight; KO, knock-out; LAD, left atrial diameter; LVEDd, left ventricle end-diastolic di-
mension; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; LVESd, left ventricular end-systolic diameter;
LW, lung weight; TL, tibial length.
Data are expressed as Mean ± standard error of the mean.
*P < 0.05 vs. WT-Sal group.
**P < 0.05 vs. WT-Aldo group.

Table 2 Invasive haemodynamic measurements

Parameters WT-Sham (n = 6) KO-Sham (n = 6) WT-Aldo (n = 6) KO-Aldo (n = 6)

Pressure volume measurements
HR (bpm) 479.91 ± 16.79 487.18 ± 22.53 468 ± 19.17 451.15 ± 11.3
LVESP (mmHg) 114.38 ± 2.28 113.18 ± 2.09 125.08 ± 1.56* 127.1 ± 2.32*

LVEDP (mmHg) 6.16 ± 0.48 6.12 ± 0.69 7.91 ± 0.4* 10.4 ± 0.56*,**

LVESV (uL) 28.13 ± 0.62 27.82 ± 0.72 25.26 ± 0.83* 25.22 ± 0.76*

LVEDV (uL) 45.02 ± 0.74 45.22 ± 1.16 40.8 ± 1.04* 40.45 ± 0.66*

SV (uL) 20.29 ± 0.78 19.74 ± 0.54 18.32 ± 0.72* 17.57 ± 0.84*,**

CO (mL/min) 10 378 ± 255.71 9964.25 ± 306.88 8277.63 ± 286.63* 7349.63 ± 300.32*,**

Ea (mmHg/uL) 5.82 ± 0.24 5.93 ± 0.27 7.06 ± 0.27* 8.05 ± 0.18*,**

Systolic function
EF (%) 43.15 ± 0.98 42.74 ± 1.59 43.8 ± 1.32 40.98 ± 1.38
SW (mmHg*uL) 1881 ± 96.38 1737.88 ± 76.67 1766.5 ± 75.19 1666.13 ± 52.61
dp/dt max (mmHg/s) 14 182.75 ± 678.67 14 441.25 ± 703.76 13 833.75 ± 702.75 12 286.25 ± 356.47*

Diastolic function
TAU (ms) 6 ± 0.34 6.27 ± 0.33 8.59 ± 0.22* 10.51 ± 0.49*,**

dp/dt min (mmHg/s) �10625.75 ± 305.95 �11497.75 ± 697.78 �9057.25 ± 200.11* �7546 ± 321.78*,**

CO, cardiac output; dp/dt max, maximum rate of increase in left ventricular pressure; dp/dt min, maximum rate of decrease in left ventric-
ular pressure; Ea, arterial elastance (measure of ventricular afterload); EF, ejection fraction; HR, heart rate; LVEDP, left ventricular end-di-
astolic pressure; LVEDV, left ventricular end-diastolic volume; LVESP, left ventricular end-systolic pressure; LVESV, left ventricular end-
systolic volume; SV, stroke volume; SW, stroke work; TAU, left ventricular isovolumetric relaxation constant (relaxation time constant cal-
culated by the Weiss method).
Data express as Mean ± SEM.
*P < 0.05 vs. WT-Sal group.
**P < 0.05 vs. WT-Aldo group.
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Myeloid differentiation protein 1 deletion
increased the vulnerability of heart failure with
preserved ejection fraction mice to atrial
fibrillation

To clarify the underlying role of MD1 in susceptibility to
HFpEF-related AF, we first monitored electrical signals by sur-
face electrocardiogram. There was no difference in RR inter-
vals, P waves, PR intervals, or QRS durations between the
WT and KO mice regardless of saline or aldosterone infusion
(Figure 1A, B). However, aldosterone infusion significantly in-
creased QTc intervals in the WT-Aldo and KO-Aldo mice.
There was no significant difference in QTc intervals between
the WT-Sal and KO-Sal mice (Figures 1A and 1B).

In addition, we further characterized changes in electro-
physiological parameters [the atrial effective refractory pe-
riod (ERP), intra-atrial conduction time (IACT), and incidence
of AF] in Langendorf-perfused hearts. Aldosterone infusion
significantly prolonged the IACT of 40, 60, 80, and 100-
ms cycles in WT-Aldo mice vs. WT-Sal mice (P < 0.05) and
KO-Aldo mice vs. KO-Sal mice (P < 0.05). The increase in
the IACT in KO-Aldo mice was significantly attenuated in
WT-Aldo mice (Figures 2A–2D). Moreover, aldosterone infu-
sion significantly decreased the LA ERP of 40, 60, 80, 100-
ms basic cycles tested in WT-Aldo mice vs. WT-Sal mice
(P < 0.05) and KO-Aldo mice vs. KO-Sal mice (P < 0.05).
The shortening of the IACT in KO-Aldo mice was significantly
attenuated in WT-Aldo mice (Figures 2A–D). Moreover, aldo-
sterone infusion significantly increased the AF induction rate
in WT-Aldo mice vs. WT-Sal mice (P< 0.05) and KO-Aldo mice
vs. KO-Sal mice (P < 0.05). The increase in the AF induction
rate in WT-Aldo mice (7/13, 53.8%) was significantly de-
creased compared with KO-Aldo mice (11/12, 91.7%) (Figure
2F). These results indicated that loss of MD1 increased the
vulnerability of HFpEF mice to AF.

Myeloid differentiation protein 1 knock-out
aggravated left atrial fibrosis in heart failure with
preserved ejection fraction mice

Atrial fibrosis is a common process by which HFpEF promotes
AF, which ultimately creates heterogeneity of conduction
within the atria and thus acts as a substrate for re-entry.21,22

Therefore, we also detected the state of fibrosis in four
groups. Western blot analysis of LA tissue samples indicated
successful knock-out of MD1 in WT-KO mice (Figure 3A). Al-
dosterone infusion significantly increased the area of myocar-
dial fibrosis in WT-Aldo mice vs. WT-Sal mice (P < 0.05) and
KO-Aldo mice vs. KO-Sal mice (P < 0.05; Figures 3B and 3C).
Myocardial fibrosis in KO-Aldo mice was significantly in-
creased compared with that in WT-Aldo mice (P < 0.05; Fig-
ures 3B and 3C). Consistent with these findings, the mRNA
expression of molecular markers (collagen I, collagen III, and
transforming growth factor-β1) of cardiomyocyte fibrosis
was increased in the LA of WT-Aldo mice vs. WT-Sal mice
(P < 0.05) and KO-Aldo mice vs. KO-Sal mice (P < 0.05; Fig-
ures 3C and 3D).

Myeloid differentiation protein 1 knock-out
aggravated left atrial inflammation in heart
failure with preserved ejection fraction mice

Inflammation is the most crucial pathological response to car-
diac damage and repair.23 Moreover, there is extensive evi-
dence that inflammation contributes to the pathophysiology
of AF.24 Therefore, we also explored the expression levels
of cytokines secreted by inflammatory cells. The mRNA levels
of the proinflammatory cytokines interleukin (IL)-1β, IL-6, and
tumour necrosis factor (TNF)-α were increased in the LA of

Figure 1 Analysis of surface electrocardiograph in wide-type (WT) and myeloid differentiation protein 1 knock-out mice 4 weeks after saline or aldo-
sterone infusion. (A) A representative trace of the surface electrocardiography. RR interval, P wave duration, PR interval, QRS duration, and QTc inter-
val were indicated as an arrow. (B) Surface electrocardiography parameters (n = 8). Data are expressed as mean ± standard error of the mean.
*P < 0.05 vs. WT-Sal group and #P < 0.05 vs. WT-Aldo group.
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Figure 2 The electrophysiological properties of the atrial in wide-type (WT) and myeloid differentiation protein 1 knock-out mice 4 weeks after saline
or aldosterone infusion. (A–D) Intra-atrial conduction time (IACT) and effective refractory period (ERP) of the left atrium evaluated in the study using
isolated perfused heart mice (n = 8). (E) Representative electrograms of atrial fibrillation (AF) induction after atrial burst pacing in the isolated perfused
heart using Langendorff apparatus in a knock-out (KO)-Aldo mouse. (F,G) Inducibility and duration of AF in the study using isolated perfused heart
(n = 12–13). Data are expressed as mean ± standard error of the mean. *P < 0.05 vs. wild-type (WT)-Sal group, #P < 0.05 vs. WT-Aldo group, and
§
P < 0.1 vs. WT-Aldo group.
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WT-Aldo mice vs. WT-Sal mice (P < 0.05) and KO-Aldo mice
vs. KO-Sal mice (P < 0.05). The increase in proinflammatory
cytokines in KO-Aldo mice was markedly attenuated in WT-
Aldo mice (P< 0.05) (Figure 4A). Our previous study reported
that the nuclear factor kappa B (NF-κB) signalling pathway
play a vital role in regulating the inflammatory response
and that MD1 has an effect on NF-κB suppression in the set-
ting of obesity.18 Therefore, the NF-κB signalling pathway was
investigated to confirm MD1 function after aldosterone infu-
sion. As shown in Figure 4B, the levels of phosphorylated p65
and inhibitor of kappa B (IκBα) were substantially increased in
KO-Aldo mice compared with WT-Aldo mice, indicating that
the NF-κB signalling pathway was strongly activated by MD1
deletion. These data suggested that MD1 modulates atrial in-
flammation by interfering with the NF-κB signalling pathway
to some extent.

Loss of myeloid differentiation protein 1
knock-out worsened the dysregulation of calcium
handling in heart failure with preserved ejection
fraction mice

Extensive studies have suggested that alterations in calcium-
handling proteins, including ryanodine receptor 2 (RyR2), SR
Ca2+-ATPase 2a (SERCA2a), phospholamban (PLB), and
sodium/calcium exchanger 1 (NCX1), contribute to changes
in intracellular calcium transients and diastolic SR Ca2+ release
that, in turn, lead to Ca2+-triggered arrhythmogenesis in HF
animal models.9,25–27 Therefore, we next detected the protein
expression of RyR2, SERCA2a, PLB, and NCX1 in each group.

First, the phosphorylation of RyR2 at Ser 2808 and Ser
2814 was markedly increased by aldosterone infusion in both

WT and MD1-KO hearts, and the adverse effect of phosphor-
ylation at Ser 2808 and Ser 2814 was further aggravated in
KO-Aldo mice compared with WT-Aldo mice (Figures 5A and
5B). However, there was no difference in RyR2 protein ex-
pression between WT and KO mice regardless of saline or al-
dosterone infusion.

In addition, aldosterone infusion significantly decreased
the protein expression of SERCA2a and phosphorylated PLB
(Thr17) in WT-Aldo mice vs. WT-Sal mice (P < 0.05) and
KO-Aldo mice vs. KO-Sal mice (P < 0.05). The decrease in
the protein expression of SERCA2a and phosphorylated PLB
(Thr17) in KO-Aldo mice was significantly attenuated in WT-
Aldo mice. However, there was no difference in PLB protein
expression between WT and MD1-KO mice regardless of sa-
line or aldosterone infusion (Figures 5C and D).

Finally, aldosterone infusion significantly increased NCX
protein expression in WT-Aldo mice vs. WT-Sal mice
(P < 0.05) and KO-Aldo mice vs. KO-Sal mice (P < 0.05).
The increase in NCX1 protein expression in KO-Aldo mice
was markedly attenuated in WT-Aldo mice (Figures 5C and
5D). Therefore, our data showed that the loss of MD1 wors-
ened the dysregulation of SERCA2, the phosphorylation of
RyR2 at Ser 2808 and Ser 2814, and the phosphorylation of
PLB at Thr17 in HFpEF mice.

Myeloid differentiation protein 1 knock-out
regulated the activation of the toll-like receptor
4/calmodulin-dependent protein kinase II
signalling pathway in vivo and in vitro

The results above indicate that MD1-KO HFpEF mice may
have increased vulnerability to AF through facilitated fibrosis

Figure 3 Myocardial fibrosis in wild-type (WT) and Myeloid differentiation protein 1 (MD1)-knock-out mice 4 weeks after saline or aldosterone infu-
sion. (A) Representative western blots of MD1 expression in left atrial tissues from WT and MD1-KO mice (n = 6). (B) Representative Masson trichrome
staining. Original magnification ×400; (C) myocardial fibrosis area (n = 4); and (D,E) representative western blots and statistical analysis of the fibrosis-
related proteins levels (n = 4). Data are expressed as mean ± standard error of the mean.

*
P < 0.05 vs. WT-Sal group and

#
P < 0.05 vs. WT-Aldo group.
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and inflammation and the dysregulation of calcium handling.
However, the underlying mechanism by which MD1-KO
exerts its pro-arrhythmia response is unclear. The
TLR4/CaMKII signalling pathway has been reported to play
an important role in atrial arrhythmia through regulating
atrial fibrosis, inflammation, and the function of calcium-
handling proteins.14,28 Besides, according to our previous
studies, MD1 has a suppressive effect on TLR4/CaMKII signal-
ling pathway.17,29 Thus the TLR4/CaMKII signalling pathway
was investigated to confirm the function of MD1. As shown
in Figures 6A and 6B, the levels of TLR4 and phosphorylated
CaMKII were substantially increased in KO-Aldo mice, indicat-
ing that the TLR4/CaMKII signalling pathway was strongly ac-
tivated by MD1 deletion. These data suggested that MD1
modulated atrial fibrosis and calcium-handling proteins by af-
fecting the TLR4/CaMKII signalling pathway.

To confirm the modulation of the TLR4/CaMKII signalling
by MD1, the CaMKII inhibitor KN93 was used to pre-treat

H9c2 cells before aldosterone stimulation. H9C2 cells were in-
fected with Ad-shMD1 or Ad-shRNA and then treated with 1-
μM aldosterone for 18 h.30,31 Consistent with the in vivo re-
sults, the aldosterone-induced activation of CaMKII and P65
was enhanced in MD1 knockdown cells. In addition, we ex-
posed cultured H9C2 cells that had been previously infected
with Ad-shMD1 to a CaMKII inhibitor, KN93, for 30 min and
then treated with aldosterone for 18 h. The protein phos-
phorylation levels of CaMKII and P65 were increased follow-
ing aldosterone stimulation, and this was significantly
suppressed by KN93 compared with the no treatment
(Figures 6C and 6D). Therefore, the in vitro experiment fur-
ther verified that the inactivation of the TLR4/CaMKII signal-
ling pathway rescued the adverse effect of MD1 deficiency
in aldosterone-induced myocyte remodelling. In brief, all of
the above data demonstrated that MD1 modulated the
TLR4/CaMKII signalling pathway in aldosterone-induced path-
ological myocyte remodelling.

Figure 4 Myocardial inflammation in wild-type (WT) and myeloid differentiation protein 1 knock-out mice 4 weeks after saline or aldosterone infusion.
(A,B) Representative western blots and statistical analysis of the inflammation-related protein levels (n = 4). (C,D) Representative western blots and
statistical analysis of p65, P-p65, inhibitor of kappa B (IκBα), and P-IκBα (n = 4). Data are expressed as mean ± standard error of the mean.
*
P < 0.05 vs. WT-Sal group and

#
P < 0.05 vs. WT-Aldo group.
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Discussion

In the present study, aldosterone-infused WT mice developed
HFpEF with LV hypertrophy, moderate hypertension, pulmo-
nary congestion, and diastolic dysfunction while maintaining
a preserved LVEF, and the above adverse effects were further
exacerbated by MD1 deletion. Moreover, the loss of MD1 in-
creased the vulnerability of aldosterone-induced HFpEF mice
to AF, as shown by the prolonged IACT, shortened EDP, and
higher incidence of AF. In addition, aldosterone infusion
markedly increased myocardial fibrosis and inflammation, de-
creased SERCA2a protein expression and the phosphorylation
of PLB at Thr17, and increased NCX1 protein expression
and the phosphorylation of RyR2 in MD1-KO mice. Finally,
MD1 deletion markedly enhanced the activation of the
TLR4/CaMKII signalling pathway in vivo and in vitro. These
findings suggest that MD1 may be a potential therapeutic
target for reducing the incidence of AF in HFpEF patients.

An ideal animal model should meet various requirements
for mimicking human disease, including cardiac, haemody-
namic, neurohormonal, and peripheral aberrations

commonly seen in HFpEF patients. A recent review32 compre-
hensively summarized current models of HFpEF and found
that a mouse model of uninephrectomy, aldosterone infu-
sion, and 1% NaCl administration recapitulates clinical HFpEF
phenotypes and features molecular changes that have been
described clinically. Several studies have consistently shown
that the combination of uninephrectomy, aldosterone infu-
sion, and 1% NaCl administration induces an experimental
model that mimics HFpEF and can be used to study the path-
ogenesis of HFpEF in vivo.31,33,34 These studies showed that
HFpEF mice exhibit moderate hypertension, LV hypertrophy,
pulmonary congestion, and diastolic dysfunction while main-
taining a preserved LVEF. Consistent with our observations,
aldosterone-infused WT and MD1-KO mice showed cardiac
hypertrophy, a higher end-systolic pressure and EDP, in-
creased LW/TL, lower dp/dt min, and preserved LVEF. The
above adverse effects in WT-Aldo mice were significantly
decreased in KO-Aldo mice. Therefore, the HFpEF mouse
model was successfully established, and MD1-KO mice
exhibited worsened cardiac diastolic function than that of
WT-Aldo mice.

Figure 5 Expression of calcium handling regulatory proteins in wild-type (WT) and and myeloid differentiation protein 1 knock-out mice 4 weeks after
saline or aldosterone infusion. (A,B) Representative western blots and statistical analysis of ryanodine receptor 2 (RyR2) phosphorylation at Ser2814
and RyR2 phosphorylation at Ser2808, RyR2, and GAPDH (n = 4). (C,D) Representative western blots and statistical analysis of sarcoplasmic reticulum
Ca

2+
-ATPase 2a (SERCA2a) and phospholamban (PLB) phosphorylation at Thr17, PLB, sodium/calcium exchanger (NCX), and GAPDH (n = 4). Data are

expressed as mean ± standard error of the mean. *P < 0.05 vs. WT-Sal group and #P < 0.05 vs. WT-Aldo group.
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Clinical studies have shown that over 30% of patients with
incident HFpEF have prevalent AF, and the presence of AF is
more strongly linked to incident HFpEF than to HFrEF.35,36

Consistent with these data, our study showed that the AF in-
duction rate was significantly increased in aldosterone-
induced HFpEF mice. In addition, the IACT and LA ERP were
markedly increased and decreased, respectively, in
aldosterone-induced HFpEF mice. All of the above changes
were worse in KO-Aldo mice. Several studies have shown
that, before the onset of AF, shorter atrial ERPs and a longer
IACT are associated with higher inducibility of AF in HF pa-
tients and animals.37–39 Moreover, earlier work from our
group showed that MD1 deletion can increase the AF

induction rate in the setting of HFD.18 Therefore, a deficiency
in MD1 can increase vulnerability to AF caused by
aldosterone-induced HFpEF.

The importance of atrial fibrosis in the initiation and re-
entrance of AF, especially in the matter of conduction distur-
bances, is widely understood.40 Atrial interstitial fibrosis has
been shown to increase AF vulnerability in animal models of
HF.22,41,42 According to previous research, ERP shortening
may be explained by an increase in the number of fibroblasts,
which shortens the duration of the action potential.43 In the
present study, aldosterone infusion significantly shortened
the ERP and increased LA fibrosis in WT-Aldo mice compared
with the WT-Sal mice. The shortened ERP and increased atrial

Figure 6 Myeloid differentiation protein 1 (MD1) regulates toll-like receptor 4 (TLR4)/calmodulin-dependent protein kinase II (CaMKII) signalling in
in vivo and in vitro experiments. (A,B) Representative western blots and statistical analysis of TLR4, CaMKII, and P-CaMKII in wild-type (WT) and
MD1-knock-out (KO) mice 4 weeks after saline or aldosterone infusion (n = 4). Data are expressed as mean ± standard error of the mean,
*
P < 0.05 vs. WT-Sal group and

#
P < 0.05 vs. WT-Aldo group. (C, D) Representative western blots and statistical analysis of MD1, TLR4, P-CaMKII,

CaMKII, P-p65, and p65 in aldosterone-induced H9C2 cell (n = 4). Data are expressed as mean ± standard error of the mean. *P < 0.05 vs. Control,
#
P < 0.05 vs. Aldo, and

&
P < 0.05 vs. Ad-ShMD1.
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fibrosis in KO-Aldo mice were substantially worse than those
in WT-Aldo mice. According to the findings of this study, loss
of MD1 exacerbated atrial fibrosis and increased the vulnera-
bility of aldosterone-induced HFpEF mice to AF.

Human and animal studies have demonstrated that inflam-
mation plays an essential role in the pathophysiology of
HFpEF.44–46 Many studies have shown that inflammation
plays a vital role in triggering AF. Li et al. observed that
TNF-α blood levels were higher in patients with AF compared
with those in sinus rhythm and in persistent and permanent
AF compared with paroxysmal AF.47 Moreover, a recent study
also suggested that higher IL-6 blood levels are associated
with greater AF risk in the general population.48 Consistent
with this possibility, our present correlative evidence sug-
gested that chronic aldosterone infusion increased the levels
of proinflammatory cytokines IL-1β, IL-6, and TNF-α and vul-
nerability to AF. Besides, in our study, chronic aldosterone in-
fusion substantially increased the levels of phosphorylated
p65 and IκBα in KO-Aldo mice compared with WT-Aldo mice,
indicating that the NF-κB pathway was markedly activated by
MD1 deletion. Supporting these data, our previous study has
shown that MD1 deficiency increases the vulnerability HFD-
fed mice to AF, mainly due to an increase in the proinflamma-
tory IL-1β, IL-6, and TNF-α, a decrease in the levels of the anti-
inflammatory cytokine IL-10, and the facilitation of atrial fi-
brosis. This mainly occurs through an increase in the levels
of phosphorylated p65 and IκBα because of the enhanced ac-
tivation of the TLR4 signalling pathway.18 These observations
are consistent with a recent review by Queisser and Schupp
showing that aldosterone can activate the NF-κB pathway in
humans and different experimental models.49 Some studies
have reported that NF-κB can regulate the expression of so-
dium channel subunits that contribute to AF-associated elec-
trical remodelling.50 Although ion channels were not
investigated in this study, we are confident that the loss of
MD1 increases AF susceptibility by regulating cardiac
inflammation.

Extensive studies have suggested that alterations in Ca2+

handling proteins contribute to changes in intracellular Ca2+

transients and diastolic SR Ca2+ release that, in turn, lead to
Ca2+-triggered atrial arrhythmogenesis.11,12,25,51 Recent stud-
ies have indicated that alterations in CaMKII-dependent RyR2
phosphorylation are also exhibited in the atrium of chronic AF
patients.11,13 Abnormal diastolic RyR2 Ca2+ release may be
the primary cause of abnormal Ca2+ handling in HF and
chronic AF.9,26,27 In addition, increased diastolic SR Ca2+ leak-
age along with impaired function of Ca2+ uptake because of
lower expression of the SERCA inhibitory protein PLB in HF
and increased Na influx via NCX for Ca2+ removal can abnor-
mally trigger activity and initiate atrial arrhythmias.52,53 In
our study, chronic aldosterone infusion decreased SERCA2a
protein expression and the phosphorylation of PLB at Thr17
and increased NCX1 protein expression and the phosphoryla-
tion of RyR2 but did not alter RyR2 or PLB protein expression.

Phosphorylation of PLB at Thr17 site is a specific target of
CaMKII, and activated CaMKII is associated with increased
phosphorylation of PLB at Thr17 site.54 However, in our
study, the level of phosphorylation of PLB at Thr17 is mark-
edly decreased in the aldosterone-induced heart, where acti-
vated CaMKII was observed, although no apparent change in
total PLB abundance. Interestingly, this decrease occurred de-
spite an increase in CaMKII activity characteristic of HF. The
observed differences in p-PLB could be because of the
balance in protein phosphatase and/or protein phosphatase
inhibitor. It has been proposed that in human failing
myocardium, phosphorylation of Thr17 decreased
because of increased activity of protein phosphatase 2B.55

All of the above changes lead to Ca2+-triggered atrial
arrhythmogenesis. In addition, alterations in Ca2+ handling
proteins in WT-Aldo mice were significantly worsened in
KO-Aldo mice. A recent study indicated that MD1-KO can in-
terfere with the expression of Ca2+ handling proteins in
pressure-induced HF mice.17 Therefore, there is strong and
growing evidence that MD1 deletion worsens the dysregula-
tion of calcium handling and increases the vulnerability of
aldosterone-induced HFpEF mice to AF.

The underlying mechanisms by which MD1 regulates the
vulnerability of aldosterone-induced HFpEF mice to AF may
be associated with its downstream TLR4/CaMKII signalling
pathway. Several studies have consistently shown that acti-
vated CaMKII can increase the phosphorylation of RyR2 and
induce an imbalance between NCX1 and SERCA2, which lead
to a disturbance in intracellular Ca2+ homoeostasis-triggered
activity and arrhythmia initiation in the setting of HF.27,56–58

Furthermore, a recent study found that inhibiting CaMKII
can attenuate atrial fibrosis, which creates heterogeneity of
conduction within the atria and thus acts as a substrate for
re-entry.21,22,59 Additionally, the activation of CaMKII in
cardiomyocytes triggers the activation of NF-κB and the ex-
pression of inflammatory chemokines and cytokines and ulti-
mately increased AF vulnerability.60,61 Several studies have
demonstrated that CaMKII can regulate NF-κB activation un-
der pathological conditions, such as myocardial infarction,
ischaemia/reperfusion injury, and obesity, which suggests
that CaMKII serves to trigger and sustain subsequent changes
in inflammatory gene expression that contribute to cardiac
stress.28,62,63 Our previous studies showed that MD1 deletion
leads to a more pronounced activation of the TLR4/CaMKII
signalling pathway, which may further significantly influence
the expression levels of Ca2+ handling proteins, increasing
the vulnerability of HF mice to ventricular arrhythmia.14 Con-
sistent with our current research, the protein expression
levels of P-CaMKII/CaMKII were markedly increased in LA tis-
sues from KO-Aldo mice compared with WT-Aldo mice, indi-
cating that the TLR4/CaMKII signalling pathway was strongly
activated by MD1 deletion. In addition, the in vitro experi-
ment further verified that the inactivation of the
TLR4/CaMKII signalling pathway rescued the adverse effect
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of MD1 deficiency by decreasing the phosphorylation levels
of CaMKII and p65 in aldosterone-induced myocyte remodel-
ling. Therefore, we believe that the loss of MD1 enhanced the
activation of the TLR4/CaMKII signalling pathway to facilitate
cardiomyocyte arrhythmogenesis following aldosterone-
induced HFpEF.

Novelty and limitations

We propose for the first time that the loss of MD1 can in-
crease the vulnerability of a mouse model of HFpEF to AF
and that MD1 may represent a novel therapeutic target for
the treatment of HFpEF-related remodelling of the atrium.
However, the current study has some limitations. First, clini-
cal and experimental evidences have been used to postulate
the underlying complex pathophysiological mechanisms of
AF, including electrical remodelling, structural remodelling,
autonomic nervous system changes, and Ca2+ handling ab-
normalities.40,64–66 In the current study, we mainly discussed
the regulation of calcium homoeostasis by MD1 in HFpEF
mice, but the relationship between MD1 and ion channels
or the autonomic nervous system has not been studied. In
addition, our recent study found that MD1 can regulate car-
diac ion channels in pressure overload-induced HF mice and
obese mice.17,29 Therefore, we cannot exclude the possibility
that MD1 alters AF susceptibility by affecting the expression
of ion channels. Second, although we used the H9C2 cell line
to verify the relevant mechanism, H9C2 cells are ventricular
myocytes. Given some differences between atrial myocytes
and ventricular myocytes, the use of HL-1 mouse atrial
myocytes or MD1-overexpressing mice or MD1 specific ago-
nists may be more beneficial for elucidating the mechanism.
Third, because the heart rate of normal mice is approximately
600 beats per minute, our results have shown that the heart
rate was 450–500 beats per minute, which indicated that the
anaesthesia maybe too stronger. Therefore, the measure-
ment of haemodynamic and electrophysiological parameter
may not be close to the values of the physiological conditions.

Finally, because of the species difference between humans
and mice, additional studies are needed to determine
whether the regulation of vulnerability to AF by MD1 ob-
served in a mouse model of HFpEF is likely to be beneficial
in humans with HFpEF.

Conclusions

In brief, our study demonstrated that MD1 deficiency in-
creases the vulnerability of HFpEF mice to AF. This is mainly
caused by exacerbated maladaptive LA fibrosis and inflamma-
tion of the TLR4/CaMKII signalling pathway to some extent.
These findings further suggest that MD1 may be a potential
therapeutic target for reducing the susceptibility of patients
with HFpEF to AF.
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