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Abstract: In recent years, the official authorities in Chile have reported transgressions in the maxi-
mum residue levels of pesticides in fresh vegetables. There is no official information about traceability,
pesticide levels, and potential health risks. The aim of this study was to analyse pesticide residues and
their corresponding dietary risk assessments in tomatoes from supermarkets in the Metropolitan Re-
gion. Pesticides were extracted using the Quick, Easy, Cheap, Effective, Rugged and Safe, QuEChERS
method, and their concentrations were determined by using chromatography with HPLC-FL/UV
and GC-MS/ECD/NPD, following the Analytical Quality Control and Method Validation Procedures
for Pesticides Residues Analysis in Food and Feed, SANTE guide and ISO 17025:2017 standard. In
addition, a dietary risk assessment was carried out by comparing Chilean data to international refer-
ences. The results reported that 9% of the samples had pesticide residue levels above the maximum
residue levels permitted in Chile. All the scenarios evaluated revealed the highest estimated daily
intake and hazard quotients for methamidophos and chlorpyrifos. Both the active substances used
were acetylcholinesterase inhibitors and were neurotoxic under chronic risk assessment. The results
showed the highest chronic hazard index in the Chilean scenario for all age groups and genders. The
evidence obtained revealed that methamidophos, methomyl, and chlorpyrifos should be restricted
for their use in Chilean agriculture.

Keywords: pesticide; risk assessment; tomato; methamidophos; chlorpyrifos; methomyl

1. Introduction

Pesticides have different physicochemical characteristics, structures, modes of action,
and uses in agriculture [1,2]. Depending on their molecular structure, pesticides are
classified into different groups, such as organochlorines, organophosphates, neonicotinoids,
carbamates, triazine, urines, phenoxyacids, pyrethroids, and triazoles [3]. According to
their use in agriculture, pesticides are classified as insecticides, fungicides, nematicides,
acaricides, and herbicides [4]. Nowadays, pesticides are widely used in the agricultural
industry to reduce the impact of pests, weeds, and diseases in different crops, leading
to increases in productivity and a higher quality of crops [5]. However, the improper
use of pesticides involves risks for human health, as pesticide residues remain in fresh
vegetables [6–8], food [9], soil [10], and water bodies [11] after harvest. Hence, the overuse
and misuse of pesticides can greatly impact the environment [12,13] and poses a serious risk
for human health, since short- or long-term exposure to pesticide residues may cause acute
or chronic toxicity [14]. Pesticide residues with different mechanisms of action on humans
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can be considered as a potential toxicological concern [15]. The consequences of the chronic
exposure to organophosphate pesticide residues may include metabolic disorders such as
genotoxicity, carcinogenesis [16], neurological disorders [17], and endocrine disruption [18].

Protecting consumers from the exposure to pesticide residues in raw food is a growing
concern in Chile [19]. Chemical food safety and security are priorities for the Ministry
of Agriculture (MINAGRI) and the Ministry of Health (MINSAL). The Agricultural and
Livestock Service (SAG), an entity dependent on the MINAGRI and the Institute of Public
Health (ISP), which in turn is dependent on MINSAL, is responsible for ensuring food
safety in the country and the compliance of the maximum residue levels (MRLs) approved
by the regulation, MRL-762/2011 [20]. This regulation defines the maximum levels of
pesticide residues that can be present in food, in accordance with the principles established
by the Good Agricultural Practices (GAP) [21]. The use of pesticides with a reasonable
certainty of no harm, the pesticide doses administered, and the concentration of pesticide
residues which remain in food, as well as laws approved by the government are supervised
by SAG [22]. In 2019, a new regulation regarding pesticides containing methamidophos,
carbofuran, and azinphos-methyl was legally implemented, enforcing their removal from
the Chilean market by June 2021 [23].

The food safety surveillance program in Chile, which is coordinated by the SAG and
ISP, was established to regulate the proper use of pesticides in agriculture and their impact
on human health. However, aspects such as the potential exposure and risks for human
health are not evaluated under the current program. Every year, the national surveil-
lance program evaluates more than 1500 fresh vegetables and fruit samples throughout
the country. Since 2017, 15–25% of the samples, mainly fresh vegetables, exceeded the
maximum residue levels permitted by the law. Among all the pesticides evaluated in
the surveillance, the main transgressions were detected for methamidophos, methomyl,
chlorpyrifos, cypermethrin, diazinon, and λ-cyhalothrin. Lettuce, spinach, chard, tomatoes,
and peppers were the vegetables with the highest levels of pesticide residues [24–28].

Moreover, the Ministry of Health coordinates the national surveillance of pesticide
acute intoxications (REVEP), which informs all notifications in hospitals throughout the
country. The REVEP surveillance provided serious evidence of the acute intoxication
of farm workers in the main agricultural regions of Chile, including Arica, Coquimbo,
Metropolitan, Valparaiso, and Del Libertador Bernardo O’Higgins. The main intoxica-
tions were produced by active substances such as methamidophos, diazinon, methomyl,
chlorpyrifos, and other pesticides classified as Ia and Ib [29].

The production of tomatoes (Lycopersicon esculentum) is susceptible to various diseases
and pests [30], which produce qualitative and quantitative damages in the harvest [31].
These vegetables are an important source of carotenoids, minerals, and vitamins which are
highly recommended for daily consumption to improve human health and decrease the
potential of many human diseases [32]. Tomatoes are one of the main vegetables consumed
worldwide. In 2019, the tomato fields in Chile expanded by over 5.328 ha [33]. The tomatoes
in Chile are distributed through three main channels: local street markets, supermarkets,
and wholesalers. In the Metropolitan Region, more than half of the total population of Chile
is concentrated and more than 60% of the total production of vegetables is commercialised
and distributed by Lo Valledor S. A., the main wholesaler in Chile. The lack of food safety
standards, traceability, good agricultural practices, and enforcement of pesticide residues
can be a source of chemical and biological risks to the health of consumers. The aim of
this study was to analyse pesticide residues and provide a corresponding dietary risk
assessment for tomatoes commercialised in local supermarkets from the Metropolitan
Region, Chile.

2. Materials and Methods
2.1. Sampling

Fifty-seven samples were collected from local supermarkets of the Metropolitan
Region between January and March, 2020. Each sample size consisted of 2 kg of fresh
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tomatoes wrapped in aluminium foil. The samples were processed using a grinder, and
then stored in a flask and frozen at −20 ◦C, according to the protocol previously described
elsewhere [22].

2.2. Pesticides

More than 180 active substances used in the agriculture industry that were au-
thorised by the Agricultural and Livestock Services were evaluated in a multiresidue
screening program. The pesticides analysed included insecticides, herbicides, fungi-
cides, nematicides, and acaricides, which were the most frequently used pesticides in
tomato production throughout the country. The list of pesticides analysed was as follows:
abamectin, acephate, acetamiprid, acetochlor, acrinathrin, alachlor, aldicarb, alpha-BHC,
alpha-cypermethrin, alpha-HCH, amethrin, atrazine, azinphos-ethyl, azinphos-methyl,
azoxystrobin, benalaxyl, beta BHC, bifenthrin, bitertanol, boscalid, bromacil, bromo-phos-
ethyl, bromophos-methyl, bromopropylate, buprofezin, butachlor, captan, car-baryl, car-
bendazim, carbofuran, carbophenotion, cartap, chlorantraniliprole, chlordane, chlorfe-
napyr, chlorfenvinphos, chlorobenzilate, chlorothalonil, chlorpyrifos-ethyl, chlorpyrifos-
methyl, cis-chlordane, cyanazine, cycloate, cyfluthrin, cymoxanil, cyper-methrin, cypro-
conazol, cyprodinil, cyromazine, DDD-o,p, DDD-p,p’, DDE-p,p’, DDE-o,p’, DDT-o,p, DDT-
p,p, delta-BHC, deltamethrin, desmedipham, diazinon, di-chlofluanid, dichlorvos, diclobu-
trazol, dicloran, dicofol, dieldrin, difenoconazol, disul-foton, dimethoate, dimethomorph,
diphenylamine, dithiocarbamates, alfa-endosulfan, beta-endosulfan, endosulfan-sulfate,
endrin, EPTC, esfenvalerate, ethion, ethofumesate, fenamiphos, fenarimol, fenbuconazol,
fenchlorphos, fenhexamid, fenitrothion, fen-medifam, fenoxycarb, fenpyroximate, fenthion,
fenvalerate, fipronil, fluazinam, fludi-oxonil, flufenoxuron, fluquinconazol, flusilazole,
fluvalinate, folpet, heptachlor, hepta-chlor epoxide, hexaconazole, hexazinone, imazalil, im-
idacloprid, indoxacarb, iprodione, lambda-cyhalothrin, lenacil, lindane, linuron, malathion,
mefenoxam, metalaxyl, methamidophos, methidathion, methiocarb, methomyl, methoxy-
chlor, metolachlor, metribuzin, mirex, monocrotophos, myclobutanil, napropamid, nor-
flurazon, omethoate, oxamyl, oxyfluorfen, paraquat, parathion-ethyl, parathion-methyl,
pebulate, penconazol, pendimethalin, pentachlorobenzene, pentachloronitrobenzene, per-
methrin, phorate, phosalone, phosmet, pirimicarb, pirimiphos-ethyl, pirimiphos-methyl,
prochloraz, procymidone, profenofos, propachlor, propamocarb, propazine, propiconazole,
propoxur, pyraclostrobin, pyrazophos, pyridaben, pyrimethanil, quinalphos, quinome-
thionate, quinoxyfen, rotenone, simazine, spirodiclofen, tebuconazole, tebufenozide, ter-
buthylazine, tetraconazole, tetradifon, thiabendazole, thiacloprid, thiamethoxam, thio-
cyclam, thiodicarb, thiophanate-methyl, thiuram, tolylfluanid, triadimefon, triadimenol,
triazophos, trichlorfon, trifloxystrobin, triflumizole, trifluralin and vinclozolin. Analytical
grade pesticides standards (over 99% purity) were obtained from Sigma-Aldrich (Saint
Louis, MO, USA), HPLC (Cunnersdorf, Deutschland), and Chem Service (West Chester,
PA, USA). Solvents and chemicals were obtained from Merck (Darmstadt, Germany) [22].
QuEChERS extraction systems were purchased from UCT (Bristol, PA, USA).

2.3. Pesticide Analysis and Quality Assurance

Pesticide extraction was performed using the QuEChERS method [34], as previously
described elsewhere [21,22]. Briefly, 10 g of tomato sample were extracted with acetonitrile
and extraction mix (4 g MgSO4; 1 g NaCl and 1.5 g citrate), manually shaken and centrifu-
gated. The supernatant was transferred and the clean-up step was performed using 900 mg
MgSO4, 150 mg PSA and 150 mg C18, manually shaken and centrifugated, and the extract
was transferred to a vial until analysis at −20 ◦C. Pesticides residues were analyzed by
GC or HPLC according to their functional groups, volatility and derivatisation properties.
The concentration of organophosphates was quantified using a GC-NPD Agilent 7890
with autosampler (Santa Clara, CA, USA). The concentration of halogenated proteins was
quantified using a GC-electron capture detector (Thermo Scientific Trace-Ultra) with an
autosampler (Waltham, MA, USA) and Perkin Elmer Auto-System XL (Waltham, MA,
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USA). The concentration of dithiocarbamates was determined using distillation and quan-
tification with a Thermo 10VIS spectrophotometer (Thermo Scientific Inc., Madison, WI,
USA). Results were expressed as mg of carbon disulphide (CS2) per kg. The concentra-
tion of methyl-carbamates was quantified using HPLC with a Merck Hitachi LaChrom
D-7000-autosampler (Dartford, United Kingdom) coupled to a fluorescence detector and a
reaction pump (655A-B) from Merck Hitachi (Dartford, United Kingdom). To determine
the concentration of imidacloprid and carbendazim, a HPLC system Merck Hitachi D-6000
with a UV detector was used (Burladingen, Germany) [21,22]. The concentration of dithio-
carbamates was determined using distillation and quantification with a Thermo 10VIS
spectrophotometer (Thermo Scientific Inc., Madison, WI, USA). Results were expressed as
mg of carbon disulphide (CS2) per kg [21,22].

Quality assurance was carried out following the SANTE 12682/2019 guidelines.
Standard ISO/IEC 17025:2017 of the Accredited Laboratory of Pesticide Residues was
implemented. The λ-cyhalothrin, myclobutanil, buprofezin, indoxacarb, pyrimethanil,
difenoconazole, azoxystrobin, boscalid, chlorfenapyr and chlorpyrifos were analysed by
gas chromatography ECD detector. Additionally, methamidophos and acetamiprid were
analysed by GC-NPD detector. The imidacloprid was analysed by liquid chromatogra-
phy HPLC-DAD and methomyl by HPLC-FL detector. The accuracy was expressed as
percentage of recovery, and the precision as repeatability both were used for the validation
process [21,22]. Tomato blank samples (free of pesticides) were used to perform the quality
assurance. The recovery was studied at a concentration of 20 µg/kg and the precision was
determined as the relative standard deviation (RSD). The Limit of detection (LOD) was
determined as the signal-to-noise ratio and Limit of Quantification (LOQ) as the lowest
concentration quantifiable with acceptable recoveries. Calibration curves were evaluated
in blank tomato samples between 10 and 320 µg/kg for the detected pesticides residues.

2.4. Compliance of Chilean Maximum Residue Levels

The results were verified under the current regulation of MRLs of Chilean RES
762/2011, which was mandatory for all fresh food commercialised in supermarkets un-
der the national regulation RSA Nº 977/1996. In addition, we checked that the pesti-
cide residues detected in the tomato samples were authorised by the Agricultural and
Livestock Service.

2.5. Dietary Risk Assessment

The levels of active substances were included in the dietary risk assessments. Two
genders were analysed according to the data obtained at national and international levels.
Body weight and age groups were obtained from a national health survey [21–35]. The
Chilean tomato consumption and the international daily tomato consumption were set to
120 and 10.5 g/day, respectively [22].

The Acceptable Daily Intakes (ADI) for the pesticides evaluated in this study were:
0.025 mg/kg bw/d for acetamiprid [36]; 0.010 mg/kg bw/d for buprofezin [37]; 0.030 mg/kg
bw/d for chlorfenapyr [38]; 0.001 mg/kg bw/d for chlorpyrifos [39]; 0.060 mg/kg bw/d for
imidacloprid [40]; 0.060 mg/kg bw/d for λ-cyhalothrin [41]; 0.001 mg/kg bw/d for methami-
dophos [42]; 0.1 mg/kg bw/d for azoxystrobin [43]; 0.010 mg/kg bw/d for difenocona-
zole [44]; 0.025 mg/kg bw/d for myclobutanil [45]; 0.005 mg/kg bw/d for indoxacarb [46];
0.040 mg/kg bw/d for boscalid [47]; 0.003 mg/kg bw/d for methomyl [48]; and 0.170 mg/kg
bw/d for pyrimethanil [49].

The estimated daily intake (EDI) was evaluated by multiplying the levels of active
substances by food consumption divided by body weight. The hazard quotients were
calculated as HQ = EDI/ADI × 100 [50]. The chronic hazard index (cHI) [51] was calculated
for all the pesticides with similar health effects, as described in the Pesticide Properties
Database (PPDB) website of the University of Hertfordshire. The pesticides were classified
as acetyl cholinesterase inhibitors (chlorpyrifos, methamidophos, methomyl); neurotoxi-
cant (chlorpyrifos, methamidophos, methomyl), respiratory tract irritants (λ-cyhalothrin,
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methomyl); skin irritants (acetamiprid, azoxystrobin, difenoconazole); skin sensitisers
(λ-cyhalothrin, indoxacarb); and eye irritants (λ-cyhalothrin, azoxystrobin, difenoconazole,
myclobutanil, methomyl). A cHI > 100 indicated that the exposure induced obvious toxic
effects, whereas a cHI < 100 indicated that consumption was considered acceptable [50].

3. Results

The samples were analysed to quantify multi-pesticide residues and evaluate their
compliance with MRL established by the Chilean regulations and their associated dietary
risk assessments. All the pesticides reported in this study were previously validated fol-
lowing the guidelines of SANTE 12682/2019 and ISO/IEC 17025:2017 of the accredited
laboratory of pesticide residues at National Institute of Agriculture. The recoveries were
described as follows: λ-cyhalothrin 99.9%; buprofezin 95.2%; indoxacarb 101.9%; chlorfe-
napyr 101%; chlorpyrifos 95.5%; methamidophos 92.2%; acet-amiprid 107.3%; imidacloprid
100.5%; methomyl 103.6%; pyrimethanil 89.7%; difenoconazole 99.4%; azoxystrobin 99.5%;
boscalid 101.2%; and myclobutanil 92.4%. On the other hand, the RSD % values ranged
between 2.3–10.2%.

3.1. Screening of Pesticide Residues and Their Compliance of MRL

In our study, pesticide residues were analysed in 57 samples of tomatoes to assess
their compliance with national regulations. The first screening detected the presence of
different residues of λ-cyhalothrin, buprofezin, indoxacarb, chlorfenapyr, chlorpyrifos,
methamidophos, acetamiprid, imidacloprid, methomyl, pyrimethanil, difenoconazole,
azoxystrobin, boscalid, and myclobutanil. Of the total samples evaluated, 39% of samples
were free of pesticide residues, 35% contained one residue, 17% contained two residues, and
39% contained three or more residues. The residue concentration in 9% of the contaminated
samples was above the MRL. Interestingly, all samples containing methamidophos had
concentrations above the corresponding MRL.

3.2. Multi Pesticide Residues Analysis

All the pesticides detected in this study were authorised by the Chilean authorities
for their use in tomato production. More than 60% of pesticide residues detected in the
samples were insecticides: λ-cyhalothrin, buprofezin, indoxacarb, chlorfenapyr, chlor-
pyrifos, methamidophos, acetamiprid, imidacloprid, and methomyl (Table 1). The main
insecticide detected was acetamiprid, which was present in 21% of the total samples. In
addition, the main fungicide detected was difenoconazole, present in 11.5% of the samples.
Pyrimethanil had the highest mean concentration: 0.23 mg/kg. The mean concentration
of methamidophos was 0.12 mg/kg, which was 12 times higher than the Chilean MRL.
Ac-cording to these results, methamidophos represented the highest transgression in this
study. This result was in accordance with previous studies.

3.3. Dietary Risk Assessment

The dietary risk assessment was conducted on two different age groups, including
males and females, using national and international data. The EDI was calculated as de-
scribed above. The consumption level was set up to 10.5 g/day, and 120 g/day for the WHO
and Chile, respectively. In all the scenarios evaluated, the risk assessment determined for
Chile was higher than that of the WHO (Table 2). In general, the EDI obtained with the Chile
model was 11 times higher than that of the WHO model. In addition, the EDI determined
for females (WOMAN model) was higher than that determined for males (MEN model)
(Tables 2a and 2b, respectively). In the male group, the highest EDI values corresponded
to the active substances: pyrimethanil, chlorfenapyr, methamidophos, ac-etamiprid, and
myclobutanil (Table 2a). In the Chile model (Table 2b), the highest values of pyrimethanil
were detected as 4.5 × 10−4, 4.0 × 10−4, 3.9 × 10−4 and 4.2 × 10−4 mg/kg bw/day. The
highest EDI for chlorfenapyr in the age group 15–24 years was 3.9 × 10−4 mg/kg bw/day,
and for methamidophos: 2.4 × 10−4 mg/kg bw/d. For the Chile model (Table 2d), in all
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age groups, the EDI of pyrimethanil was the highest, with values of 4.5 × 10−4, 4.1 × 10−4,
4.0 × 10−4 and 4.2 × 10−4 mg/kg bw/d, respectively. The highest EDI for chlorfenapyr
in the age group 15–24 was 3.9 × 10−4 mg/kg bw/day. Moreover, the highest EDI for
methamidophos was 2.4 × 10−4 mg/kg bw/day. In the Chile model, we calculated the cHI
for all pesticide residues with similar health effects according to the information described
in the Pesticide Properties Database (PPDB) from the University of Hertfordshire (Table 3).
The values of cHI were highest for the organophosphate active substance: chlorpyrifos,
methamidophos, and methomyl. The values obtained for methamidophos and chlorpyrifos
could induce chronic toxic effects d. In this study, the highest cHI for both the acetyl
cholinesterase inhibitors and the neurotoxicant effects were 27.9 and 28, respectively.

Table 1. Distribution and pesticide residues levels detected in fresh tomatoes.

Pesticide Category Frecuency
% from the

Total Pesticide
Detected

Mean
(mg/kg)

Range min–max,
(mg/kg)

Maximun Residue
Level
MRL

(mg/kg)

λ-cyhalothrin I 5 8.2 0.01 0.0025–0.02 0.10
Buprofezin I 5 8.2 0.05 0.027–0.078 1.00
Indoxacarb I 5 8.2 0.01 0.0025–0.022 0.50

Chlorfenapyr I 6 9.8 0.20 0.043–0.589 1.00
Chlorpyrifos I 3 4.9 0.02 0.022–0.036 0.50

Methamidophos I 5 8.2 0.12 0.026–0.459 0.01
Acetamiprid I 13 21.3 0.09 0.015–0.49 0.20
Imidacloprid I 2 3.3 0.05 0.0025–0.045 0.50

Methomyl I 1 1.6 0.05 0.0025 0.50
Pyrimethanil F 1 1.6 0.23 0.0025–0.233 0.70

Difenoconazole F 7 11.5 0.05 0.013–0.151 0.50
Azoxystrobin F 1 1.6 0.00 0.0025 3.00

Boscalid F 6 9.8 0.03 0.022–0.091 3.00
Myclobutanil F 1 1.6 0.09 0.0025–0.085 0.30

I—Insecticide, F—Fungicide.

Table 2. Estimated Daily Intake (mg/kg bw/d) for different gender, age groups, national and international
scenarios: (a) Men; (b) Woman.

(a)
Pesticide

Acceptable
Daily Intake

(mg/kg)

(a) World Health
Organization (b) Chile

15–24 25–44 44–65 65+ 15–24 25–44 44–65 65+

Acetamiprid 2.5 × 10−2 1.3 × 10−5 1.2 × 10−5 1.2 × 10−5 1.3 × 10−5 1.5 × 10−4 1.4 × 10−4 1.4 × 10−4 1.4 × 10−4

Buprofezin 1.0 × 10−2 7.3 × 10−6 6.5 × 10−6 6.5 × 10−6 7.0 × 10−6 8.3 × 10−-5 7.4 × 10−5 7.4 × 10−5 8.0 × 10−5

Chlorfenapyr 3.0 × 10−2 3.0 × 10−5 2.6 × 10−5 2.6 × 10−5 2.8 × 10−5 3.4 × 10−4 3.0 × 10−4 3.0 × 10−-4 3.2 × 10−4

Chlorpyrifos 1.0 × 10−3 3.0 × 10−6 2.7 × 10−6 2.7 × 10−6 2.8 × 10−6 3.4 × 10−5 3.0 × 10−5 3.0 × 10−5 3.3 × 10−5

Imidacloprid 6.0 × 10−2 6.7 × 10−6 5.9 × 10−6 5.9 × 10−6 6.4 × 10−6 7.6 × 10−5 6.8 × 10−5 6.8 × 10−5 7.3 × 10−5

λ-cyhalothrin 2.5 × 10−3 1.5 × 10−6 1.3 × 10−6 1.3 × 10−6 1.4 × 10−6 1.7 × 10−5 1.5 × 10−5 1.5 × 10−5 1.6 × 10−5

Methamidophos 1.0 × 10−3 1.8 × 10−5 1.6 × 10−5 1.6 × 10−5 1.7 × 10−5 2.1 × 10−4 1.8 × 10-4 1.8 × 10−4 2.0 × 10−4

Azoxystrobin 1.0 × 10−1 3.7 × 10−7 3.3 × 10−7 3.3 × 10−7 3.5 × 10−7 4.2 × 10−6 3.8 × 10−6 3.8 × 10−4 4.0 × 10−6

Difenoconazole 1.0 × 10−2 6.8 × 10−6 6.1 × 10−6 6.1 × 10−6 6.5 × 10−6 7.8 × 10−5 7.0 × 10−5 7.0 x 10-5 7.5 × 10−5

Miclobutanil 2.5 × 10−2 1.3 × 10−5 1.1 × 10−5 1.1 × 10−5 1.2 × 10−5 1.4 × 10−4 1.3 × 10−4 1.3 × 10−4 1.4 × 10−4

Indoxacarb 5.0 × 10−3 9.5 × 10−7 8.4 × 10−7 8.4 × 10−7 9.0 × 10−7 1.1 × 10−5 9.6 × 10−6 9.6 × 10−6 1.0 × 10−5

Boscalid 4.0 × 10−-2 4.8 × 10−6 4.3 × 10−6 4.3 × 10−6 4.6 × 10−6 5.5 × 10−5 4.9 × 10−5 4.9 × 10−5 5.3 × 10−5

Methomyl 2.5 × 10−3 3.7 × 10−7 3.3 × 10−7 3.3 × 10−7 3.5 × 10−7 4.2 × 10−6 3.8 × 10−6 3.8 × 10−6 4.0 × 10−6

Pirimetanil 1.7 × 10−1 3.4 × 10−5 3.1 × 10−5 3.1 × 10−5 3.3 × 10−5 3.9 × 10−4 3.5 × 10−4 3.5 × 10−4 3.8 × 10−4
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Table 2. Cont.

(b)
Pesticide

Acceptable
Daily Intake

(mg/kg)

(c) World Health
Organization (d) Chile

15–24 25–44 44–65 65+ 15–24 25–44 44–65 65+

Acetamiprid 2.5 × 10−2 1.5 × 10−5 1.4 × 10−5 1.3 × 10−5 1.4 × 10−5 1.7 × 10−4 1.6 × 10−4 1.5 × 10−4 1.6 × 10−4

Buprofezin 1.0 × 10−2 8.4 × 10−6 7.6 × 10−6 7.3 × 10−6 7.8 × 10−6 9.6 × 10−5 8.6 × 10−5 8.4 × 10−5 8.9 × 10−5

Chlorfenapyr 3.0 × 10−2 3.4 × 10−5 3.1 × 10−5 3.0 × 10−5 3.2 × 10−5 3.9 × 10−4 3.5 × 10−4 3.4 × 10−4 3.6 × 10−4

Chlorpyrifos 1.0 × 10−3 3.4 × 10−6 3.1 × 10−6 3.0 × 10−6 3.2 × 10−6 3.9 × 10−5 3.5 × 10−5 3.4 × 10−5 3.7 × 10−5

Imidacloprid 6.0 × 10−2 7.6 × 10−6 6.9 × 10−6 6.7 × 10−6 7.1 × 10−6 8.7 × 10−5 7.9 × 10−5 7.6 × 10−5 8.1 × 10−5

λ-cyhalothrin 2.5 × 10−3 1.7 × 10−6 1.5 × 10−6 1.5 × 10−6 1.6 × 10−6 1.9 × 10−5 1.7 × 10−5 1.7 × 10−5 1.8 × 10−5

Methamidophos 1.0 × 10−3 2.1 × 10−5 1.9 × 10−5 1.8 × 10−5 1.9 × 10−5 2.4 × 10−4 2.1 × 10−4 2.1 × 10−4 2.2 × 10−4

Azoxystrobin 1.0 × 10−1 4.2 × 10−7 3.8 × 10−6 3.7 × 10−7 4.0 × 10−7 4.9 × 10−6 4.4 × 10−6 4.2 × 10−6 4.5 × 10−6

Difenoconazole 1.0 × 10−2 7.9 × 10−6 7.1 × 10−5 6.9 × 10−6 7.3 × 10−6 9.0 × 10−5 8.1 × 10−5 7.9 × 10−5 8.4 × 10−5

Miclobutanil 2.5 × 10−2 1.4 × 10−5 1.3 × 10−5 1.3 × 10−5 1.3 × 10−5 1.7 × 10−4 1.5 × 10−4 1.4 × 10−-4 1.5 × 10−4

Indoxacarb 5.0 × 10−3 1.1 × 10−6 9.8 × 10−7 9.5 × 10−7 1.0 × 10−6 1.2 × 10−5 1.1 × 10−5 1.1 × 10−5 1.2 × 10−5

Boscalid 4.0 × 10−2 5.6 × 10−6 5.0 × 10−6 5.2 × 10−6 5.2 × 10−6 6.4 × 10−5 5.7 × 10−5 5.9 × 10−5 5.9 × 10−5

Methomyl 2.5 × 10−3 4.2 × 10−7 3.8 × 10−7 3.7 × 10−7 4.0 × 10−7 4.9 × 10−6 4.4 × 10−6 4.2 × 10−6 4.5 × 10−6

Pirimetanil 1.7 × 10−1 4.0 × 10−5 3.6 × 10−5 3.5 × 10−5 3.7 × 10−5 4.5 × 10−4 4.1 × 10−4 4.0 × 10−4 4.2 × 10−4

Table 3. Chronic Hazard Index for the for all the scenarios in fresh tomatoes from local supermarkets of Metropolitan region,
Chile: (a) Men-WHO; (b) Men-Chile; (c) Woman-WHO; (d) Woman-Chile.

Scenario Age Group

Reproduction
Develop-

ment
Effects

Acetyl
Cholinesterase

Inhibitor
Neurotoxicant

Respiratory
Tract

Irritant

Skin
Irritant

Skin
Sensitiser

Eye
Irritant

(a) Men
WHO

15–24 0.01 2.13 2.13 0.07 0.12 0.08 0.19

25–44 0.01 1.90 1.90 0.07 0.11 0.07 0.17

44–65 0.01 1.90 1.90 0.07 0.11 0.07 0.17

65+ 0.01 2.03 2.04 0.07 0.12 0.07 0.18

(b) Men
Chile

15–24 0.13 24.33 24.38 0.84 1.39 0.89 2.20

25–44 0.11 21.68 21.72 0.75 1.24 0.79 1.96

44–65 0.11 21.68 21.72 0.75 1.24 0.79 1.96

65+ 0.12 23.22 23.27 0.80 1.33 0.85 2.10

(c) Woman
WHO

15–24 0.01 2.45 2.45 0.08 0.14 0.09 0.22

25–44 0.01 2.20 2.21 0.08 0.13 0.08 0.20

44–65 0.01 2.14 2.15 0.07 0.12 0.08 0.19

65+ 0.01 2.28 2.28 0.08 0.13 0.08 0.21

(d) Woman
Chile

15–24 0.15 27.95 28.01 0.96 1.60 1.02 2.53

25–44 0.13 25.18 25.23 0.87 1.44 0.92 2.28

44–65 0.13 24.47 24.52 0.84 1.40 0.89 2.21

65+ 0.14 26.06 26.11 0.90 1.49 0.95 2.35

4. Discussion

The limits of detection in our work ranged from 5–10 µg/kg and the limit of quan-
tification was between 10–20 µg/kg. Supporting our findings, in a validation study the
LOD ranged from 2.35 µg/kg for benthiavalicarb to 6.49 µg/kg for allethrin in fresh toma-
toes [51]. On another hand, the recovery rates of our study ranged from 89.7–107.3% for
all the pesticides quantified according to the range proposed by the SANTE guide from
0.1 to 19.6%. Supporting our results, similar results reported a range from 80.1 and 112%
for 24 pesticide residues in tomatoes marketed in Colombia [52]. In addition, results from
72–116% were obtained in multiclass pesticide residues in tomato samples collected from
different markets of Iran [53]. The RSD values were as follows: λ-cyhalothrin 2.7%; bupro-
fezin 3.6%; indoxacarb 3.3%; chlorfenapyr 2.9%; chlorpyrifos 4.3%; methamidophos 4.5%;
acetamiprid 2.3%; imidacloprid 10.2%; methomyl 9.5%; pyrimethanil 6.1%; difenoconazole
4.5%; azoxystrobin 3.9%; boscalid 3.1%; and myclobutanil 5.8%. These results showed
that the results and their accuracy were positive and the laboratory competences were
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confirmed. Comparing the results obtained in this work to other studies, the RSD values
from 2.1–17.9% were obtained for pesticide residues in tomatoes in Turkey [54].

Previous surveillance studies reported the existence of pesticide residues in local
markets worldwide. A recent study analysed tomato samples (n = 20) from the local
markets of Majmaah Province, Saudi Arabia, and determined that 27% of the analysed
samples contained pesticide residues, cypermethrin in most of the cases [55]. Moreover,
a surveillance study of organophosphates in Northern Thailand was performed using
160 samples of vegetables, including tomatoes from local markets. They described a rate of
chlorpyrifos residues of 33.8% in all the samples detected [56]. Finally, a monitoring study
in tomatoes marketed in Bogota, Colombia (n = 400) discovered at least one pesticide in
70.5% of the total samples evaluated. In this study, the most frequently detected active
substances were pyrimethanil, carbendazim, dimethomorph, and acephate [52].

Based on our results and the previously reported literature, we considered that
methamidophos residues posed a potential risk to human health [21,22]. A previous
study conducted on the residues in tomatoes from Iranian markets (n = 150) reported the
presence of both chlorpyrifos and diazinon residues above the MRL [53]. Similar results
were obtained in tomatoes from Ghana (n = 20), in which the residues of methamidophos,
malathion, and dimethoate exceeded the corresponding MRL [57]. A surveillance study
in vegetables in Saudi Arabia, including tomatoes (n = 26), reported a high frequency
of methomyl, imidacloprid, metalaxyl, and cyproconazole residues [58]. In Argentina,
pesticide residues were evaluated in several vegetables, including tomatoes from domestic
markets (n = 10), and found that 65% of the total samples were contaminated and that 20%
were above the MRL [59]. A surveillance study in Kuwait also analysing tomatoes (n = 16),
determined that 21% of samples had a pesticide residue concentration above the MRL. The
pesticides more frequently detected in this study were imidacloprid, deltamethrin, cyper-
methrin, malathion, acetamiprid, monocrotophos, chlorpyrifos, and diazinon, all of which
exceeded their corresponding MRLs [60]. In a study including tomato samples (n = 17)
from the Burkina Faso market, 36% of the pesticide-containing samples exceeded the MRL.
The main residues detected were acetamiprid, carbofuran, chlorpyrifos, λ-cyhalothrin,
dieldrin, imidacloprid, and profenofos. According to a health risk assessment included in
this study, chlorpyrifos and λ-cyhalothrin posed a threat to human health [61]. A study
conducted in Canada on 133 samples of vegetables, including 17 samples of tomatoes,
reported that 47% of samples were above the limit of detection for at least one pesticide.
Among all the pesticide residues detected, the active substances imidacloprid, acetamiprid,
and clothianidin were the most recurrent [62]. Furthermore, similar results were reported
in tomatoes obtained from the Jordan Valley, with transgressions of chlorothalonil and
daminozide [63]. Finally, another surveillance study determined that 61% of the tomatoes
cultivated in greenhouses in the Mediterranean region of Turkey contained the active
substances: chlorpyrifos methyl, cyfluthrin, deltamethrin, and acetamiprid [54].

In a study from Saudi Arabia, acetamiprid was the most commonly detected pesticide
residue in tomatoes from supermarkets (n = 10) [64]. In a study conducted on Nepalese
tomatoes (n = 32), all the samples showed pesticide residues, mainly chlorpyrifos and
carbendazim [65]. Additionally, parathion, malathion, endosulfan, dieldrin, and DDT
concentrations above the MRL were detected in a study of Tanzanian tomato samples
(n = 17) [66]. In a study conducted on tomato samples from Valencia (n = 90), 13.3% of the
samples had carbendazim, 12.2% had chlorpyrifos, 6.7% had cypermethrin, and 4.4% had λ-
cyhalothrin [67]. A surveillance study in Senegal on vegetables including tomatoes (n = 57)
reported that 65% of the samples had active substances such as DDT, dimethoate, and
λ-cyhalothrin [68]. Finally, a study conducted on Turkish vegetables, including tomatoes
(n = 177), detected pesticide residues in 67% of the tomato samples evaluated, of which
14% had pesticide residues concentrations above the MRL. The main pesticides detected in
this study were acetamiprid (9 samples > MRL), carbendazim (1 sample > MRL), oxamyl
(2 sample > MRL), tebuconazole (6 samples > MRL), azoxystrobin, boscalid, pyridaben,
and fludioxonil [69].
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Several previous studies reported that the EDI of pesticide residues in tomatoes
were higher than our results. A study conducted on tomatoes from Northeast China
(n = 36) reported that the EDIs of methamidophos, dichlorvos, diazinon and omethoate
were 4.2-fold, 1.7-fold, 1.2-fold, and 4.1-fold higher than the respective AIDs for adults.
The maximum EDIS for children reported in this study for methamidophos, dichlorvos,
diazinon and omethoate were 3.2-fold, 1.3-fold, 0.96-fold and 3.17-fold higher than their
corresponding ADI [70]. A study conducted on tomatoes from Zhejiang, China (n = 237),
reported that the EDI of chlorpyrifos and cypermethrin in a group of children (2 to 6
years old) was 48.9% and 31.8% of ADI, respectively [71]. In contrast with these results,
another study assessing the presence of pesticide residues in several vegetables in Zambia,
including tomatoes (n = 9), reported an EDI below the ADI estimated by the World Health
Organization and the Food and Agriculture Organization (FAO) [72]. Another study
assessed the pesticide concen-trations in tomato samples from Tanzania (n = 50), and
reported that the EDIs for chlorpyrifos, permethrin, and ridomil were higher than the
values permitted, indicating that consumption of fresh tomatoes could pose health risks to
the consumer [73]. Furthermore, a study of pesticide residues in tomatoes from Kazakhstan
(n = 44) reported EDI values ranging from 0.01% of the ADI established for pyrimethanil,
to 12.05% of the ADI established for λ-cyhalothrin. The most critical pesticides were
triazophos and flusilazole, contributing 70.8% and 42.5% to the cHI [74].

The HQs for all scenarios are described in Figure 1. Methamidophos had the highest
value. Methamidophos showed the highest value in the Chilean model, age group 15–24
(23.8 in the WOMAN model and 20.8 in the MEN model). As shown in Figure 1a, the HQ
for MEN decreased in the following order: methamidophos > chlorpyrifos > buprofezin
> difenoconazole > myclobutanil > λ-cyhalothrin. Moreover, as shown in Figure 1b, the
HQs for the WOMAN model decreased in the same order as that described in the model,
MEN. A study conducted on Nepalese tomatoes assessed the HQ and cHI in adolescents
and adults, and reported similar finding to our study [65].
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Figure 1. Hazard Quotients (HQ) for all the scenarios in fresh tomatoes from local supermarkets of the Metropolitan Region,
Chile: (a) Men; (b) Woman.

A previous study carried out on 19 tomato samples reported a high exposure to chlor-
pyrifos and ethion, supporting our findings. In this study, the HI was approximately 100%
of the ADI, and chlorpyrifos was reported as a risk for adults [54]. HQ > 1 was observed
for the active substances profenofos, triazophos, dimethoate, omethoate, chlorpyrifos, and
carbendazim with high HQs [68]. Contrasting results were reported in tomatoes cultivated
in greenhouses from the Turkish Mediterranean region, with 61% of samples containing
chlorpyrifos methyl, cyfluthrin, deltamethrin, or acetamiprid. All the pesticides mentioned
showed an HI of 9.5% for adults and 11.02 for children (3 to >10 years), mainly owing to the
presence of chlorpyrifos [66]. Moreover, a study, assessing the health risk of tomatoes from
Kazakhstan, reported triazophos and flusilazole residues, indicating that pesticide residues
could be considered a public health issue [74]. In addition, some samples of tomato with
an HI higher than 1 for chlorothalonil were reported and could pose a threat to children’s
health [75].

5. Conclusions

Chilean supermarkets conduct internal testing programmes on pesticide residues.
The aim of this private surveillance is to identify non-compliances with the Maximum
Residue Levels set by the Chilean government. If the pesticide residues levels in fresh
tomatoes are above the MRL, the supermarkets force the farmers to reduce the number of
pesticide applications and to improve the use of good agricultural practices. Therefore,
supermarkets should implement a larger sampling test to cover a higher number of tomato
samples and identify hazardous pesticides such as methamidophos, chlorpyriphos and
methomyl. In addition, the Chilean authorities should increase the effort for testing fresher
tomato samples for national consumption in supermarkets of the Metropolitan Region.

In our study, 9% of the total samples evaluated showed concentrations of pesticide
residues above the Maximum Residue Levels of pesticides permitted in Chile. Based on the
results obtained, methamidophos, chlorpyriphos and methomyl, which are internationally
considered to be highly hazardous pesticides by the Food and Agriculture Organization
and the World Health Organization of the United Nations, should be restricted in their use
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on tomatoes marketed in Chile. However, the main limitations of our study are the lack of
consumption frequency and body weight data for children. Further dietary consumption
studies are necessary for conducting a health risk assessment in Chile.
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