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Following years of rapid progress identifying the genetic underpinnings of amyotrophic

lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD),

remarkable consistencies have emerged pointing to perturbed biology of heterogeneous

nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying

extents these RNA-binding proteins are deposited in pathological inclusions in affected

tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number

of familial cases of ALS and FTD. Here we review the normal function and potential

pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1

to disease. We highlight recent evidence linking the low complexity sequence domains

(LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how

alterations in the dynamics of these organelles could contribute to disease. In particular,

we discuss the various roles of disease-associated hnRNPs in stress granule assembly

and disassembly, and examine the emerging hypothesis that disease-causing mutations

in these proteins lead to accumulation of persistent stress granules.

Keywords: amyotrophic lateral sclerosis, frontotemporal dementia, stress granules, hnRNPs, membraneless

organelles

INTRODUCTION

RNA-binding proteins (RBPs) are a large class of proteins that assemble with RNA to form
ribonucleoproteins (RNPs). These proteins largely govern the function and fate of client RNAs,
controlling their metabolism at all stages from RNA synthesis (transcription) to degradation
(decay). RBPs are among the most abundant proteins in cells, localizing to both the nucleus
and cytoplasm, and most are expressed ubiquitously. Heterogeneous nuclear ribonucleoproteins
(hnRNPs) are a major subclass of evolutionarily conserved RNPs that are primarily concentrated
in the nucleus, although many hnRNPs [e.g., hnRNP A1 and TAR DNA-binding protein 43 (TDP-
43)] shuttle between the nucleus and the cytoplasm. The hnRNP family initially consisted of 24
proteins, termed hnRNP A1 through hnRNP U; however, the hnRNP family has grown as well-
studied proteins have been later identified as hnRNPs. hnRNPs coat nascent pre-mRNAs to form
messenger RNPs (mRNPs), which operate as the functional center of diverse biological processes,
including mRNA splicing, polyadenylation, nuclear export, localization, and translation, providing
many potential avenues by which hnRNP dysfunction could lead to pathogenesis.

Over the last decade, disturbances in the function of hnRNPs have become closely linked
to neurodegenerative diseases, most prominently amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD), two diseases with significant genetic and pathological overlap
(Taylor et al., 2016). ALS is a progressive and uniformly fatal neurodegenerative disease
characterized by loss of motor neurons in the brain and spinal cord. FTD is a lethal syndrome

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00326
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00326&domain=pdf&date_stamp=2018-05-15
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jpaul.taylor@stjude.org
https://doi.org/10.3389/fnins.2018.00326
https://www.frontiersin.org/articles/10.3389/fnins.2018.00326/full
http://loop.frontiersin.org/people/558413/overview
http://loop.frontiersin.org/people/410784/overview


Purice and Taylor hnRNP Function in ALS/FTD Pathology

that results in progressive changes in personality, behavior, and
language due to progressive loss of neurons in the frontal and
temporal lobes of the brain. Importantly, ALS shows clinical
overlap with several other adult-onset degenerative disorders,
most frequently FTD, but also inclusion body myopathy (IBM)
and Paget’s disease of bone (PDB). When manifestations of
these conditions (i.e., ALS, FTD, IBM, and/or PDB) are found
together, they constitute a clinical syndrome termed multisystem
proteinopathy (MSP) (Taylor, 2015).

The first link between hnRNPs and neurodegeneration arose
from a 2006 study which recognized that ALS and FTD share
a pathological signature defined by prominent deposition of
ubiquitin-positive cytoplasmic inclusions that contain TDP-43
(Neumann et al., 2006). Indeed, it is now appreciated that
redistribution of TDP-43 from the nucleus to cytoplasmic
inclusions is observed in the vast majority (∼97%) of sporadic
and familial ALS cases, perhaps only absent in those cases
involving mutations in FUS (fused in sarcoma) or SOD1 (Cu–
Zn superoxide dismutase). TDP-43 pathology is also a prominent
feature of virtually all cases of tau-negative FTD (accounting for
roughly 50% of FTD cases) (Irwin et al., 2015). In 2007, similar
TDP-43 pathology was found also to be a prominent feature of
nearly all cases of sporadic and familial IBM (Weihl et al., 2008;
Salajegheh et al., 2009). Several years after the appreciation of
TDP-43 pathology in ALS, FTD, and IBM, the importance of
this feature was underscored by the identification of ALS-causing
mutations in the gene encoding this RBP (Gitcho et al., 2008;
Kabashi et al., 2008; Kuhnlein et al., 2008; Rutherford et al., 2008;
Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et al.,
2008; Pamphlett et al., 2009). Since then, mutations impacting
additional RBPs, including FUS, hnRNP A1, hnRNP A2B1,
matrin-3 (MATR3), and TIA1, were identified that are causative
of ALS, FTD, and/or IBM (Kwiatkowski et al., 2009; Vance et al.,
2009; Kim et al., 2013; Liu et al., 2013; Johnson et al., 2014;
Mackenzie et al., 2017). Moreover, in these diseases many of these
RBPs have been reported to become depleted from the nucleus
and deposited in cytoplasmic inclusions.

These findings suggest that perturbed RBP function and
associated alteration in RNA metabolism are important drivers
of the progression and pathology of sporadic ALS and FTD and
could therefore link inherited and spontaneous forms of the
disease. However, critical gaps exist in our understanding
of the links between neuronal function, dysfunctional
RNA metabolism, and other cellular events underlying the
pathogenesis of ALS and FTD. Although a growing list of
mutations responsible for ALS and FTD impinge on many
aspects of RNA metabolism and protein homeostasis (recently
reviewed in Taylor et al., 2016; Webster et al., 2017), in this
mini-review, we focus on the subset of disease-causing RBPs that
are hnRNPs, namely TDP-43, FUS, hnRNP A1, hnRNP A2B1,
MATR3, and TIA1.

COMMON CHARACTERISTICS OF
DISEASE-CAUSING hnRNPS

Structurally, all hnRNPs contain one or more RNA-binding
domains, the most common of which is designated as an
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FIGURE 1 | Mutations that cause ALS and FTD cluster in the LCD of

hnRNPs and/or disrupt nuclear localization. TDP-43, FUS, hnRNP A1, hnRNP

A2B1, MATR3, and TIA1 are ubiquitously expressed hnRNPs that are similar in

domain structure and function, each containing at least one RRM and LCD.

The LCD region of all hnRNPs is well established with the exception of MATR3,

for which PONDR score analysis (http://www.pondr.com/) was used to identify

the disordered LCD regions. Mutations identified in patients with ALS, FTD,

and/or MSP are depicted as red circles. Mutations in TDP-43, FUS, hnRNP

A1, hnRNP A2B1, and TIA1 primarily cluster in the LCD region, whereas

mutations in MATR3 are less concentrated in a single region. Several

mutations are also found in the NLS of FUS and one in the NLS of TDP-43,

causing them to mislocalize to the cytoplasm. MATR3 contains mutations in

both the NES and NLS, although further studies are necessary to confirm their

effects on MATR3 localization. RRM, RNA recognition motif; LCD,

low-complexity domain; NLS, nuclear localization signal; NES, nuclear export

signal; RGG, Arg-Gly-Gly box; ZnF, zinc finger; PY-NLS, proline-tyrosine NLS;

PRI, polypyrimidine tract binding (PTB)-RRM interaction domain.

RNA recognition motif (RRM) (Figure 1). While all hnRNPs
discussed in this review include an RRM, they each contain
at least one additional type of RNA-binding domain, defined
as a K-homology (KH) domain or a zinc finger motif,
both of which facilitate binding to specific RNA sequences,
and/or one or more RGG (Arg-Gly-Gly) boxes, which provide
strong RNA interaction without a great deal of specificity
(Figure 1).

TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1
are all ubiquitously expressed and carry out varying functions
depending on whether they are localized to the nucleus or
the cytoplasm. Such localization is facilitated by both nuclear
export sequences and nuclear localization sequences (NLSs),
allowing nucleocytoplasmic shuttling (Figure 1). TDP-43 and
MATR3 each contain a classic bipartite NLS, and MATR3
also includes a membrane retention signal that can anchor
chromosomes to the nuclear matrix (Hibino et al., 1992, 2006;
Coelho et al., 2015). In contrast, FUS, hnRNP A1, and hnRNP
A2B1 each contain a single proline-tyrosine NLS (PY-NLS), a
specialized type of NLS that confers dependence on a single
receptor (KapB2 or transportin) (Lee et al., 2006; Dormann
et al., 2012; Twyffels et al., 2014; Figure 1). Although detailed
analysis of TIA1 has not revealed sequence determinants related
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to classically understood nuclear localization, the localization
of TIA1 is transcription-dependent and its nuclear import and
export are mediated by its RRM2/3 domains (Zhang et al.,
2005).

Each of the disease-associated hnRNPs discussed in this
review also contains at least one low complexity sequence domain
(LCD), such as glycine-, proline-, or acid-rich domains: TDP-
43 has a C-terminal glycine-rich LCD that mediates interactions
with other hnRNPs, including hnRNP A1, hnRNP A2B1, hnRNP
A3, and FUS (Buratti et al., 2005; Kitamura et al., 2016); FUS
contains an N-terminal SYGQ-rich (serine-, tyrosine-, glycine-,
glutamine-rich) LCD that functions in transcriptional activation;
hnRNP A1 and hnRNP A2B1 each contain a C-terminal glycine-
rich LCD that contains an RGG motif required for stress granule
localization; MATR3 has several predicted LCDs; and TIA1
contains a glutamine-rich C-terminal LCD that promotes stress
granule assembly (Kedersha et al., 2000; Gilks et al., 2004; Panas
et al., 2016). Although historically considered to be protein-
protein interaction domains, LCDs contain motifs that can
be recognized by other proteins or nucleic acids, resulting in
multivalent interactions. This ability to interact with multiple
partners is essential for the liquid-liquid phase separation
property exhibited by hnRNPs, a biophysical phenomenon that
promotes higher order intracellular assemblies, most notably
membraneless organelles. These types of organelles are highly
relevant to RNA metabolism, as several types of RNP-based
membraneless organelles, including nuclear speckles, processing
bodies (P bodies), RNA transport granules, and stress granules,
have recently emerged as complexes that can regulate RNA
metabolism (e.g., RNA splicing, translation, and decay). These
structures are of particular interest in the context of highly
polarized neurons, some of which have axons 10,000 times
longer than their cell bodies, and in which local translation
in distinct (and distant) subcellular compartments is necessary
for rapid responses to local stimuli. In these neurons, as
in many other cell types, nascent mRNA transcripts are
sequestered with associated RBPs (e.g., TDP-43, hnRNP A1,
and FUS) into RNA granules that inhibit mRNA translation
and decay until the granules are delivered to specific sites
within the cell (Kanai et al., 2004; Belly et al., 2005; Elvira
et al., 2006; Sephton and Yu, 2015). Moreover, TDP-43,
FUS, hnRNP A1, hnRNP A2B1, and TIA1 are required for
the dynamic assembly, disassembly, and function of stress
granules, while MATR3 is important for the formation of P
bodies (Rajgor et al., 2016). RNA granules, stress granules,
and P bodies are highly dynamic structures that behave
like liquid droplets in cells, similar to how oil droplets act
when mixed with water. Stress granules can be targeted for
degradation by autophagy in a process termed granulophagy.
However, as described below, ALS- and FTD-causing mutations
in hnRNPs and other RBPs are thought to foster a less
dynamic (and typically less soluble) state within stress granules
and/or other membraneless organelles, possibly promoting
fibrillization of aggregation-prone proteins and likely also
adversely affecting RNA metabolism by disturbing their normal
functions (Figure 2).

TDP-43

Structure and Function
A central player in the pathogenesis of ALS/FTD, TDP-43 is a
414-amino acid protein implicated in a wide variety of cellular
functions (Figure 1). The amino terminus is composed of a
77-amino acid domain that mediates homodimerization and
tetramer formation, an assemblage that appears to be important
to its function in pre-mRNA splicing (Jiang et al., 2017). TDP-
43 also harbors two tandem RRMs that preferentially bind
UG-rich RNA or TG-rich DNA with high affinity (Buratti
and Baralle, 2001; Kuo et al., 2014). Biochemical cross-linking
studies suggest that TDP-43 may bind to thousands of RNA
targets (Polymenidou et al., 2011; Tollervey et al., 2011),
indicating that this protein has the potential to impact RNA
metabolism on a broad scale. Indeed, early proteomic studies
found that TDP-43 strongly interacts with proteins involved
in RNA splicing and translation machinery (Freibaum et al.,
2010). Since then, evidence has accumulated implicating TDP-
43 as influencing RNA metabolism at every stage of the RNA
life cycle, including transcription, splicing, mRNA processing,
microRNA processing, regulation of coding and long non-coding
RNA expression, mRNA transport, mRNA stability, and the
formation of cytoplasmic RNA granules (recently summarized in
Ratti and Buratti, 2016). As may be expected for a protein that
plays a central role in RNA metabolism, levels of TDP-43 are
tightly regulated (Ayala et al., 2011; Polymenidou et al., 2011)
and, in fact, TDP-43 regulates its own expression by binding to
its own 3′ untranslated region (Ayala et al., 2011; Polymenidou
et al., 2011; Avendano-Vazquez et al., 2012). Additional RNA-
related functions have been revealed by characterization ofmouse
embryonic stem cells in which TDP-43 has been knocked out,
including the notable finding that a lack of TDP-43 leads to
retention of cryptic exons that in some cases disrupts translation
or promotes nonsense-mediated decay, revealing a role for TDP-
43 as a guardian of the transcriptome through repression of
cryptic exons (Ling et al., 2015). TDP-43 has also been found
to physically associate with the Drosha microprocessor complex,
suggesting a role in miRNA biogenesis (Gregory et al., 2004;
Ling et al., 2010; Kawahara and Mieda-Sato, 2012). Consistent
with this suggestion, a defect in microRNA biogenesis has
been reported in neurons derived from patients with TDP-43
mutations (Zhang et al., 2013). Studies of the localization and
dynamics of TDP-43 in neurons have reported that cytoplasmic
TDP-43 redistributes to axons and dendrites in response to
activity and influences neurite outgrowth (Wang et al., 2008;
Fallini et al., 2012). Subsequently, TDP-43 was recognized as
a constituent of RNA granules that traffic mRNAs to distal
compartments for local translation (Wang et al., 2008).

Role in Disease
In both neurons and glia of patients with ALS and/or FTD,
TDP-43 is mislocalized from the nucleus to the cytoplasm,
where it is heavily post-translationally modified via cleavage,
phosphorylation, acetylation, and ubiquitination, and forms
granular pathology that evolves to one or a few large inclusions.
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FIGURE 2 | ALS mutations alter the dynamics and function of membraneless organelles. RNA-binding proteins associate with mRNA, forming mRNPs that are

transported to the cytosol. The hnRNPs discussed in this review contain LCDs that mediate phase separation, contributing to the assembly/disassembly, dynamics,

and liquid properties of membraneless organelles such as stress granules. Stress granules that begin forming aggregates and are no longer capable of being

disassembled by liquid-liquid phase separation mechanisms are cleared by autophagy/granulophagy. Disease-causing mutations can trigger the assembly of aberrant

or persistent membraneless organelles in which the high concentration and close interactions of the LCDs over time may promote the transition of aggregation-prone

proteins (e.g., TDP-43, FUS) to pathogenic amyloid fibrils. mRNP, messenger ribonucleoprotein particle; LCDs, low complexity domains.

Because this subcellular redistribution leads to nuclear depletion
of TDP-43, the pathogenic mechanism may involve loss of
nuclear function, gain of cytoplasmic function, or, most likely,
a contribution from both. Currently, more than 40 familial
and sporadic mutations in TDP-43 are known to lead to ALS
and/or FTD, accounting for an estimated 5% of familial ALS
cases and <1% of sporadic cases (Gendron et al., 2013; Taylor
et al., 2016). Interestingly, nearly all of the disease-causing
mutations are clustered in the LCD region. The LCD of TDP-
43 is required for the recruitment of TDP-43 to stress granules
and is thought to mediate the assembly of translation-stalling
cytoplasmic granules and their liquid properties; furthermore,
it influences the solubility and cellular localization of TDP-43
(Ayala et al., 2008; Dewey et al., 2011; Ramaswami et al., 2013).
Two disease-causing mutations are located in the RRM and
are predicted to generate a more stable protein that is cleaved
more efficiently, thereby increasing the amount of cytoplasmic C-
terminal fragments of TDP-43 (Austin et al., 2014; Chiang et al.,
2016).

Recent in vitro studies have demonstrated that within the
LCD of TDP-43, a balance between hydrophobic and electrostatic
forces results in a conserved α-helical structure that is required
for induction of liquid-liquid phase separation; interestingly,
ALS mutations within this region significantly disrupt phase
separation and promote the conversion to aggregates (Conicella
et al., 2016; Li et al., 2018). Consistent with these observations
linking the mutation-rich LCD to the biophysical behavior of
TDP-43, several recent investigations of disease-causing TDP-
43 mutations have yielded important insights into RNP granule
dynamics in primary neurons. In these studies, RNP granules
consisting of wild-type TDP-43 exhibited distinct biophysical
properties depending on their axonal location, suggesting that

the properties of TDP-43 granules are dependent on subcellular
context and can change over time (Gopal et al., 2017). In contrast,
granules formed by ALS-linked mutant TDP-43 are more viscous
and show disrupted axonal transport dynamics, suggesting that
the increased viscosity observed in TDP-43 mutant granules may
lead to a toxic gain of function, possibly enhancing its propensity
for aggregation (Alami et al., 2014; Gopal et al., 2017). Disruption
in trafficking of RNA granules due to mutant expression of TDP-
43 or lack of expression of wild-type TDP-43 also has detrimental
consequences for neurons, since local protein synthesis is highly
dependent on mRNP granule transport and TDP-43 binds to
mRNAs that encode genes related to synaptic development and
function (Wang et al., 2008; Godena et al., 2011; Narayanan et al.,
2013; Alami et al., 2014; Coyne et al., 2014).

FUS

Structure and Function
FUS or FUS/TLS (fused in sarcoma/translocated in liposarcoma)
is a 526-amino acid protein that shares its classic domain
architecture (SYGD domain, three RGGs, one RRM, one zinc
finger domain, and a PY-NLS) with EWS and TAF15 proteins,
which together with FUS form the FET family of proteins
(Figure 1). FUS is primarily localized to the nucleus, although
super-resolution imaging of mouse hippocampal neurons has
detected FUS in dendritic post-synaptic compartments and
within axonal terminals in close proximity to presynaptic
proteins and vesicles (Schoen et al., 2015). FUS is involved in
diverse cellular processes including cell proliferation (Bertrand
et al., 1999), DNA damage repair (Baechtold et al., 1999; Bertrand
et al., 1999; reviewed in Sama et al., 2014), and almost every aspect
of RNA metabolism, including transcription and stress granule
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function (Yang et al., 1998; Bentmann et al., 2013). Most recently,
FUS has been shown to control back-splicing reactions leading to
production of circular RNA (RNA in which the 3′ and 5′ ends
have been joined together) in rodent stem cell-derived motor
neurons, further adding to the complexity of FUS-dependent
functions (Errichelli et al., 2017). Interestingly, FUS has also been
found to associate with the Drosha microprocessor (Gregory
et al., 2004; Ling et al., 2010; Kawahara and Mieda-Sato, 2012)
as well as Dicer complexes (Freibaum et al., 2010; Kawahara and
Mieda-Sato, 2012), suggesting a role for FUS (along with TDP-43,
which also associates with Drosha) in miRNA biogenesis.

Role in Disease
Three years after the discovery of TDP-43 as the major
component of inclusions in the central nervous system of
nearly all ALS patients, FUS was identified as the primary
component of TDP-43-negative cytoplasmic inclusions in rare
patients with ALS, all of whom had causative genetic mutations
in FUS (Vance et al., 2009; Suzuki et al., 2010; Tateishi
et al., 2010). Mutations in FUS have been estimated to
account for up to 4% and 1% of total familial and sporadic
ALS cases respectively (Lagier-Tourenne et al., 2010). FUS
pathology is also observed in approximately 10% of FTD
cases, although there are no reported cases of FUS-related
mutations that lead to FTD (Nolan et al., 2016). The majority
of pathogenic FUS mutations are located in the C-terminal PY-
NLS or completely delete the NLS sequence, thereby impairing
nuclear import of FUS (Dormann et al., 2010), leading to
accumulation of FUS in the cytosol and giving rise to an
apparent toxic gain of function (Scekic-Zahirovic et al., 2016;
Sharma et al., 2016). Mutations in the NLS correlate with
both severity of disease and age of onset, such that increased
mislocalization to the cytoplasm is associated with earlier onset
and more aggressive disease (Dormann et al., 2012; Kuang et al.,
2017).

Similar to mutated TDP-43, mislocalized mutant FUS protein
expressed in mammalian cell lines or in primary rodent neurons
is recruited to stress granules (Bosco et al., 2010; Dormann
et al., 2010; Ito et al., 2011; Bentmann et al., 2012; Baron
et al., 2013; Lenzi et al., 2015; Kuang et al., 2017). Moreover,
biophysical studies have demonstrated that FUS, at physiological
concentrations, forms liquid-like droplets that can convert into
a solid state, a process of phase conversion that is exacerbated
by disease-causing mutations in the LCD (Han et al., 2012; Patel
et al., 2015). Taken together, these findings suggest a model
in which disease-associated LCD mutations or nuclear import
defects cause increased cytoplasmic concentration of FUS and
augment its recruitment to stress granules, which over time
develop into pathological inclusions, potentially due to increased
FUS self-interactions or misfolding (Bentmann et al., 2013; Lin Y.
et al., 2015; Molliex et al., 2015; Patel et al., 2015).

hnRNP A1 AND hnRNP A2B1

Structure and Function
Two of the most abundantly expressed proteins in cells, hnRNP
A1 is a 372-amino acid protein encoded by HNRNPA1 and

hnRNP A2B1 is a 341-amino acid protein (identical to its
isoform hnRNP B1 but lacking 12 amino acids) encoded by
HNRNPA2B1 (Jean-Philippe et al., 2013). hnRNP A1 and hnRNP
A2B1 share similar domain architecture and are primarily
localized to the nucleus (Nakielny and Dreyfuss, 1999; Jean-
Philippe et al., 2013; Kim et al., 2013; Thandapani et al.,
2013; Wall and Lewis, 2017; Figure 1). Because the LCDs of
both proteins contain steric-zipper motifs, which are two self-
complementary beta sheets that can give rise to the spine of
an amyloid fibril, these domains are predicted to have high
fibrillization propensity (Goldschmidt et al., 2010). Although
the two proteins do have some distinct roles in transcriptional
control, hnRNP A1 and hnRNP A2B1 have many overlapping
functions, including processing of heterogeneous nuclear RNAs
intomaturemRNAs, splicing, translation, stabilization of mRNA,
transcriptional elongation, and regulation of DNA metabolism
associated with telomeres (Beriault et al., 2004; Zhao et al.,
2009; Flynn et al., 2011; Guo et al., 2013; Jean-Philippe et al.,
2013; Lemieux et al., 2015). Notably, hnRNP A1 and hnRNP
A2B1 are components of RNA transport granules in neurons
(Elvira et al., 2006). In addition, hnRNP A1 and hnRNP A2B1
translocate to the cytoplasm in response to stress and are
recruited to stress granules (Guil et al., 2006; McDonald et al.,
2011).

Role in Disease
Mutations in the aggregation-prone LCDs of hnRNP A1 and
hnRNP A2B1 account for <1% of familial and sporadic forms
of ALS and are more frequently associated with the broader
spectrum disorder MSP (Kim et al., 2013; Taylor, 2015).
Interestingly, muscle biopsies of MSP patients have revealed
concurrent cytoplasmic mislocalization/nuclear clearing and
partial colocalization of TDP-43 and hnRNP A1 or TDP-43
and hnRNP A2B1 (Kim et al., 2013). Disease-causing mutations
are predicted to strengthen the steric zippers of hnRNP A1
and hnRNP A2B1, altering the dynamics of stress granule
assembly and accelerating nucleation and fibrillization in vitro
(Kim et al., 2013). Consistent with these predictions, in vitro
synthetic studies have shown that both wild-type hnRNP A1
and hnRNP A2B1 form fibrils and that disease mutations greatly
enhance this fibrillization. Furthermore, mutated hnRNP A1
and hnRNP A2B1 form fibrils that are self-seeding and can
recruit wild-type protein, suggesting that these proteins have
prion-like properties (Kim et al., 2013). In a more detailed
study of hnRNP A1, the LCD was demonstrated to drive the
phase separation that mediates the assembly of stress granules
and their liquid properties. In these experiments, RNA binding
contributed to phase separation and enhanced fibrillization in
protein-rich droplets (Molliex et al., 2015). These findings suggest
that hnRNP A1 acts in a concentration-dependent manner
and interacts with RNA to mediate phase transition and drive
the formation of membraneless organelles. Furthermore, since
disease-causing mutations in hnRNP A1 promote fibrillization
in vitro, mutations that alter the dynamics of membraneless
organelles could result in accelerated fibrillization and the
formation of aggregates that can accumulate within the cell
(Molliex et al., 2015).
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MATR3

Structure and Function
MATR3 is an 847-amino acid protein encoded by the MATR3
gene and consists of two RRMs flanked by two zinc finger
domains and a conserved polypyrimidine tract binding-RRM
interaction (PTB-RRM; PRI) domain (Figure 1). MATR3 is
predicted to have extensive LCDs, and PONDR (Predictor Of
Naturally Disordered Regions) score analysis identifies three
disordered LCD regions of 50 or more amino acids in length
(Romero and Dunker, 1997; Garner et al., 1998, 1999; Coelho
et al., 2015; Figure 1). Although MATR3 is primarily localized
to the inner nuclear matrix and nucleoplasm, it has also been
detected in the cytoplasm at low levels (Hibino et al., 2006).
MATR3 has several functions, including roles in transcription
(Skowronska-Krawczyk and Rosenfeld, 2015) and early stages
of the DNA damage response (Salton et al., 2010). MATR3 also
functions in RNA metabolism, including mRNA stabilization
(Salton et al., 2011), the coupling of transcription to splicing via
interaction with RNA polymerase II (Das et al., 2007), nuclear
retention of hyperedited RNAs to prevent their translation
(Zhang and Carmichael, 2001), and splicing (Coelho et al., 2015).
In addition, MATR3 interacts via RNA with other hnRNPs,
including TDP-43 and hnRNP K, potentially to regulate several
RNA processes including transcription and splicing (Salton et al.,
2011; Johnson et al., 2014).

Role in Disease
Mutations inMATR3 account for approximately 1% of total cases
of ALS (Johnson et al., 2014; Lin K. P. et al., 2015; Origone
et al., 2015; Leblond et al., 2016; Xu et al., 2016; Marangi et al.,
2017) and are also causative of autosomal dominant late-onset
distal myopathy (Muller et al., 2014). In both sporadic and
familial cases, MATR3 binds directly to TDP-43, and at least
some disease-causing mutations alter this binding in a mutation-
selective and RNA-dependent manner (Johnson et al., 2014). In
healthy human tissue, MATR3 is found in a granular pattern
in the nuclei of motor neurons and surrounding glial cells. In
patients with disease-causing ALS mutations, MATR3 is largely
localized to the nucleus, with occasional immunostaining in
the cytoplasm (Johnson et al., 2014). These findings parallel
a cellular model that showed that ALS/myopathy-associated
MATR3 mutations do not produce profound changes in the
localization of MATR3 (Gallego-Iradi et al., 2015). However,
recently evidence has demonstrated that MATR3 is a component
of neuronal cytoplasmic inclusions in motor neurons in cases of
sporadic ALS (Tada et al., 2017). Surprisingly, unlike the other
hnRNPs discussed in this review, stressed cells overexpressing
wild-type or mutant MATR3 do not recruit MATR3 to stress
granules or change the nuclear localization of MATR3, and
do not induce the formation of inclusion-like structures in
either the cytoplasm or nucleus (Gallego-Iradi et al., 2015).
Although the mechanisms by which MATR3 might lead to ALS
pathology remain to be elucidated, it appears that alterations in
expression levels of MATR3 in the muscle and spinal cord might
be critical for neuromuscular function and that dysregulation
of its expression may underlie some aspects of neuromuscular

dysfunction (Moloney et al., 2016; Rayaprolu et al., 2016). In
addition, recent data suggest that expression of disease-causing
MATR3 mutations leads to defects in nuclear export of global
mRNA and more specifically mRNA encoding TDP-43 and FUS,
potentially contributing to pathogenesis (Boehringer et al., 2017).

TIA1

Structure and Function
TIA1 is a 386-amino acid protein that is structurally very similar
to TDP-43 (Figure 1). Notably, each of its three RRMs has
a distinct RNA-binding profile (Dember et al., 1996; Forch
et al., 2002; Kim et al., 2007; Bauer et al., 2012; Wang et al.,
2014). RRM1 binds AU-rich pre-mRNA sequences and interacts
with the LCD to recruit and stabilize the U1 small nuclear
ribonucleoprotein-associated protein U1C, a splicing regulator
(Forch et al., 2002). RRM2 is necessary and sufficient for TIA1 to
bind RNA and exhibits the highest binding affinity to U-rich pre-
mRNA sequences, and RNA binding is further enhanced when
RRM3 is present (Bauer et al., 2012). TIA1 is largely localized to
the nucleus and has been associated with several functions related
to RNA metabolism, including alternative splicing, translational
repression, and mRNA silencing (Lopez de Silanes et al., 2005;
Carrascoso et al., 2014; Waris et al., 2014). In response to cellular
stress, TIA1 translocates to the cytoplasm, suppresses mRNA
translation by binding to specific mRNA transcripts marked
by AU-rich elements, and nucleates stress granule formation
through self-association of its LCD (Gilks et al., 2004; Lopez de
Silanes et al., 2005; Wang et al., 2014; Waris et al., 2014).

Role in Disease
One of the most recent genes associated with ALS, TIA1 harbors
several ALS- and ALS/FTD-associated mutations in its LCD
(Mackenzie et al., 2017). Notably, the LCD of TIA1 is also
the site of a mutation that causes Welander distal myopathy,
a myopathy characterized by TDP-43-positive inclusions (Klar
et al., 2013). These disease mutations alter the biophysical
properties of TIA1 by significantly increasing its propensity
toward phase separation, delaying stress granule disassembly
following removal of stressful stimuli, and promoting the
accumulation of non-dynamic stress granules that sequester
TDP-43 (Mackenzie et al., 2017). Furthermore, TDP-43 recruited
to these stress granules becomes immobile and insoluble.
Interestingly, although TIA1 is similar in structure and function
to TDP-43, examination of patient pathology has revealed
inclusions that are immunoreactive for TDP-43 but not TIA1
(Mackenzie et al., 2017). These findings reinforce the importance
of disturbed RNA metabolism in neurodegenerative disorders
and place dysfunctional membraneless organelle dynamics at the
center of disease progression and pathogenesis.

RBP-MEDIATED PATHOGENIC
MECHANISMS IN ALS AND FTD

Disease-causing mutations in TDP-43, FUS, hnRNP A1, hnRNP
A2B1, MATR3, and TIA1 point to disturbed biology of RBPs,
especially hnRNPs, as playing a central pathogenic role in ALS
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and FTD. This view is further supported by evidence that alleles
of the RBP ataxin-2 (ATXN2) with intermediate repeat expansion
increase the risk of ALS-FTD, as well as evidence that variants
in RBPs not discussed in this review (e.g., ANG, EWS, TAF15)
may contribute to the burden of ALS-FTD. All of these RBPs
have related domain architecture that includes multiple RNA-
binding domains and sizeable LCDs that are predicted to be
intrinsically disordered (Figure 1). Notably, for most of these
proteins there is a tendency for disease-causing mutations to
impact the composition of the LCD, which is a domain that
strongly promotes liquid-liquid phase separation to drive the
assembly of membraneless organelles such as stress granules
(Figure 1). It is important to point out, however, that these
RBPs engage in a variety of additional assemblies that arise
through phase separation, for example the nucleolus (Berry
et al., 2015), P granules (Elbaum-Garfinkle et al., 2015), nuclear
speckles (Hennig et al., 2015), and others, and that disease-
causing mutations that disturb phase transitions are likely to
have a broad impact on cellular physiology that stretches beyond
alterations to stress granule dynamics.

Recent findings related to mutations in chromosome 9 open
reading frame 72 (C9ORF72) have reinforced the importance
of phase separation in disease (DeJesus-Hernandez et al., 2011;
Renton et al., 2011; Majounie et al., 2012). The leading cause of
sporadic and familial ALS, mutations in C9ORF72 lead to disease
when an intronic GGGGCC hexanucleotide repeat is massively
expanded. In patients with these mutations, the expanded
GGGGCC repeats are translated into five different species of
dipeptide repeat proteins (DPRs). Two species of these repeats
(polyGR and polyPR) feature alternating arginine residues, which
are charged, highly polar, and carry a dipole moment. Arginine
residues frequently engage in charge-charge interactions with
basic residues or Pi-cation interactions with aromatic residues,
two interaction types that are thought to contribute significantly
to intermolecular adhesion between LCDs to permit phase
separation. Notably, the arginine-containing DPRs (polyGR
and polyPR) insinuate into and disturb the properties of
membraneless organelles, including stress granules, Cajal bodies,
nuclear speckles, and the nucleolus—all organelles that are
active liquids and are mediated by phase separation (Lee et al.,
2016; Boeynaems et al., 2017). Not surprisingly, the arginine-
containing DPRs are consistently reported to be the most toxic in
living cells (Kwon et al., 2014; Mizielinska et al., 2014; Wen et al.,
2014; Freibaum et al., 2015; Lee et al., 2016). Further evidence
suggesting a role for arginine-containing DPRs comes from a
recent report revealing correlation between the regions of polyGR
deposition and neurodegeneration in the brains of patients with
C9ORF72-related ALS-FTD (Saberi et al., 2017).

Additional evidence that disturbance in the dynamics of
membraneless organelles, especially stress granules, are a
unifying mechanism between the many disease-causing RBPs
and ALS and/or FTD pathogenesis can be found in the study
of disease genes not traditionally linked to RBP biology. For
example, mutations in valosin-containing protein (VCP) cause
both ALS and FTD. VCP has emerged as an essential factor
in the autophagic degradation of stress granules and, indeed,
ALS-FTD-causing mutations lead to accumulation of poorly

dynamic, TDP-43-positive stress granules (Buchan et al., 2013).
Moreover, an enhancer/suppressor screen in Drosophila VCP
mutants identified three RBPs (TDP-43, hnRNP A1, hnRNP
A2B1) that suppressed the mutant VCP-associated phenotype
when knocked down (Ritson et al., 2010). As discussed above,
all three of these proteins lead to ALS when mutated, all three
contain LCDs, and all three are associated with stress granules.
In a separate screen of DPR toxicity, proteomic analysis of
DPRs identified several DPR interactors, including TDP-43 and
ATXN2, another ALS-related RBP that contains an LCD and
is recruited to stress granules. TDP-43 and ATXN2 were found
to interact genetically with DPRs, as knockdown of these genes
suppressed the DPR-associated viability phenotype in flies (Lee
et al., 2016). The observations that knockdown of disease-
causing LCD-containing RBPs (i.e., TDP-43, ATXN2, hnRNPA1,
hnRNP A2B1) suppresses the toxicity caused by other disease-
associated proteins (i.e., VCP and DPRs) demonstrates that
although disease-causing RBPs have separate functions, they
are constituents of stress granules and normally maintain the
material properties (i.e., assembly/disassembly rates, mobility,
and viscosity) of stress granules, further strengthening the
hypothesis that stress granules are dysregulated in ALS and
FTD.

Taken together, an emerging refrain of these studies suggests
that the consequence of disease-causing mutations in RBPs
is a perturbation in the material properties of RNA granules
due to increased adhesive forces between constituent proteins,
thus increasing the viscosity of these liquid assemblies. This
disturbance is expected to have two potentially adverse
consequences. First, increased viscosity results in impaired
dynamics of RNA granules (i.e., the ability to exchange
components with the surrounding cytoplasm or to unpack their
RNA cargo at the appropriate time and place) and impaired
normal function. Consistent with this hypothesis, mutations in
hnRNP A1, hnRNP A2B1, and TIA1 increase the adhesive forces
that drive higher order assembly (Kim et al., 2013; Mackenzie
et al., 2017), alter the material properties and dynamics of RNA
granules composed of these proteins (Mackenzie et al., 2017),
and produce poorly dynamic RNA granules (Kim et al., 2013;
Mackenzie et al., 2017). Second, the accumulation of poorly
dynamic RNA granules is likely to promote longer length-
scale (and thus more stable) assemblies of fibrillization-prone
proteins such as TDP-43 and FUS. According to this view,
persistent, poorly dynamic RNA granules may evolve over time
into pathological inclusions that are appreciated in end-stage
disease, thus accounting for the frequent association of RNA
granule components with ALS-FTD pathology (Figure 2)—a
hypothesis that remains to be tested.

FUTURE QUESTIONS

Although immense progress has been made toward defining
the genetic and biological basis of ALS and FTD, it remains
challenging to define the molecular mechanisms that link
specific disease-causing mutations to stress granule dysfunction
and the accumulation of pathological inclusions. Given the
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converging evidence described here, one of the most compelling
hypotheses is founded on the notion that impairment of the
material properties of stress granules leads to impairment of
the functions supported by these organelles (Figure 2). At the
same time, the residence time of aggregation-prone proteins in
the highly concentrated environment is prolonged, increasing
the opportunity for nucleating the assembly of stable, amyloid
structures and also promoting their growth and maturation
(Figure 2). Perhaps the most stable of these is TDP-43, which
may be prone to form stable assemblies and become toxic
within poorly dynamic stress granules. Going forward, there are
four pressing enigmas to resolve that relate to how assemblies
built from hnRNPs (such as stress granules) contribute to
disease. First, we must define precisely how disease mutations
impair the material properties of membraneless organelles.
Second, we must identify which function(s) of membraneless
organelles are impaired in a manner that contributes to ALS
and FTD pathology. Third, in a related question, we need
to determine which membraneless organelles are important
in this process, including delineating whether stress granules
are indeed the key target. Finally, we must define whether
impaired membraneless organelles (e.g., stress granules) are

the source of TDP-43 pathology, and if so, whether this

contributes to driving the pathogenic process. Answering these
questions will advance our understanding of the key molecular
processes that drive ALS and FTD with the long-term goal
of identifying potential targets or processes for therapeutic
intervention.
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