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Abstract: Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers
and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe,
namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work
aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity
of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using
two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher
cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels
decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression
of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover,
MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α),
while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased
in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly
increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased
in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult
and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.

Keywords: mitoxantrone; cardiotoxicity; inflammation; oxidative stress; age; cumulative dose

1. Introduction

Mitoxantrone (MTX) is a well-established anticancer agent used in metastatic breast
cancer, acute myeloid leukaemia, non-Hodgkin’s lymphoma, acute lymphoblastic leukaemia
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in children, metastatic hormone-refractory prostate cancer, as well as in aggressive or re-
fractory multiple sclerosis (MS) [1]. MTX inhibits DNA and RNA synthesis through DNA
intercalation and topoisomerase-II inhibition [2]. MTX is used in MS because of its powerful
immunosuppressive and immunomodulatory properties, abrogating T helper cell activity,
enhancing T suppressor cell function, inhibiting B lymphocyte function, and macrophage
proliferation. MTX also inhibits the synthesis of pro-inflammatory cytokines, namely inter-
feron γ (IFN-γ), tumour necrosis factor (TNF-α), interleukin-2 (IL-2), and overall antibody
production [3,4].

Despite its clinical efficacy, MTX’s high lipophilicity facilitates its distribution to
healthy tissues and organs, namely to the heart, where it accumulates [5], which may
lead to deleterious effects in this organ. In fact, MTX-induced cardiotoxicity is one of its
most severe side effects and this can hamper its therapeutic use. MTX-induced cardiac
side effects increase with the total cumulative dose, so MTX recommended maximum
lifetime cumulative dose has been established at 140 mg/m2 for cancer treatment [6] and
100 mg/m2 in MS treatment. Nevertheless, MTX cardiotoxicity has been described in
lower cumulative doses [7]. In a study by Rivera and collaborators, cardiotoxicity was
observed in patients who received cumulative doses of ≤75 mg/m2. Actually, 19.1%
of the 97 patients enrolled have developed cardiotoxicity, with 6.19% of those receiving
≤35 mg/m2, 19.6% receiving 36–75 mg/m2, 34.0% receiving 76–105 mg/m2, and only
40.2% of the patients received >105 mg/m2 of MTX [8]. Clinical signs of MTX-inflicted
cardiotoxicity include decreased left ventricular ejection fraction, heart failure (HF), and/or
dilated cardiomyopathy [6].

Myocardial inflammation has emerged as a pathophysiologic process that contributes
to cardiac hypertrophy, fibrosis, and dysfunction [9–11]. In that context, activation and
nuclear translocation of the nuclear factor kappa B (NF-κB) may play an important role
in the regulation of cardiac inflammatory signalling pathways, being a major contributor
to myocardial dysfunction and remodelling as seen in HF [12,13]. On the other hand,
oxidative stress can activate NF-κB pathways with consequent cytokine production stimu-
lation [14,15]. Cytokines contribute to the initiation and modulation of critical responses
within the overloaded myocardium, leading to myocyte growth, apoptotic myocyte death,
and reactive fibrosis [16,17]. Interestingly, one of the cytokines involved, TNF-α, exerts
antioxidant and antiapoptotic effects in the myocardium at physiological levels [18,19], but
when levels increase, it stimulates myocyte apoptosis [20], cardiac hypertrophy, and fibro-
sis [21]. Another cytokine involved in cardiac homeostasis is interleukin-6 (IL-6), which
possesses univocal antiapoptotic properties, protecting cardiac myocytes during acute
damage [22]. However, if IL-6 levels remain chronically elevated, it promotes a sustained
inflammatory response, contributing to cardiac hypertrophy [23]. It is also a strong marker
of diastolic dysfunction, ejection fraction, risk, and severity of HF [23]. Despite the MTX’s
immunomodulatory effect on MS, to the best of our knowledge, its role on inflammatory
cardiac pathways has not been traced yet.

Noteworthy, an important factor that influences the development of MTX cardiotox-
icity is patients’ age. Available studies demonstrate that the very young and the elderly
are more prone to develop cardiotoxicity after MTX-treatment [8,24], but the effect on
adults also has an important social and economic impact, especially in a moment where
life expectancy is increasing. Several studies have also shown that MTX is able to trigger
cardiotoxicity in small children (<4 years) [25–27]. These effects can last and affect their life
expectancy and quality of life [28–31]. This factor must be put into perspective nowadays,
as prior to the 1970s, the 5-year survival of childhood cancer was lower than 50% [32],
while now it is reaching 85% [33]. Therefore, the number of children who survive can-
cer is drastically increasing, being that chemotherapy side effects, such as cardiotoxicity,
will have a long-term impact. Nevertheless, the reasons for age susceptibility towards
MTX-inflicted cardiotoxicity have been poorly investigated [34].

This study aimed to evaluate MTX-induced cardiotoxicity in two groups of animals of
different age periods (infant and adults) and two cumulative doses. The highest cumulative
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dose was used as a starting point to assess the mechanisms of cardiotoxicity induced
by MTX. The lowest cumulative dose caused less animal suffering but allowed for the
assessment of MTX interference towards inflammation or oxidative stress pathways, and
to determine early markers of heart damage that allows the study of subtle and even
non-clinically undisclosed cardiotoxic mechanisms.

2. Results

In experiment 1, both adults and infants received a 7.0 mg/kg cumulative dose and
were sacrificed 14 days after the last administration (Figure 1). The results obtained in
experiment 1 together with previously published data [34] indicate that infants are more
resilient to MTX side effects, as will be shown in this section. As suffering was apparent in
most of the animals that received the highest dose, in experiment 2, the dose was decreased
(6.0 mg/kg) (Figure 1), and two different approaches were taken:

- Infant mice were sacrificed 17 days after the last administration to determine if, with
increased lag time, infants would present signs of cardiac damage or still maintained
higher cardiac resilience;

- Adults were sacrificed earlier, namely after 7 days to determine early markers of
heart damage that may reveal subtle cardiotoxic mechanisms before unacceptable
damage occurred.

Figure 1. Schematic representation of the distribution of the animals by cumulative dose, as well as
the timeline of administration of MTX and sacrifice.

2.1. MTX Caused Significant Effects on Body Weight and Food/Water Consumption

In the infant population, 7.0 mg/kg MTX-treated animals had significantly less body
weight gain when compared to controls after the 17th day (Figure S1A). The 7.0 mg/kg
MTX-treated adult mice had a lower average body weight than the control group after
reaching the maximum cumulative dose. In detail, statistically significant differences in
body weight occurred after the 21st day, and loss of weight occurred on the 24th day
(Figure S1B).

The amount of food and water intake was based on each animal’s body weight, since
the animals were maintained in a social environment and therefore in a group. Regarding
water consumption, overall, the 7.0 mg/kg MTX-treated infants (Figure S1C) and adults
(Figure S1D) had lower consumption than controls during all the experimental periods.
Food consumption was significantly decreased in the case of the 7.0 mg/kg MTX-treated
infant group (Figure S1E), after the 14th day. Adults that received the cumulative dose of



Pharmaceuticals 2021, 14, 510 4 of 27

7.0 mg/kg had statistically significant higher food consumption in the week following the
last MTX administration, compared with the control group (Figure S1F).

In the infant population, animals had initially significant differences in the body
weight gain between the 6.0 mg/kg MTX-treated and the control groups (Figure S2A).
These initial differences were due to the random distribution, for each cage, of the mice
belonging to different litters (Figure S2A). On the other hand, in the 6.0 mg/kg MTX-treated
adult population, a statistically significant body weight decrease was observed in the last
days of the experiment (Figure S2B).

Concerning water intake, a decrease in MTX-treated infant population intake was
observed throughout the experiment, reaching statistical significance by the end of the
protocol, when compared with the control group (Figure S2C). Regarding the adults treated
with a MTX cumulative dose of 6.0 mg/kg, a statistically significant decrease in water
intake was observed in the last days of the experiment (Figure S2D). Similar to what
happened in water intake, food consumption in the 6.0 mg/kg MTX-treated infant mice
decreased, being statistically significant in the last days of the protocol, when compared
with the control group (Figure S2E). We found that a significant decrease between the food
consumption of the MTX 6.0 mg/kg-treated adults and the control group was observed
towards the end of the experiment (Figure S2F).

2.2. Plasma Levels of Total-CK and AST/ALT Ratio Were Increased in the 7.0 mg/kg MTX-Treated
Adult Mice

In the 7.0 mg/kg MTX-treated infant group, no statistically significant differences were
observed in the aminotransferase’s levels, when compared to control mice (Table S2). Con-
cerning the adult mice, a tendency for increased aspartate aminotransferase (AST)/alanine
aminotransferase (ALT) ratio of the 7.0 mg/kg MTX-treated group, compared with the
control, was observed (p = 0.06). In the 6.0 mg/kg MTX-treated infants, ALT levels were
elevated while the AST/ALT ratio was found to be decreased when compared with the
control group. Concerning the 6.0 mg/kg-treated adult mice, there were no significant
changes in plasma aminotransferases (Table S3).

In the infant mice, plasma creatine kinase–MB (CK–MB) levels were significantly
higher in the 7.0 mg/kg MTX-treated mice when compared with the respective controls
(Table S2), while no statistically significant changes were observed in the plasma total
creatine kinase (total-CK) levels. In adult mice, plasma total-CK levels were significantly
higher in the 7.0 mg/kg MTX-treated mice, compared to respective controls (Table S2), but
no meaningful changes were found in their plasma CK–MB values compared to controls.
No significant differences in CK–MB and total-CK levels were found between control and
the 6.0 mg/kg MTX-treated adult animals (Table S3). Unfortunately, in the 6.0 mg/kg-
treated infant mice, total-CK and CK–MB levels were not determined due to an insufficient
amount of plasma.

2.3. The Ratio of Heart/Body Weight Decreased in Adults after the Highest Dose of MTX

Heart to body weight ratio was significantly decreased in the 7.0 mg/kg MTX group
(Table S2). In the 6.0 mg/kg MTX-treated adult population, no significant differences
were observed in heart weight/body weight ratio (Table S3). In addition, no statistically
significant differences were observed in heart/body weight ratio between MTX-treated
infant mice and the control group, in both doses (Tables S2 and S3).

2.4. Histological Damage Occurred in Cardiac Tissue after MTX-Treatment, Adult Population
Being More Susceptible to Cardiac Damage

The qualitative histologic examination of the heart of MTX-treated mice and controls
was done using the haematoxylin and eosin staining. Major qualitative and representative
structural alterations are depicted in Figures 2 and 3. Meanwhile, the results of the semi-
quantitative analysis are presented in Table 1. Lesions in the cardiac tissue caused by MTX
were characterized by cellular degeneration, interstitial inflammatory cell infiltration, and
necrotic zones. In experiment 1, the heart of both infant and adult control mice showed a
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preserved heart tissue structure (Figure 2A,C). In the 7.0 mg/kg MTX-treated infant group,
cardiac tissue showed interstitial inflammatory cell infiltration, signs of vacuolization, as
well as necrotic zones but to a lower extent when compared with adults. In the 7.0 mg/kg
MTX-treated adult mice, the presence of cellular oedema, cytoplasmic vacuolization of
cardiomyocytes, interstitial inflammatory cell infiltration, as well as some necrotic zones
were evident (Figure 2D).

Figure 2. Cardiac histopathology evaluation done by light microscopy from MTX-treated adult and infant animals and
respective controls, as assessed by haematoxylin and eosin staining (experiment 1, mice were euthanized 14 days after the
last administration) (A–D). Light micrograph from: (A) infant mice controls in experiment 1, showing normal morphology
and structure; (B) infant mice given a cumulative dose of 7.0 mg/kg MTX; (C) adult mice in experiment 1 showed normal
morphology and structure; (D) adult mice given a cumulative dose of 7.0 mg/kg MTX. Presence of vacuolization (orange
arrow), inflammatory infiltration (yellow arrow), as well as large and uncondensed nucleus (cyan arrow). Cellular oedema
(white arrow) and necrotic zones (blue arrow) are evident only in adult mice. Scale bar = 100 µm, n = 3. Images taken at
40× amplification.
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Figure 3. Cardiac histopathology evaluation done by light microscopy from MTX-treated adult and infant animals and
respective, as assessed by haematoxylin and eosin staining controls (experiment 2, adult and infant mice were euthanized
7 or 17 days after the last administration, respectively) (A–D). Light micrograph from: (A) infant mice controls in experiment
2, showing normal morphology and structure; (B) infant mice given a cumulative dose of 6.0 mg/kg MTX; (C) adult mice
in experiment 2 showed normal morphology and structure; (D) adult mice given a cumulative dose of 6.0 mg/kg MTX.
Presence of vacuolization (orange arrow), inflammatory infiltration (yellow arrow), vascular congestion (green arrow),
necrotic zones (blue arrow), as well as large and uncondensed nucleus (cyan arrow) is evident. Scale bar = 100 µm, n = 3.
Images taken at 40× amplification.

In experiment 2, control groups did not present any changes in the tissue structure, as
expected (Figure 3A,C). The 6.0 mg/kg MTX-treated infant group showed signs of vascular
congestion, with enlarged blood vessels, necrotic zones, inflammatory infiltrations, vac-
uolization, with a large and uncondensed nucleus (Figure 3B). In MTX-treated adults, the
presence of cytoplasmic vacuolization of cardiomyocytes, vascular congestion, interstitial
inflammatory cell infiltration, as well as some necrotic zones was evident (Figure 3D,
Table 1). The lesions were most notorious in the endocardium. Signs of obstruction in some
small calibre arteries were observed in the 6.0 mg/kg MTX-treated adult mice (data not
shown). All groups showed myocardium with preserved structure (score = 0), therefore
data regarding tissue disorganization were omitted from Table 1 (data not shown).
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Table 1. Semi-quantitative analysis of morphological parameters (cellular degeneration, necrosis,
inflammatory activity, and tissue disorganization) in the heart of 7.0 mg/kg and 6.0 mg/kg MTX-
treated and controls groups, in adult and infant animals.

Hematoxylin-eosin staining
INFANT ADULT

Control MTX 7.0 mg/kg Control MTX 7.0 mg/kg

Cellular
Degeneration 0.50 ± 0.54 0.82 ± 0.63 ** 0.64 ± 0.63 1.42 ± 0.71 ****

Necrosis 0.00 ± 0.00 0.04 ± 0.20 0.00 ± 0.00 0.23 ± 0.43 ***

Inflammatory
Activity 0.22 ± 0.42 0.85 ± 0.52 **** 0.30 ± 0.46 1.02 ± 0.49 ****

Control MTX 6.0 mg/kg Control MTX 6.0 mg/kg

Cellular
Degeneration 0.07 ± 0.25 0.47 ± 0.51 *** 0.02 ± 0.13 1.00 ± 0.00 ****

Necrosis 0.00 ± 0.00 0.27 ± 0.45 ** 0.00 ± 0.00 1.02 ± 0.14 ****

Inflammatory
Activity 0.08 ± 0.27 0.50 ± 0.51 *** 0.05 ± 0.22 1.65 ± 0.49 ****

Results of haematoxylin–eosin staining, given in scores, are presented as mean ± SD and were obtained from
3 animals from each treatment group, with exception of the control in 7.0 mg/kg MTX-treated infant group of
haematoxylin–eosin staining (n = 2). Statistical comparisons were made using the Mann-Whitney test: ** p < 0.01,
*** p < 0.001, **** p < 0.0001, MTX vs. control.

2.5. Myocardial Fibrosis Was Significantly Increased in MTX-Treated Adult Mice at Both Doses

Myocardial fibrosis, which is a hallmark of cardiac hypertrophy, was assessed by
the Sirius red technique. Results are presented in Figure 4 and Table 2. No significant
differences were observed among the infant groups regarding the percentage of colla-
gen/muscle area of the heart. In contrast, the MTX-treated adults had significant increases
in the percentage of collagen/muscle area, at both doses.

Table 2. Semi-quantitative analysis of fibrosis in the heart of the 7.0 mg/kg and 6.0 mg/kg MTX-treated and respective
controls groups, in adult and infant animals.

Sirius Red Staining
INFANT ADULT

Control MTX 7.0 mg/kg Control MTX 7.0 mg/kg

% area ratio of
collagen/skeletal muscle 0.14 ± 0.07 0.17 ± 0.05 0.14 ± 0.02 0.24 ± 0.06 ****

Control MTX 6.0 mg/kg Control MTX 6.0 mg/kg

% area ratio of
collagen/skeletal muscle 0.10 ± 0.03 0.15 ± 0.03 0.10 ± 0.02 0.16 ± 0.05 **

Results of Sirius red staining, given in area of collagen/skeletal muscle, are presented as mean ± SD and were obtained from 3 animals
from each treatment group. Statistical comparisons were made using the Mann–Whitney test: ** p < 0.01, **** p < 0.0001, MTX vs. control.
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Figure 4. Sirius red cardiac staining assessed by light microscopy from MTX-treated adult and infant animals and respective
controls (A–F). Light micrograph from (A) the control infant mice (experiment 1, mice were euthanized 14 days after the last
administration); (B) infant mice injected with a cumulative dose of 7.0 mg/kg MTX; (C) control adult mice; (D) adult mice
injected with a cumulative dose of 7.0 mg/kg MTX showing higher fibrosis. (E) Control adults (experiment 2, mice were
euthanized 7 days after the last administration); (F) adult mice after receiving a cumulative dose of 6.0 mg/kg MTX. Scale
bar = 100 µm, n = 3. Images taken at 40× amplification.



Pharmaceuticals 2021, 14, 510 9 of 27

2.6. The Highest Cumulative Dose of MTX Increased Cardiac Total Glutathione in Infants, While
Decreasing Noradrenaline Cardiac Levels in Adults

The 7.0 mg/kg MTX-treated infant group presented significantly higher cardiac values
of total glutathione (tGSH) than the control group (Table 3). No differences were found in
oxidized glutathione (GSSG) and reduced glutathione (GSH)/GSSG ratio of the infant pop-
ulation treated with MTX when compared to controls. No statistically significant changes
in the cardiac levels of tGSH, GSSG, and GSH/GSSG ratio were found in 7.0 mg/kg MTX-
treated adult mice. In the 6.0 mg/kg MTX-treated infant and adult mice, no differences
were found between groups (data not shown). Moreover, no statistically significant changes
were found in the marker of lipid peroxidation, malondialdehyde (MDA), between groups
in experiment 1.

Table 3. Biochemical cardiac parameters of the 7.0 mg/kg MTX-treated and control mice.

INFANT ADULT
Control MTX 7.0 mg/kg Control MTX 7.0 mg/kg

tGSH (nmol/mg protein) 7.72 ± 1.18 9.41 ± 1.63 * 8.01 ± 0.77 8.57 ± 2.33

GSSG (nmol/mg protein) 0.62 ± 0.19 0.77 ± 0.15 0.60 ± 0.10 0.60 ± 0.34

GSH/GSSG ratio 11.94 ± 5.23 10.62 ± 2.01 11.84 ± 3.52 15.40 ± 8.63

MDA (nmol/g protein) 27.23 ± 9.23 28.42 ± 7.32 30.65 ± 7.59 34.83 ± 12.44

ATP (nmol/mg protein) 3.94 ± 1.97 3.77± 1.42 3.92 ± 1.34 3.23 ± 1.39

Creatine (nmol/mg protein) 74.77 ± 16.25 78.94 ± 11.09 82.17 ± 13.24 84.13 ± 25.30

Phosphocreatine (nmol/mg protein) 41.06 ± 9.71 43.08 ± 6.68 37.25 ± 8.11 49.10 ± 14.36 (p = 0.06)

Noradrenaline (nmol/g protein) 8.26 ± 5.18 9.03 ± 4.63 9.79 ± 1.99 4.64 ± 5.16 *
Results, in nmol/mg protein or nmol/g protein, are presented as mean ± SD and were obtained from 7 to 8 animals from each treatment
group. Statistical analyses were made using the t-test for all adult groups, with the exception of total glutathione (tGSH) and reduced
glutathione/oxidized glutathione ratio (GSH/GSSG), where the Mann–Whitney test was done. For the infant data, the Mann–Whitney test
was used. * p < 0.05, MTX 7.0 mg/kg vs. control.

In experiment 1, to understand if MTX had any impact on the cellular energetics
on the two populations (infant and adult), intracellular adenosine 5′-triphosphate (ATP)
and phosphocreatine levels were measured (Table 3). In the 7.0 mg/kg MTX condition in
both populations, no significant differences in ATP levels were observed. Furthermore, no
significant differences were seen in phosphocreatine and creatine levels in the MTX-treated
infant group, when compared to control mice. However, in the adult population, there is a
tendency for increased phosphocreatine levels in the MTX-treated group, compared with
the control group (p = 0.06).

In experiment 2, no significant changes in ATP levels were observed in 6.0 mg/kg-
treated mice of both ages (data not shown).

For experiment 1, levels of noradrenaline are depicted in Table 3. Noradrenaline
cardiac levels were significantly lower in MTX-treated adults when compared to controls.
No meaningful differences were seen between control and infant MTX-treated mice at
7.0 mg/kg.

2.7. The Expression of GAPDH Increased in the 6.0 mg/kg MTX-Treated Infant Mice

After major and general data were gathered, the animals treated with a lower cumula-
tive dose (6.0 mg/kg) were subjected to other determinations as to assess early markers of
damage in adults, or to determine the underlying reasons that make infants more resilient
to MTX-cardiac effects after a longer washout time.

In order to assess the impact of MTX treatment on cardiac metabolism, the expression
of metabolic enzymes was evaluated by Western blotting (Figure 5). No changes were
observed on the levels of ATP synthase subunit beta while the expression of the glycolytic
enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was significantly higher
in MTX-treated infant mice, compared with control mice (Figure 5A,B). No changes were
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observed in the ratio of GAPDH to ATP synthase subunit beta in MTX-treated infant
mice, when compared with control mice (Figure 5C). No changes were seen in the levels
of ATP synthase subunit beta nor in the levels of GAPDH in MTX-treated adult mice,
when compared with control mice (Figure 5D,E). Nevertheless, significant differences were
observed in the ratio of GAPDH to ATP synthase subunit beta between MTX-treated adult
mice and the control group (Figure 5F).

Figure 5. ATP synthase subunit beta (52 kDa), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (37 kDa) expression,
and ratio GAPDH to ATP synthase subunit beta evaluated by Western blotting, from (A–C) infant MTX-treated (M), and
control mice (C), and (D–F) adult mice exposed to a cumulative dose of 6.0 mg/kg MTX (M), and control (C) adult mice
(experiment 2, infant and adult mice were euthanized 17 or 7 days after the last administration, respectively). Values are
expressed as mean ± SD and were obtained from 6 (infant) and 6–7 (adult) animals from each treatment group. Statistical
comparisons were made using the t-test: * p < 0.05, MTX 6.0 mg/kg vs. control. OD: optic density. Protein loading was
confirmed by the Ponceau S staining (Figures S3 and S4).

2.8. At the Lower Cumulative Dose, Protein Carbonylation Increased in Adult Mice

The protein carbonylation in the cardiac lysates increased in the 6.0 mg/kg MTX-
treated adult mice, compared to control mice (Figure 6B). No differences were found in the
MTX-treated infant mice (Figure 6A).

2.9. MTX Increased Catalase Expression Both in Adults and Infants, While in Infants’ Glutathione
Peroxidase Expression Increased

As shown in Figure 7C, levels of glutathione peroxidase were increased in MTX-treated
infant mice, when compared with control mice, while in adults no statistically significant
differences were observed (Figure 7F). Neither in adults nor infants, superoxide dismutase/
manganese-dependent superoxide dismutase (SOD2/MnSOD) had any significant changes
after MTX administration (Figure 7A,D). On the contrary, the levels of catalase were
increased in both MTX-treated adult and infant mice, when compared with control mice
(Figure 7B,E).
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Figure 6. Protein carbonylation cardiac content evaluated by slot blot in (A) infant mice and (B) adult mice exposed to
a cumulative dose of 6.0 mg/kg MTX (experiment 2, infant and adult mice were euthanized 17 or 7 days after the last
administration, respectively). Values are expressed as mean ± SD and were obtained from six animals from each treatment
group. Statistical comparisons were made using the t-test: * p < 0.05, MTX 6.0 mg/kg vs. control. OD: optic density,
M: mitoxantrone, C: control.

Figure 7. Superoxide dismutase 2/ manganese-dependent superoxide dismutase (SOD2/MnSOD) (26.6 kDa), catalase
(60 kDa) and glutathione peroxidase (22 kDa) expression evaluated by Western blotting, from (A–C) infant MTX-treated
(M) and control (C) mice, and (D–F) adult mice exposed to a cumulative dose of 6.0 mg/kg MTX (M) and their respective
controls (C) (experiment 2, infant and adult mice were euthanized 17 or 7 days after the last administration, respectively).
Values are expressed as mean ± SD and were obtained from 6 (infant) and 6–7 (adult) animals from each treatment group.
Statistical comparisons were made using the t-test: * p < 0.05, MTX 6.0 mg/kg vs. control. OD: optic density. Protein loading
was confirmed by the Ponceau S staining (Figures S3 and S4).
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2.10. The Heart of MTX-Treated Adult Mice Showed a Higher Density of Infiltrating
M1 Macrophages

The immunohistochemistry evaluation in the heart of pro-inflammatory M1 macrophages,
using CD68+ immunostaining, and anti-inflammatory M2 macrophage, using CD206 im-
munostaining, is shown in Figure 8 and Table 4. Data analysis indicated that the number of
CD68 positive cells had a significant increase (p < 0.001) after MTX exposure in adult mice
(Table 4). Conversely, no meaningful differences were observed in the M2 subset of the adult
population treated with MTX when compared with controls. In the 6.0 mg/kg MTX-treated
infant group, no differences were observed in the M1 and M2 macrophages when compared
with controls (photomicrographs not shown).

Figure 8. Representative photomicrographs of heart immunohistochemistry from 6.0 mg/kg MTX-treated adult and respec-
tive controls (experiment 2, mice euthanized 7 days after the last administration), by a marker (CD68+) for macrophages M1
(A,B) and by a marker for (CD206) macrophage M2 (C,D) detection, and indicated by yellow arrows. Light micrograph
(A,C) from the control of M1 (A) and M2 staining (C); light micrograph (B,D) from adult mice given a cumulative dose of
6.0 mg/kg MTX and performed staining for M1 (B) or M2 (D). Scale bar = 100 µm, n = 3. Images taken at 40× amplification.
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Table 4. Number of cells staining positive for activated macrophages marked as M1 and macrophage
marked as M2 in the heart of MTX-treated and control groups, in adult and infant animals.

INFANT ADULT
Immunohistochemistry

Control MTX 6.0 mg/kg Control MTX 6.0 mg/kg

M1 macrophage 4.28 ± 3.03 9.33 ± 7.70 12.83 ± 15.37 68.11 ± 22.77 ****

M2 macrophage 66.61 ± 43.40 62.56 ± 24.92 113.70 ±
23.10 96.56 ± 28.33

Results were expressed as mean ± SD. The value of macrophages was obtained from three animals from each
treatment group. Statistical comparisons were made using the t-test for M2 macrophage evaluation in the adult
group and the Mann–Whitney test for all infant group and M1 macrophage of adult group: **** p < 0.0001, MTX
6.0 mg/kg vs. control. Three animals per treatment, and for each animal, six photos of different areas of cardiac
tissue were evaluated and quantified using ImageJ software version 1.52a.

2.11. In Adults, the Lower Cumulative Dose of MTX Significantly Increased the Expression of
NF-kB p65

Cardiac immunohistochemistry analysis was performed in order to assess the acti-
vation of the inflammatory transcriptional factor, NF-κB, namely the fraction p65. The
immunohistochemistry data of NF-κB is shown in Figure 9 and Table 5. Immunohisto-
chemical staining of NF-κB p65 in the control group showed low cytoplasmic expression
(Figure 9A). However, the 6.0 mg/kg MTX-treated adult group showed positive cytoplas-
mic and nuclear expression. In addition, in MTX-treated animals, the endothelium of
the blood vessels showed a high expression of p65, which was evident from the intense
brown staining (Figure 9B). When performing a semiquantitative analysis, a statistically
significant increase (p < 0.01) in the mean number of the NF-κB immunopositive cells in
the MTX adult group was observed when compared with the control group (Table 5).

Figure 9. Representative photomicrographs of immunohistochemistry determination of NF-κB p65 in the cardiomyocytes-
like cells from 6.0 mg/kg MTX-treated adult and respective controls (experiment 2, mice euthanized 7 days after the
last administration) (A,B). Light micrograph (A) from the controls; and (B) from adult mice given a cumulative dose of
6.0 mg/kg MTX. Scale bar = 100 µm, n = 3. Images taken at 40× amplification.

Conversely, no meaningful differences were observed in the infant population treated
with MTX when compared with controls (photomicrographs not shown).

Subsequently, Western blot analysis showed that, in the cardiac total homogenates,
MTX led to a tendency for increased expression of NF-κB p65 levels (p = 0.08) (Figure 10D),
while no differences were observed in the infant mice (Figure 10B). Furthermore, MTX-
treated adult mice had enhanced expression of NF-κB p52 (Figure 10C), while MTX-treated
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infant mice showed a tendency for increased NF-κB p52 levels (p = 0.07) in comparison
with the control group (Figure 10A).

Table 5. Number of cells staining positive for activated NF-κB in the heart of MTX-treated and
control groups, in adult and infant animals.

INFANT ADULT
Immunohistochemistry

Control MTX 6.0 mg/kg Control MTX 6.0 mg/kg

NF-kB p65 cells 28.00 ± 12.35 26.00 ± 8.62 56.28 ± 15.69 75.17 ± 17.05 **
Results were expressed in number of cells positive to NF-κB p65 and as mean ± SD. Results were obtained from
three animals from each treatment group. Statistical comparisons were made using the t-test for adult group and
the Mann–Whitney test for infant group: ** p < 0.01, MTX 6.0 mg/kg vs. control. Three animals per treatment,
and for each animal, six photos of different areas of cardiac tissue were evaluated and quantified using ImageJ
software version 1.52a.

Figure 10. Nuclear kappa B nuclear transcription factor (NF-κB) p52 (50 kDa) and NF-κB p65 (60 kDa) expression evaluated
by Western blotting, from (A,B) infant MTX-treated (M) and control (C) mice, and (C,D) adult mice exposed to a cumulative
dose of 6.0 mg/kg MTX (M) and respective controls (C) (experiment 2, infant and adult mice were euthanized 17 or
7 days after the last administration, respectively). Values are expressed as mean ± SD and were obtained from 5–6 (infant)
and 6–7 (adult) animals from each treatment group. Statistical comparisons were made using the t-test: ** p < 0.01, MTX
6.0 mg/kg vs. control. OD: optic density. Protein loading was confirmed by the Ponceau S staining (Figures S3 and S4).

2.12. MTX Increased TNF-α Cardiac Expression while it Decreased IL-6

TNF-α was evaluated and MTX-treated adult mice had a significant increase in its
expression in comparison with the control group (Figure 11D), while MTX-treated infant
mice showed a tendency for increased TNF-α levels (p = 0.09) in comparison with the
control group (Figure 11A).
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Figure 11. Tumour necrosis factor-α (TNF- α) (25 kDa), interleukin-6 (IL-6) (24 kDa), myeloperoxidase (48 kDa) expression
evaluated by western blotting, from (A–C) infant MTX-treated (M) and control (C) mice, and (D–F) adult mice exposed to a
cumulative dose of 6.0 mg/kg MTX (M) and respective controls (C) (experiment 2, infant and adult mice euthanized 17 or
7 days after the last administration, respectively). Values are expressed as mean ± SD and were obtained from 6 (infant)
and 6–7 (adult) animals from each treatment group. Statistical comparisons were made using the t-test: * p < 0.05, MTX
6.0 mg/kg vs. control. OD: optic density. Protein loading was confirmed by the Ponceau S staining (Figures S3 and S4).

Conversely, MTX significantly decreased IL-6 levels in the heart of MTX-treated adult
mice (Figure 11E), while the MTX-treated infant mice only showed a tendency for decreased
IL-6 levels (p = 0.07) in comparison with the respective control group (Figure 11B).

Finally, data showed that MTX did not alter the expression of myeloperoxidase in
both populations (Figure 11C,F).

3. Discussion

The major findings of this work were: (1) MTX treatment affected animals’ body
weight and food/water consumption; (2) histopathological examination showed that all
MTX-treated groups had cardiac injury, being more severe in adults, and only adults
had a significant increase in fibrotic tissue, in both MTX doses; (3) infants showed some
adaptation features after MTX, namely the highest cumulative dose of MTX led to increased
tGSH levels, while the expression of GAPDH and glutathione peroxidase only increased in
6.0 mg/kg MTX-treated infant animals; (4) the lower cumulative dose (6.0 mg/ kg) elicited
an increase in catalase expression, in both adult and infant mice; (5) in adults, noradrenaline
cardiac levels decreased after 7.0 mg/kg MTX, whilst at the lower cumulative dose, protein
carbonylation and the expression of NF-κB p65 and p52 subunits, and M1 macrophage
marker increased; (6) TNF-α and IL-6 were differentially expressed within the myocardium
in response to administration of MTX 6.0 mg/kg.

In experiment 1, the 7.0 mg/kg MTX-treated adult group had significantly less body
weight compared to controls, whereas changes in body weight in the infant population
were only seen after the 17th day. In fact, in experiment 2, the lowest dose of 6.0 mg/kg of
MTX also caused a statistically significant body weight decrease in the adult population
after the 21st day. We observed that, in general, food and water intake decreased in the
following days after MTX-administration. Several studies reported a loss of body weight
in mice after MTX administration [34–37]. Signs of diarrhoea after the last administration
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of MTX in adults were seen, but not in infants, and therefore this fact can contribute to
the weight decrease. In humans, MTX induces gastrointestinal alterations, such as nausea,
vomiting, diarrhoea, and mucositis [6].

Plasma AST, ALT, total-CK, and CK–MB levels were measured in animals of both
experiments. In experiment 1, no significant differences in the aminotransferase levels
(AST and ALT) were found. However, a tendency for an increase was observed in the
AST/ALT ratio of the 7.0 mg/kg MTX-treated adult population. An increased AST/ALT
ratio has been proposed as a marker for the assessment of heart damage [38]. Dores-
Sousa et al. also showed that animals sacrificed 24 h after the last MTX administration
(9.0 mg/kg cumulative dose given in six administrations) had no significant differences
in the aminotransferase levels in any of the MTX-treated groups [34]; nevertheless, three
weeks after the last administration, AST/ALT ratio increased in the remaining infant
mice, suggesting heart damage [34]. In experiment 2, only the 6.0 mg/kg-treated infant
population had elevated ALT levels, while the AST/ALT ratio was found to be significantly
decreased. Other authors reported increased ALT levels in rats treated with a cumulative
dose of 7.5 mg/kg of MTX [39]. Therefore, the classic markers of heart damage were not
a good correlation to the damage seen in this lower dose, either in earlier time point in
adults or later time point in infants.

Regarding total-CK and CK–MB, in experiment 1, the 7.0 mg/kg cumulative MTX
dose induced a significant elevation in plasma CK–MB in infant mice, which may be
indicative of recent cardiac damage. In another study, mice treated with MTX [three doses
of 2.5 mg/kg MTX (intraperitoneal (IP))], had increased serum levels of CK–MB [40]. In
addition, the total-CK values of the 7.0 mg/kg MTX-treated adults were significantly higher
than controls, which suggests that the overall muscle activity apparently is changed by
MTX. No significant differences were seen in the 6.0 mg/kg MTX mice. Conversely, the
heart weight/ body weight ratio decreased in MTX-treated adult mice at a cumulative
dose of 6.0 mg/kg. On the contrary, an increase in cardiac weight in rats 28 days after
administering three doses of 2.5 mg/kg MTX was reported [37], suggesting different
adaptation stages.

MTX treatment resulted in cardiac tissue damage manifested by histopathological
changes. The histological examination of both right and left ventricles of the 7.0 mg/kg
MTX-treated heart revealed cellular oedema, necrotic zones, signs of vacuolization, inter-
stitial inflammatory cell infiltration, all signs of cellular degeneration. In the 6.0 mg/kg
MTX-treated mice, signs of vascular congestion were observed, with enlarged blood vessels,
inflammatory infiltrations in the interstitial spaces of the cardiomyocytes, and prolifer-
ation of connective tissue, large and uncondensed nucleus, the presence of cytoplasmic
vacuolization, as well as some necrosis. Signs of obstruction in some small calibre arteries
were observed in the 6.0 mg/kg MTX-treated adult mice. These changes were more evident
in the sub-endocardial region when compared with the sub-pericardial one. According to
the published literature, MTX produces degenerative cardiomyopathy evidenced by micro-
and macro-vacuolization, intercellular oedema, atrophy, inflammatory infiltrates, aberrant
mitochondria, myolysis of cardiomyocytes, and interstitial fibrosis in rodents [34,37,41,42],
and humans [43]. These features were also observed herein, thus highlighting the relevance
of our model. In the semi-quantitative histological analysis, the changes in heart tissue
in infant mice occurred at a lower extent than in adults, in both cumulative doses. While
one would expect that cardiac plasma toxicity markers would be increased in both studied
populations, since histological damage was observed, that did not occur in the majority
of the determinations. Whether the clearance of those markers from plasma, because of
earlier damage or if the biomarkers are not sensitive enough for the damage endured, is
not clear at this point.

The sympathetic and adrenal systems are key for cardiac function, and noradrenaline
is the main neurotransmitter/hormone responsible for the rapid adjustment of the heart
to the body’s needs. In infant mice, the cardiac levels of noradrenaline did not suffer any
significant changes, while adults treated with 7.0 mg/kg MTX had lower levels of nora-
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drenaline than controls. In a previous work by the group, a cumulative dose of 9.0 mg/kg
of MTX also caused a statistically significant decrease in cardiac noradrenaline levels in
adults, suggesting that MTX causes noradrenergic dysfunction in adult animals [34], while
not affecting infants. Age-associated changes in the autonomic nervous system are linked
to increased cardiac sympathetic tone with decreased parasympathetic input, dampened
cardiovagal baroreceptor sensitivity, and reduced clearance of plasma noradrenaline [44],
which seems to be exacerbated by MTX.

Another crucial aspect of cardiac homeostasis relates to the hearts’ energetic balance.
The primary source of energy in the heart is phosphocreatine, which maintains local ATP
pools and stabilizes cellular membranes due to electrostatic interactions with phospho-
lipids [45]. Phosphocreatine has the ability to stabilize membranes and protect cells from
damage [46]. In experiment 1, in the adult population treated with 7.0 mg/kg of MTX,
a tendency existed for increased phosphocreatine levels, while no significant changes of
creatine and phosphocreatine levels in infant mice were seen. The increased phosphocrea-
tine seen in the MTX-treated adults may be an attempt to protect the cells or to stimulate
protein synthesis [46]. It is clear that the phosphocreatine system is important to promote
de novo synthesis of ATP, by means of CK action [47]. However, no changes in cardiac ATP
were verified in the heart of both MTX-treated mice compared to controls. Similar results
were reported by others, namely with a cumulative dose of 9.0 mg/kg, when animals were
sacrificed 24 h after the last administration [34] or at a 7.5 mg/kg cumulative dose and sac-
rificed 2 days after the last administration [37]. Nevertheless, in the work of Rossato et al.,
when rats were administered with the cumulative dose of 7.5 mg/kg MTX but sacrificed
28 days after the last administration, a significant depletion of cardiac ATP levels took place,
suggesting that ATP depletion is a late event [37], possibly because response/adaptation
towards insult is probably overcome at that stage. The heart consumes large amounts of
energy in the form of ATP that is continuously replenished by oxidative phosphorylation
in mitochondria and, to a lesser extent, by glycolysis. Despite unchanged ATP synthase
subunit beta levels, the expression of the glycolytic enzyme GAPDH was significantly
higher in the MTX-treated infant mice (6.0 mg/kg), while glycolytic ratio (GAPDH/ATP
synthase subunit beta) changes were seen in adults sacrificed earlier, suggesting that al-
though the infant mice are more resilient to the highest dose, later on (17 days) a metabolic
shift to glucose oxidation occurs, which may be a determinant sign of damage. A shift from
the oxidation of fatty acids to increased oxidation of glucose, along with the inhibition of
OXPHOS activity, has been described for another topoisomerase IIb inhibitor, doxorubicin,
being these key features of heart damage [48]. Recently, our group has shown through a
proteomic study in mitochondrial enriched fractions that MTX also causes downregulation
of the fatty oxidation metabolic process [49].

Although MTX has been considered with a low ability to induce oxidative stress,
several studies have been focused on those markers when MTX heart damage is being
researched [34,37,50]. While in adults given a 7.0 mg/kg cumulative dose of MTX, no
significant changes in the cardiac levels of the tGSH, GSSG, and GSH/GSSG ratio were
found, in the infants that took the same cumulative dose, cardiac tGSH levels increased
significantly. Dores-Sousa et al. had similar results when 9.0 mg/kg of MTX was admin-
istered to infant mice that presented the highest values of tGSH three weeks after the
last administration. The authors suggested that there was an adaptation response of that
population related to an up-regulation of γ-glutamylcysteine synthetase (γ-GCS) activity
in the younger population [34]. In that sense, a recent work of the group showed that
cardiac HL-1 cells exposed to MTX also had higher levels of tGSH, and that this increase
was abrogated by the γ-GCS inhibitor, buthionine sulfoximine. On the other hand, in
the 6.0 mg/kg MTX-treated infant and adult animals, in experiment 2, no differences in
tGSH and GSSG values or ratios were observed; similarly, other authors also reported
no statistically significant changes in the cardiac GSH levels in animals treated with an
acute dose of 15.0 mg/kg of MTX, 4 days after administration [50], or with a cumulative
dose of 7.5 mg/kg of MTX, 28 days after administration [37], thus advocating that the
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cumulative dose and most likely the possibility of adaptation of the infant population
may be determinant for de novo GSH synthesis. The levels of MDA, a marker of lipid
peroxidation, were evaluated in the cumulative dose of 7.0 mg/kg in infant and adult
mice, and no statistically significant changes were observed. Our data corroborate that,
although MTX clearly induces cardiac damage, it has a low capacity to induce oxidative
stress and lipid peroxidation. In fact, in our work, MTX (6.0 mg/kg) did not alter the
expression of SOD2/MnSOD but significantly increased the levels of catalase in the heart of
both adult and infant mice. Since catalase plays an important role in breaking down H2O2
and maintaining cellular redox homeostasis, this increase may be due to the adaptation of
the cells to damage caused by MTX. In fact, in low mitochondrial oxygen consumption,
an increase of H2O2 production occurred in skeletal muscle, which was accompanied by
fatty acids β-oxidation. Nevertheless, catalase transfection and overexpression led to the
normalization of energetic pathways [51]. Furthermore, and regarding glutathione peroxi-
dase, its expression increased significantly in the heart of infant mice, 17 days after the last
administration, suggesting that the heart is adjusting to MTX and that could give infant
mice more protection concerning the MTX-induced oxidative injuries. That protection can
be seen as infants had less histological damage than adults did.

The general conviction is that in in vivo models, MTX does not increase lipid perox-
idation, serum lipids, or significantly alter the redox status of the heart, indicating that
oxidative stress does not play a major role in MTX-induced cardiac damage [37,41,52].
Even so, a recent work by our group showed that MTX might increase protein oxidative
damage [53]. Herein, protein carbonylation increased significantly in the heart of adult
mice (6.0 mg/kg) exposed to MTX, suggesting that MTX is able to cause permanent changes
in proteins. Protein carbonylation may lead to protein partial or total function inactivation,
with a wide range of downstream functional consequences, subsequent cellular dysfunc-
tion, and tissue damage [54]. A previous work also showed that adult mice treated with
a 9.0 mg/kg cumulative dose of MTX had increased heart protein carbonylation, 24 h
after the last administration, while in infants those changes were not seen in the heart [34].
Once again, infants seemed more protected towards MTX-inflicted damage. Whether that
happens because they are able to activate antioxidant defences, as seen earlier, or they have
higher intrinsic proteasome activity, needs to be further looked at.

Despite the low impact of MTX at 6.0 mg/kg dose on oxidative stress markers, cardiac
immunohistochemical analysis revealed that MTX significantly increased the expression the
NF-κB p65 subunit. Subsequently, a Western blot analysis indicated that the MTX-treated
adult mice showed a tendency for increased expression of NF-κB p65 levels (p = 0.08), the
canonical NF-κB pathway, and significantly enhanced the expression of NF-κB p52 levels,
the noncanonical pathway of this transcription factor. Activation of the canonical NF-κB
pathway provides rapid responses (within minutes) [55]. In contrast, the noncanonical
pathway is comparatively slower (activated within hours) and can be sustained for longer
periods [55]. NF-κB plays an important role in regulating inflammatory response and
its activation alters the phenotype of macrophages [56]. In this study, the MTX-treated
adult mice showed a higher density of infiltrating M1 macrophages. Macrophages have
an important role in the innate immune system and have been described to be relevant
cells within the cardiovascular system [57,58]. The increase of cardiac macrophages in
adult mice can suggest that upon MTX-induced lesions, an immunologic response is in-
duced, resulting in infiltration of inflammatory cells. M1 macrophages are involved in
pro-inflammatory responses and following activation, they produce pro-inflammatory
cytokines such as IL-1, IL-6, IL-12, and TNF-α, and chemokines [56]. Notably, MTX ad-
ministration significantly altered the expression of pro-inflammatory cytokines, increasing
TNF-α and decreasing IL-6 in mice cardiac tissue, reaching statistical significance in adult
mice. The 26S proteasome activity has a role in substantially augmenting the generation of
pro-inflammatory cytokines, although immunoproteasome activity differs with aging [59].
Whether differences in the activity of proteasome on different ages implicate differential
results seen in protein carbonylation and in cytokine levels needs to be determined in more
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detail. Nonetheless, the pro-inflammatory cytokines such as TNF-α and IL-6, are responsi-
ble for the development and progression of cardiovascular diseases [60]. TNF-α has been
implicated in patients with newly diagnosed HF, where increased levels are associated
with ventricular hypertrophy, ventricular dilatation, interstitial infiltrates, interstitial fibro-
sis, rare myocyte apoptosis, a diminished ejection fraction, attenuation of β1-adrenergic
responsiveness, and expression of atrial natriuretic factor in the left ventricle [21]. IL-6
is involved in inflammation but reveals additional cardiovascular properties through the
regulation of cardiomyocyte hypertrophy and apoptosis [61]. Under stressful conditions,
namely excessive hemodynamic stimulation and mechanical stress, cytokines promote
and sustain an unbalanced status within the myocardium, with enhanced production of
TNF-α accompanied by a simultaneous reduction of IL-6 levels and insulin-like growth
factor (IGF)-1, that may critically contribute to the development of the HF phenotype [62].
Doxorubicin is an anthracycline often used in cancer that shares similar clinical cardiotox-
icity with MTX. It has been shown that doxorubicin caused a significant increase in the
production of pro-inflammatory interleukins (IL-8, IL-6, and IL-1β) in vitro, showing the
possible importance of inflammation on doxorubicin-induced cardiotoxicity [63]. Moreover,
nanoemulsions loaded with anti-inflammatory nutraceuticals inhibited the secretion of
inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α from cardiac cells incubated with
doxorubicin, suggesting that anti-inflammatory drugs activated molecular mechanisms of
cardioprotection during doxorubicin treatment [64]. Nevertheless, the inflammatory path-
ways are also affected by immune checkpoint inhibitors, nivolumab and ipilimumab, that
caused changes in NLRP3 inflammasome, MyD88 complex NF-κB/p65 expression, and in
several interleukins in co-cultures of lymphocytes with tumor or with cardiac cells. Those
changes in several inflammatory signals were also seen in the heart after ipilimumab in an
in vivo model [65]. While in peripheral blood mononuclear cells of secondary progressive
MS patients, MTX was reported to not seemly influence the production of inflammatory
mediators, IL-6, IL-12p40, IL-10, and TGF-β [66], our data shows other results in the heart.
Our data may in fact reveal other pathways of MTX-induced cardiotoxicity.

4. Materials and Methods

β-Nicotinamide adenine dinucleotide 2′-phosphate reduced (NADPH) tetrasodium
salt hydrate was acquired from PanReac AppliChem ITW Reagents (Barcelona, Spain).
Ethylenediaminetetraacetic acid (EDTA), perchloric acid (HClO4), sodium hydroxide
(NaOH), magnesium chloride (MgCl2), sodium carbonate (Na2CO3), disodium phosphate
(Na2HPO4), copper (II) sulphate (CuSO4), potassium bicarbonate (KHCO3), potassium di-
hydrogen phosphate (KH2PO4), magnesium sulphate (MgSO4), potassium chloride (KCl),
Histosec paraffin pastilles, and FolinCiocalteu reagent, mouse monoclonal dinitrophenyl
(DNP)-KLH (MAB2223) were purchased from Merck (Darmstadt, Germany). Bio-Rad DC
protein assay kit was purchased from Bio-Rad Laboratories (Hercules, CA, USA). Phos-
phate buffered saline solution (PBS) was purchased from Biochrom (Berlin, Germany),
sodium chloride (NaCl), and sodium dodecyl sulphate (SDS) from VWR (Leuven, Bel-
gium), potassium sodium tartrate from Fluka (Buchs SG, Switzerland), methanol, DPX
mounting media, and xylene from Thermo Fisher Scientific (Loughborough, UK). Har-
ris haematoxylin was purchased from Harris Surgipath (Richmond, IL, USA), eosin 1%
aqueous from Biostain (Traralgon, Australia), and Isoflurane (Isoflo®) was obtained from
Abbott Animal Health (North Chicago, IL, USA). ABX Pentra reagents were purchased
from HORIBA (Kyoto, Japan). Enhanced chemiluminescence (ECL) reagents, and 0.45 µm
Amersham Protran nitrocellulose blotting membrane were purchased from GE Healthcare
Bio-Sciences (Pittsburgh, PA, USA). Mouse monoclonal anti-ATP synthase subunit beta
(ab14730), rabbit polyclonal anti- GAPDH(ab9485), rabbit polyclonal anti-IL-6 (ab83339),
rabbit polyclonal anti-NF-κB p65 (ab16502), mouse monoclonal anti- NF-κB p100/p52
(ab71108), rabbit polyclonal anti-TNF-α (ab66579), rabbit polyclonal anti-SOD2/MnSOD
(ab13534), rabbit polyclonal anti-catalase (ab16731), rabbit polyclonal anti-glutathione
peroxidase 1 (ab22604), rabbit polyclonal anti-myeloperoxidase (ab139748), rabbit poly-
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clonal anti-mannose receptor (M2 macrophage, ab64693), rabbit polyclonal anti-CD68
(M1 macrophage, ab125212), goat anti-rabbit IgG-horseradish peroxidase (ab97051) and
rabbit anti-mouse IgG-horseradish peroxidase (ab6728) from Abcam (Cambridge, UK).
3,3’-Diaminobenzidine (DAB), HIGHDEF® DAB chromogen/substrate set was purchased
from Enzo Life Sciences (Miraflores, Portugal). Water was purified with a Milli-Q Plus
ultrapure water purification system (Millipore, Bedford, Massachusetts, USA). All the other
reagents used were purchased from Sigma Aldrich (St. Louis, MO, USA).

4.1. Animals

Male CD-1 mice (Mus Musculus) were acclimated for a week before experiments
began and were accompanied by experienced veterinarians during all experimental proce-
dures. Temperature (22 ± 2 ◦C) and humidity (50 ± 10%) were maintained at appropriate
intervals, during 12-hour light–dark cycles. The animals were kept in groups of 3 per cage,
with environmental enrichment always present. The mice were maintained on a rodent
diet (with 4RF21 GLP certificate diet from Mucedola, Settimo Milanese, Italy) and with
autoclaved water given ad libitum according to the guidelines defined by the European
Council Directive (2010/63/EU) transposed into Portuguese legislation (Decreto-Lei no.
113/2013). Considering the animals’ welfare, a “scoring system” was created (Table S1)
to evaluate and minimize their suffering and stress. All experiments with animals were
handled with the approval of the local animal welfare body (ICBAS-UP ORBEA) and the
Portuguese national authority for animal health (DGAV, processes no. 0421/000/000/2013
and 0421/000/000/2016).

4.2. Experimental Protocol

Male CD-1 mice have been considered a good model to mimic the effects of MTX
therapy in two different life stages [34]. Herein, infants and adult mice were used: the
mice in the infant group weighed 10–12 g and were 3–4 weeks old, while mice in the
adult group weighed 38–56 g and were 8–12 weeks old. According to the literature, infant
mice had not entered puberty (equivalent to children), since in this stage of development
1 human year corresponds to 56.77 mice days [67,68], meaning that at the beginning of
the administrations, the age of infant mice corresponded to roughly 135–180 human days.
On the other hand, the mice at 8 to 12 weeks old clearly reached the young adulthood
phase [67,68], since adult mice reach sexual maturity on average at 10 weeks, while in
humans, this stage corresponds to an average age of 20 years [67,68].

4.3. Administration Schedule

Since MTX is given in cycles and throughout multiple administrations in humans, the
experiments herein enclosed aimed to mimic human MTX-therapy, and drug administra-
tion was interrupted by free-drug periods [34]. Furthermore, allometric scaling was used to
ensure that the cumulative dose of MTX administered did not exceed the maximum MTX
recommended in humans [69,70], as to maintain clinical relevance. Two cumulative doses
were given: 6.0 mg/kg MTX and 7.0 mg/kg MTX. In infants (to convert dose in mg/kg
to dose in mg/m2, we multiply by Km factor 25), it corresponded in human equivalent
to 33.5 mg/m2 and 39.1 mg/m2, respectively [69,70]. In adult mice (Km factor 37), the
cumulative doses of 6.0 mg/kg MTX and 7.0 mg/kg MTX had a human equivalent of
36.3 mg/m2 and 42.3 mg/m2, respectively [69,70]. These calculations were estimated from
the general body weight of infant (8.0 kg) and adult (70.0 kg) human population [69,70] at
the ages calculated previously.

The mice received IP administrations of MTX, in the afternoon period, to decrease
MTX-induced lethality attributed to the daily circadian rhythm [35]. In humans, MTX is
administered intravenously, but in mice, the IP route affords the same cardiac effects of
MTX [34], while avoiding the high risk of extravasation of the endovenous route that can
lead to tissue necrosis [71]. The doses were delivered through 6 IP injections (two per week),
alternating between the left and right side of the abdomen in order to avoid extra injury
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and pain. MTX dihydrochloride was dissolved in sterile 0.9% saline solution. Control
mice were injected with saline solution (0.9% NaCl) in the same volume and conditions as
MTX-treated mice. During the experimental period, food and water intake, body weight,
and animal welfare were assessed daily.

4.4. Blood Collection and Plasma Biomarkers

Animals were anesthetized through the inhalation of 5% isoflurane and then sacrificed
by exsanguination when fully sedated. After euthanasia, the animal’s abdominal cavity
was exposed, and blood was collected in the inferior vena cava into EDTA-containing tubes.
Blood was then centrifuged (920 g, 10 min, 4 ◦C), and the obtained plasma was stored at
−20 ◦C for the determination of AST, ALT, CK–MB, and total-CK. Plasma biomarkers were
determined through enzymatic assays in the apparatus ABX Pentra 400 with ABX Pentra
reagents (Japan), according to the manufacturer’s instructions.

4.5. Tissue Collection

Hearts were removed, weighed, and processed as follows: (1) segments of heart that
covered both the left and right ventricle were placed in 4% paraformaldehyde, pH 7.2–7.4,
and used for histological and immunohistochemistry analysis; (2) cardiac sections of the
same segments were placed in complete RIPA buffer (50 mM Tris-HCl, 150 mM NaCl,
1% Triton X-100 (v/v), 0.5% sodium deoxycholate (w/v), and 0.1% SDS (w/v), pH 8.0,
supplemented with 0.25 mM phenylmethanesulfonyl fluoride (PMSF), 1 mM sodium
metavanadate (Na3VO4), 10 mM sodium fluoride (NaF), 1 mM DL-dithiothreitol (DTT) and
0.5% (v/v) complete protease inhibitor cocktail and stored at −80 ◦C for immunoblotting
analysis; and (3) the remaining heart was homogenized with an Ultra-Turrax® homogenizer
in ice-cold 0.1 M phosphate-buffered solution, pH 7.4. The homogenate was aliquoted for
other determinations (namely protein determination by the Lowry method [72]) or placed
to a final concentration of 5% HClO4 [for ATP, tGSH, GSH, and GSSG, catecholamines, and
lipid peroxidation]. All steps were performed on ice.

4.6. Histological Analysis of Heart Tissue

All histological procedures were conducted according to previously published pro-
cedures [34]. Sections were subjected to haematoxylin and eosin for routine histological
evaluation and Sirius red for fibrous tissue. The slides were examined and photographed
with a Carl Zeiss Imager A1 light microscope equipped with an AxioCam MRc 5 digital
camera (Oberkochen, Germany). Histopathological evidence of tissue damage was calcu-
lated according to its severity and incidence in every slide, as previously published [34].
Sections stained with Sirius red were used to assess collagen deposition, which was eval-
uated using ImageJ software (version 1.52a, http://imagej.nih.gov/ij, Wayne Rasband,
NIH, Bethesda, MD, USA). The results of collagen content are expressed as a percentage of
collagen fibres, as previously detailed [34].

4.7. Determination of Cardiac Noradrenaline Levels

In experiment 1, cardiac noradrenaline levels were determined, as described be-
fore [34]. For a more ascertain identification of the chromatographic peaks in heart samples,
two independent procedures were used: comparison of retention time with pure standards
and spiking the samples with standards of noradrenaline.

4.8. Measurement of ATP Levels

ATP levels were determined by a bioluminescent assay based on the luciferin-luciferase
reaction, as previously described [34,73]. The results were expressed as nmol of ATP per
mg of protein (nmol ATP/mg protein).

http://imagej.nih.gov/ij
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4.9. Determination of Cardiac Creatine and Phosphocreatine Levels

In experiment 1, cardiac creatine and phosphocreatine levels were evaluated, as
described [34]. The phosphocreatine levels were calculated setting the difference between
total creatine and free creatine.

4.10. Measurement of tGSH, GSH, and GSSG

tGSH and GSSG levels were evaluated by the DTNB-GSSG reductase recycling as-
say, as previously described [34,74]. The levels of GSH were calculated by the formula:
GSH = tGSH−2 × GSSG. The results of tGSH, GSH, and GSSG were normalized to the
total protein content and were expressed as nmol of GSH or GSSG per mg of protein (nmol
GSH/mg protein or nmol GSSG/mg protein).

4.11. Assessment of Lipid Peroxidation

Lipid peroxidation was measured by assessing MDA values and comparing them
with a standard curve of MDA after reaction with thiobarbituric acid (TBA). The analysis
of MDA-equivalent content in standards and samples was performed by high-performance
liquid chromatography, as previously described [34].

4.12. Protein Carbonylation by Slot Blot Analysis

Heart sections were lysed in RIPA buffer (supplemented with PMSF, DTT, NaF,
Na3VO4, and a cocktail of protease inhibitors) through sonication and were kept at −80 ◦C
until analysis. Samples containing 20 µg of protein (as assessed by the Bio-Rad DC Protein
assay) were then processed as previously described [75]. Immunoreactive bands were
detected, and digital images were acquired using the ChemiDoc Imaging System version
2.3.0.07 (Bio-Rad, Hercules, CA, USA). The obtained images were analysed with Image Lab
software version 6.0.1 (Bio-Rad, Hercules, CA, USA).

4.13. Western Blotting Analysis

Heart tissue was lysed in a lysis buffer (RIPA supplemented with PMSF, DTT, NaF,
Na3VO4, and a cocktail of protease inhibitors). The amount of total protein was quantified
using the Bio-Rad DC Protein assay, and then the total protein (20 µg from each sample)
was fractionated by electrophoresis on a 12.5% SDS-PAGE. Gels were blotted onto a
nitrocellulose membrane (Amersham Protran, GE Healthcare, Germany) in a transfer
buffer (25 mM Tris, 192 mM glycine, pH 8.3, and 20% methanol) for 2 h (200 mA). Then,
nonspecific binding was blocked with 5% (w/v) dry non-fat milk in TBS-T (100 mM Tris,
1.5 mM NaCl, pH 8.0 and 0.5% Tween 20). Membranes were incubated with primary
antibody diluted 1:1000 (mouse anti-ATP synthase subunit beta, rabbit anti-GAPDH,
mouse anti-NF-κB p100/p52, rabbit anti-NF-κB p65, rabbit anti-SOD2/MnSOD, rabbit anti-
glutathione peroxidase 1) or 1:500 (rabbit anti-IL-6, rabbit anti-TNF-α, rabbit anti-catalase,
and rabbit anti-myeloperoxidase) in 5% w/v non-fat dry milk in TBS-T, for 2 h at room
temperature or overnight, washed and incubated with secondary horseradish peroxidase-
conjugated anti-rabbit (1:10,000) or anti-mouse (1:5000). Immunoreactive bands were
detected by enhanced chemiluminescence ECL (Amersham Pharmacia Biotech) according
to the manufacturer’s indications. The immunoreactive bands were detected using the
ChemiDoc Imaging System version 2.3.0.07 (Bio-Rad, Hercules, CA, USA). The obtained
images were analysed with Image Lab software version 6.0.1 (Bio-Rad, Hercules, CA, USA).
Protein loading was confirmed by the Ponceau S staining.

4.14. Immunohistochemistry

The detection of NF-κB subunit p65 and M1 and M2 macrophage markers was per-
formed by immunohistochemistry in a protocol already described [76], where we made
minor modifications. After heart tissue was deparaffinized, antigens were unmasked by
the pressure cooker antigen-retrieval procedure: slides were immersed in 10 mM citrate
buffer, pH 6.0, at 100 ◦C and were placed in a pressure cooker for 10 min and then cooled
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for 20–30 min. Following the blocking step, each slide was incubated with anti-NF-κB p65
polyclonal rabbit antibody (1:50), or anti-mannose receptor polyclonal rabbit antibody (M2
macrophage) (1:50), or anti-CD68 polyclonal rabbit antibody (M1 macrophage) (1:50) in
PBS containing 0.05% Tween 20 (v/v) (PBS-T) overnight (4 ◦C). After washing four times
(5 min each) with PBS, the sections were incubated for 2 h, at 37 ◦C with a goat anti-rabbit
IgG-horseradish peroxidase secondary antibody (1:100) in PBS-T. The sections were then
washed four times (5 min) under gentle stirring and incubated with DAB reagent for 1 min.
After washing, the slides were counterstained with a solution of haematoxylin-water (1:11)
for 3 min and once again washed. Finally, slides were mounted in DPX medium with cov-
erslips and routine procedures followed. Negative controls were performed as described,
with the omission of the primary antibody incubation step. All preparations were analysed
in a Carl Zeiss Imager A1 light microscope and images were recorded with a coupled
AxioCam MRc5 digital camera (Oberkochen, Germany). The semi-quantitative analysis
of IHC images was made using ImageJ software (version 1.52a, http://imagej.nih.gov/ij,
Wayne Rasband, NIH, Bethesda, MD, USA).

4.15. Statistical Analysis

Results are expressed as mean± standard deviation (SD). Statistical analyses of animal
weight, food, and water intake data were carried out by the two-way analysis of variance
(two-way ANOVA) followed by the Sidak post hoc test. When two groups and one time
point were analysed, the outliers were identified using the ROUT method (Q = 1%) first
and then statistical analysis was performed by the Student’s t-test when the distribution
was normal or by the Mann–Whitney test when the distribution was not normal. Statistical
significance was considered when p values <0.05. To perform the statistical analysis, the
GraphPad Prism 8.0 software program (San Diego, CA, USA) was used.

5. Conclusions

Inflammation plays a key role in the development and progression of cardiovascular
diseases. To the best of our knowledge, this is the first time that inflammatory signals
were shown to play an important role on MTX-induced cardiotoxicity. Overall, our work
demonstrates inflammation in cardiac tissue even when no major changes were observed
in the redox status and the ATP cardiac levels in mice exposed to lower doses of MTX.
Moreover, MTX administration caused dissimilar responses in adult and infant mice, which
may be linked to the highest antioxidant adaptation of infant or repair ability. Nonetheless,
more research is warranted to investigate the involvement of inflammation on MTX-
induced cardiotoxicity or if targeting specific mechanisms of the immune system will be
advantageous to reverse cardiotoxicity of this anticancer drug.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14060510/s1, Figure S1. [A, B] Body weight in [A] infant and [B] adult mice exposed to a
cumulative dose of 7.0 mg/kg MTX. [C and D] Water consumption of [C] infant and [D] adult mice
exposed to a cumulative dose of 7.0 mg/kg MTX. [E, F] Food consumption of [E] infant and [F] adult
mice exposed to a cumulative dose of 7.0 mg/kg MTX. Results are presented in grams (g) of food
intake/day/weight of animal, mL of water intake/day/weight of animal, or g of body weight, and as
mean± standard deviation (SD), from 8 per group. Statistical comparisons were made using two-way
ANOVA followed by the Sidak’s post hoc test (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001,
MTX 7.0 mg/kg vs. control). Figure S2. [A and B] Body weight in [A] infant and [B] adult mice
exposed to a cumulative dose of 6.0 mg/kg MTX. [C and D] Water consumption of [C] infant and
[D] adult mice exposed to a cumulative dose of 6.0 mg/kg MTX. [E and F] Food consumption of [E]
infant and [F] adult mice exposed to a cumulative dose of 6.0 mg/kg MTX. Results are presented
in grams (g) of food intake/day/weight of animal, mL of water intake/day/weight of animal, or
g of body weight, and as mean ± SD, from 6 per infant group and 17 per adult group. Statistical
comparisons were made using two-way ANOVA followed by the Sidak’s post hoc test * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001, MTX 6.0 mg/kg vs. control). Figure S3. Loading control
of Ponceau S staining of [A] ATP synthase subunit beta (52 kDa) and glyceraldehyde-3-phosphate
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dehydrogenase (GAPDH) (37 kDa), [B] Superoxide dismutase 2/manganese-dependent superoxide
dismutase (SOD2/MnSOD) (26.6 kDa) and Nuclear kappa B nuclear transcription factor (NF-κB)
p65 (60 kDa), [C] catalase (60 kDa) and [D] glutathione peroxidase (22 kDa), [E] Tumour necrosis
factor-α (TNF- α) (25 kDa), [F] interleukin-6 (IL-6) (24 kDa), [G] myeloperoxidase (48 kDa), [H]
NF-κB p52 (50 kDa) from infant mice exposed to a cumulative dose of 6.0 mg/kg MTX or control
animals. Figure S4. Loading control of Ponceau S staining of [A] ATP synthase subunit beta (52 kDa),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (37 kDa) and interleukin-6 (IL-6) (24 kDa),
[B] catalase (60 kDa) and glutathione peroxidase (22 kDa), [C] Tumour necrosis factor-α (TNF-
α) (25 kDa), [D] myeloperoxidase (48 kDa), [E] Superoxide dismutase 2/manganese-dependent
superoxide dismutase (SOD2/MnSOD) (26.6 kDa) and Nuclear kappa B nuclear transcription factor
(NF-κB) p52 (50 kDa) and [F] NF-κB p65 (60 kDa) from adult mice exposed to a cumulative dose of
6.0 mg/kg MTX or control animals. Table S1. General distress scoring sheet implemented for the
evaluation of the general welfare of mice during all the experiment. Table S2. Plasma biomarkers
and heart weight/body weight ratio after MTX (7.0 mg/kg cumulative dose). Table S3. Plasma
biomarkers and heart weight/body weight ratio after MTX (6.0 mg/kg cumulative dose).
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