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undesirable lifestyle habits both prior to the onset of disease as

well as during normal healthy life. Accordingly, early detection of,

and intervention in, metabolic disorders is desirable, but is

hampered by the lack of an established evaluation index for

young individuals. The purpose of this study was to investigate

the utility of a biomarker of health in young female subjects. The

subjects were young healthy Japanese females in whom energy

expenditure was measured for a period of 210 min after a test

meal. In addition, Δplasma glucose and Δserum insulin were

calculated from the fasting and 30 min values. ΔPlasma glucose

and Δserum insulin levels varied widely compared to fasting lev�

els. Both the area under the curve of carbohydrate oxidation rate

and serum free fatty acid levels were higher in individuals in the

high Δplasma glucose group. Moreover, Δplasma glucose was

higher in individuals in the high Δserum insulin group than in the

low Δserum insulin group. We conclude that nutritional balanced

liquid loading test using Δplasma glucose and Δserum insulin as

the evaluation index is useful for the detection of primary meta�

bolic disorders in young females.
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IntroductionThe incidence of metabolic syndrome has been increasing with
the increasing prevalence of lifestyle behaviors such as

overfeeding and/or immobilization. Individuals with metabolic
syndrome are at increased risk for developing lifestyle-related
diseases such as type 2 diabetes, hypertension, dyslipidemia and
cardiovascular disease, as well as increased mortality from cardio-
vascular disease.(1,2) Lifestyle-related diseases develop through the
accumulation of undesirable lifestyle habits both prior to the onset
of disease as well as during normal healthy life. Recent reports
have described metabolically obese, normal weight (MONW)
individuals, who have normal body weight but exhibit a cluster of
obesity-related characteristics, including excess visceral fat,
insulin resistance and hyperinsulinemia.(3–5) These observations
in apparently healthy young individuals emphasize the importance
of the early detection of, and early intervention in, metabolic dis-
orders, a goal which is hampered by the lack of an established
evaluation index in young individuals.

Postprandial hyperglycemia, which is characteristic of predia-
betic patients, is a reflection of reduced insulin sensitivity and
secretory capacity. Hyperglycemia leads to increased secretion of
late-phase insulin, thereby promoting the accumulation of fat
and the development of insulin resistance.(6,7) Epidemiological and

interventional studies have shown that postprandial hyper-
glycemia is an independent risk factor for cardiovascular disease
and,(8–11) furthermore, oxidative stress induced by postprandial
hyperglycemia impairs vascular endothelial function and plays a
role in atherosclerosis.(12) As the foundation for a variety of life-
style-related diseases postprandial hyperglycemia is considered
useful as an index for the early detection of metabolic disorders.
Currently, diagnosis of impaired glucose tolerance is based upon
the 2-h plasma glucose level in a 75 g oral glucose tolerance test
(OGTT),(13) a time point at which the plasma glucose of most
healthy young subjects has returned to normal levels.(14) Since
compensatory metabolic responses are thought to occur soon
after eating, we hypothesized that the metabolic status of young
subjects could be ascertained by evaluating metabolic changes
taking place soon after eating. It has been reported in middle aged
subjects, that performing OGTT and examining insulin concentra-
tion 30 min after OGTT is likely to be a strong contributor to a
diagnosis of impaired glucose tolerance.(6,15–17) A 75 g OGTT often
elicits false reactive hypoglycemia with adverse epigastric symp-
toms and, moreover, high dose monosaccharide loading does not
reflect the normal daily blood glucose excursion and insulin
response. In addition, plasma glucose levels in healthy subjects do
not cause a dose-dependent increase in glucose above a certain
value.(18) The possibility exists therefore that the administration
of high doses of monosaccharide to young subjects would not
provide for the detection of subtle metabolic changes.

Inslow (Meiji Co., Ltd., Tokyo, Japan) is a nutrient balanced
liquid formula that contains isomaltulose, a sucrose isomer found
in honey.(19) Isomaltulose has been shown to be metabolized by
isomaltase and, in the intestine, is less rapidly, although com-
pletely, cleaved than sucrose.(20) In our previous study, ingestion of
this formula suppressed postprandial hyperglycemia and exces-
sive insulin secretion in rats and humans.(21,22) Since analyzing the
postprandial metabolic responses after Inslow loading may allow
us to detect primary metabolic changes in young subjects, here we
investigated its use a biomarker to indicate the degree of health in
young subjects.

Materials and Methods

Subjects. 128 young females were recruited as subjects in
this study, of which 26 with missing data were excluded from
analysis, giving a final sample of 102 females. Written informed
consent was obtained from all subjects, and the study was ap-
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proved by the Ethics Committee of the University of Shizuoka.
The clinical and biological characteristics of the subjects are
shown in Table 1. The mean values ± SD of age and body mass
index (BMI) were 21.4 ± 1.3 years and 19.9 ± 2.1 kg/m2, respec-
tively. Glucose metabolism of all subjects was confirmed as
normal based on fasting plasma glucose (FPG), fasting serum
insulin (FIRI) and HbA1c levels of 91.8 ± 4.5 mg/dl, 5.7 ± 2.3
μU/ml and 5.2 ± 0.2 %, respectively. Hepatic and renal function
were normal in all subjects.

Test meal. The test meal was Inslow the main source of
carbohydrate in which is isomaltulose, which is absorbed at a
slower rate than sucrose. The protein, fat and carbohydrate con-
centrations in Inslow are 20.0%, 29.7%, and 50.3%, respectively.

Study protocol. Test days were selected to fall outside the
menstrual periods of the subjects. All the subjects were asked to
avoid heavy exercise and intake of alcohol 24 h before the day of
the study. The subjects were instructed to eat the same prescribed
dinner (2,717 kJ; protein: 13.3%, fat: 12.4%, carbohydrate: 74.3%)
at 1,830 h before their test day, after which their food and drink
intake was limited to water.

All subjects rested for 20 min prior to measurement of resting
energy expenditure over 30 min before fasting blood samples
were collected (baseline). Subjects consumed Inslow (250 ml;
1,046 kJ) within 10 min of collection of the baseline blood sample
after which postprandial energy metabolism was measured for
210 min while the subject was at rest. Gas samples were taken

over a 15 min period every 30 min (15 min interval) during the
210 min. Peripheral blood samples were collected 30 min after
consumption of Inslow.

Energy metabolism measurements. Oxygen consumption
(VO2) and carbon dioxide production (VCO2) were measured
using an automatic, computerized indirect calorimeter (Aero
monitor AE 300, Minato Medical Science, Tokyo, Japan) during
which continuous ventilatory volumes (VO2 and VCO2) were
displayed on a computer screen at 15-s intervals, and mean min-
by-min values were recorded. Respiratory quotient (RQ) was
determined from O2 and VCO2.(23) Data of VO2 and VCO2 were
obtained by averaging the stable 10 min period in 15 min. Energy
expenditure (EE) and carbohydrate oxidation rates (Cox) and
fat oxidation rates (Fox) were calculated using the tables described
by Lusk.(24) The incremental area under the curve (AUC) for Cox
and Fox were calculated for the 210 min period following inges-
tion of test meal.

Blood analysis methods and anthropometric measure�
ments. Plasma and serum samples were separated and stored at
–80°C until analysis. Fasting blood samples were used for analysis
of plasma glucose, serum insulin and biochemical examination,
and 30 min blood samples were used for analysis of plasma
glucose and serum insulin (SRL Inc, Tokyo, Japan). Anthropo-
metric measurements were determined using a bioelectrical
impedance analysis method (TANITA-RBF-215; TANITA Cor-
poration, Tokyo, Japan). ΔPG (plasma glucose) and ΔIRI (serum
insulin) were calculated from the fasting and 30 min values (ΔPG;
PG 30 min – FPG, ΔIRI; 30 min IRI – FIRI).

Statistical analysis. Data are reported as mean ± SD. Corre-
lation between ΔPG or ΔIRI and anthropometric and metabolic
traits were assessed with Pearson’s correlation coefficient and
multiple regression analysis. ΔPG and ΔIRI were divided into
quartiles, the difference in continuous variables was analyzed
using one-way analysis of variance (ANOVA). The Tukey post
hoc test was used to determine the source of significant variance
among the groups. All statistical analyses were performed using
the Statistical Package of Social Science (SPSS for Windows,
ver. 19.0, SPSS, Chicago, IL).

Results

Individual differences of plasma glucose (PG) and serum
insulin (IRI) levels. The distribution of PG and serum IRI levels
in fasting and postprandial 30 min are shown in Fig. 1. Postpran-
dial PG and IRI were distributed over a wide range compared to
the fasting values (FPG: 83.0–104.0 mg/dl; FIRI: 1.3–13.9 μU/ml;
PG at 30 min: 63.0–139.0 mg/dl; IRI 30 min: 3.7–106.0 μU/ml).
Similar to PG and IRI at 30 min, ΔPG and ΔIRI were distributed
over a wide range.

Table 1. Characteristics of the study subjects

Data are means ± SD. BMI, body mass index; PG,
plasma glucose; IRI, serum insulin; HDL, high density
lipoprotein; FFA, free fatty acid.

Mean ± SD

Age (year) 21.4 ± 1.3

Height (cm) 159.2 ± 5.6

Weight (kg) 50.6 ± 6.0

BMI (kg/m2) 19.9 ± 2.1

Percentage body fat (%) 23.2 ± 4.2

PG (mg/dl) 91.8 ± 4.5

IRI (μU/ml) 5.7 ± 2.3

HbA1c (NGSP) (%) 5.2 ± 0.2

Total protein (g/dl) 7.0 ± 0.4

Albumin (g/dl) 4.4 ± 0.2

Total cholesterol (mg/dl) 167.1 ± 23.3

HDL choresterol (mg/dl) 62.8 ± 13.1

Triglyceride (mg/dl) 65.0 ± 22.6

FFA (mEq/l) 0.38 ± 0.14

Fig. 1. Individual differences of plasma glucose and insulin levels. Distribution of fasting state (A), distribution of postprandial plasma glucose
and insulin levels 30 min after administration of test meal (B), and distribution of Δplasma glucose and Δinsulin levels (C). PG, plasma glucose; IRI,
serum insulin.
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Association of ΔPG and ΔIRI levels with anthropometric,
energy metabolism and blood biomarkers. ΔPG levels
were positively correlated with fasting Fox, Cox AUC, ΔIRI
and free fatty acid (FFA) levels, and negatively correlated with
fasting Cox and resting RQ (Table 2A). ΔIRI levels were posi-
tively correlated with body fat percentage, BMI and ΔPG levels
were and negatively correlated with fasting PG levels (Table 2B).

To evaluate the association of ΔPG and ΔIRI levels with anthro-
pometric, energy metabolism and and blood biomarkers, we used
multiple linear regression analysis. FFA, ΔIRI, Cox AUC and
fasting IRI levels were significant and independent factors
[standardized partial regression coefficients = 0.308, 0.277, 0.215
and –0.206, respectively; multiple correlation coefficient adjusted
for degrees of freedom = 0.235 (Table 3A)] contributing to the
variance in elevated ΔPG levels. Furthermore, BMI and ΔPG
levels were significant and independent factors (standardized
partial regression coefficients = 0.290 and 0.221, respectively;
multiple correlation coefficient adjusted for degrees of freedom
was 0.109 (Table 3B) contributing to the variance in elevated
ΔIRI levels.

ΔPG and ΔIRI levels were divided into quartiles (ΔPG; quartile
1 = –21.0–4.3 mg/dl, quartile 2 = 4.4–11.0 mg/dl, quartile
3 = 11.1–17.8 mg/dl, quartile 4 = 17.9–45.0 mg/dl) (ΔIRI; quar-
tile 1 = 1.6–25.0 μU/ml, quartile 2 = 25.1–39.1 μU/ml, quartile
3 = 39.2–45.8 μU/ml, quartile 4 = 45.9–98.2 μU/ml), which were
then compared with anthropometric and metabolic traits. For ΔPG,
Cox AUC and FFA levels in quartile 4 were significantly higher
than those quartile 1 (Fig. 2), and for ΔIRI, ΔPG levels in quartile
2 and 4 were significantly higher than those in quartile 1 (Fig. 3).

Discussion

In the present study we investigated whether the metabolic
status of young females can be measured based on metabolic
changes taking place soon after food loading. While the fasting
laboratory data of subjects were normal, PG and IRI values at
30 min after loading were distributed over a wide range. It has
been reported that insulin concentrations 30 min after a 75 g
OGTT correlate with plasma glucose levels at 2 h after the same
test,(6) as well as with impaired glucose tolerance and insulin
secretion during the early postprandial phase.(14,15) It is possible
that elevated ΔPG and ΔIRI levels in our study may reflect the
onset of impaired glucose tolerance. Another study has reported
that insulin concentrations 30 min after a 75 g OGTT strongly
correlate with changes in adult body weight and waist circumfer-
ence measured over a 6 year period.(18) In this study, although
subjects with high ΔIRI had normal BMIs, there is a risk of their
developing obesity in the future. East Asians including Japanese
have a high risk of developing lifestyle-related diseases such as
diabetes even if they are lean.(25) In this study, even though there
was no difference in BMI, differences were observed in ΔPG and
ΔIRI, so we cannot predict the metabolic disorders by using BMI
as a biomarker. These results suggest that evaluation of postpran-
dial PG and IRI 30 min after loading is useful for early detection
of metabolic disorders.

When we examined the relationship between ΔPG level and
FFA, ΔIRI, Cox AUC and fasting IRI, we found that FFA was
significantly higher in the high ΔPG group (quartile 4) than in the
low ΔPG group (quartile 1). An elevated plasma FFA concentra-
tion results in an increase in intracellular fatty acyl-CoA and

Table 2. Correlation between ΔPG or ΔIRI and anthropometric, metabolic traits

PG, plasma glucose; IRI, serum insulin; BMI, body mass index; Fox, fat oxidation; Cox, carbohydrate oxidation; AUC, area un�
der the curve; REE, resting energy expenditure; RQ, respiration quotient; FFA, free fatty acid. *p<0.05, **p<0.01.

(A) (B)

ΔPG
Pearson’s product�moment 

correlation coefficient
ΔIRI

Pearson’s product�moment 
correlation coefficient

Percentage body fat –0.013 Percentage body fat 0.262**

BMI –0.051 BMI 0.278**

Fasting Fox 0.307** Fasting Fox 0.033

Fox AUC –0.029 Fox AUC –0.005

Fasting Cox –0.260** Fasting Cox 0.093

Cox AUC 0.305** Cox AUC 0.102

REE 0.140 REE 0.173

Resting RQ –0.289** Resting RQ –0.003

30�min RQ 0.131 30�min RQ –0.120

ΔRQ 0.164 ΔRQ 0.148

Fasting IRI –0.155 Fasting PG –0.023**

ΔIRI 0.206* ΔPG 0.206*

Triglyceride 0.068 Triglyceride 0.150

FFA 0.358** FFA –0.091

Table 3. Association between ΔPG or ΔIRI and anthropometric and metabolic traits

Data were used for multiple linear regression analysis. PG, plasma glucose; IRI, serum insulin; FFA, free fatty acid; Cox, carbo�
hydrate oxidation; AUC, area under the curve; BMI, body mass index.

(A) (B)

ΔPG ΔIRI

β p value R2 β p value R2

FFA 0.308 0.001 0.326 BMI 0.290 0.003 0.296

ΔIRI 0.277 0.003 0.291 ΔPG 0.221 0.020 0.230

Cox AUC 0.215 0.018 0.236

Fasting IRI –0.206 0.027 –0.221
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Fig. 2. Association of ΔPG with anthropometric and metabolic traits. BMI (A), Cox AUC (B), fasting IRI (C), FFA (D), ΔIRI (E). 1st quartiles; –21.0–4.3
(mg/dl), 2nd quartiles; 4.4–11.0 (mg/dl), 3rd quartiles; 11.1–17.8 (mg/dl), 4th quartiles; 17.9–45.0 (mg/dl). The differences among the four groups
were assessed by one�way ANOVA. *p<0.05. PG, plasma glucose; BMI, body mass index; Cox AUC, area under the curve for carbohydrate oxidation
rates; FFA, free fatty acid; IRI, serum insulin.

Fig. 3. Association of ΔIRI with anthropometric and metabolic traits. BMI (A), Cox AUC (B), fasting IRI (C), FFA (D), ΔPG (E). 1st quartiles; 1.6–25.0
(μU/ml), 2nd quartiles; 25.1–39.1 (μU/ml), 3rd quartiles; 39.2–45.8 (μU/ml), 4th quartiles; 45.9–98.2 (μU/ml). The differences among the four groups
were assessed by one�way ANOVA. *p<0.05. IRI, serum insulin; BMI, body mass index; Cox AUC, area under the curve for carbohydrate oxidation
rates; FFA, free fatty acid; PG, plasma glucose.
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diacyl glycerol concentrations, which results in activation of
protein kinase C (PKC)-theta and increased insulin receptor
substrate-1 (IRS-1) serine phosphorylation. This in turn leads to
decreased IRS-1 tyrosine phosphorylation, decreased activation
of IRS-1-associated phosphatidylinositol 3-kinase activity and
decreased insulin-stimulated glucose transport activity.(26–30) A
previous study in non-obese subjects has demonstrated that
subjects with insulin-resistance have higher FFA levels than
insulin-sensitive subjects.(31) In the present study, we observed a
trend towards increased ΔIRI levels with increasing ΔPG. Based
on these data, we speculate that subjects with high ΔPG level may
exhibit mild insulin resistance induced by increased serum FFA
concentration. The mean of the Cox AUC, which reflects the rate
of postprandial carbohydrate oxidation, was significantly higher
in the high ΔPG group than in low ΔPG group. While Cox during
insulin infusion has been shown to be higher in individuals with
normal glucose tolerance compared to those with impaired
glucose tolerance (IGT) and type 2 diabetes,(32) elevated glucose
and insulin concentrations correlate with increased postprandial
Cox in healthy men.(22,33) We suggest therefore that enhanced
insulin secretion and carbohydrate oxidation during the course
of the deterioration in glucose tolerance represent compensatory
reactions to postprandial hyperglycemia.

ΔPG was significantly higher in the high ΔIRI group than in
the low ΔIRI group, suggesting that excessive insulin secretion
was induced by increasing postprandial PG levels. Postprandial
hyperglycemia is not only characteristic of the early stage of
diabetes, but is also an independent risk factor for cardiovascular
disease.(8–11) Elevated glucose levels stimulate reactive oxygen
species production through PKC-dependent activation of
NAD(P)H oxidase in both vascular smooth muscle cells and
endothelial cells,(34,35) leading to the acceleration of atheroscle-
rosis. In addition to IGT subjects the high insulin response group
was characterized by higher BMI, subcutaneous fat area, uric acid
levels and HOMA-beta than the low insulin response group.(36)

These facts suggest the importance of the early diagnosis of post-
prandial hyperglycemia and hyperinsulinemia. Our study suggests
the possibility that elevated ΔPG and ΔIRI levels represent a
compensatory metabolic response to maintain homeostasis in
healthy female subjects. Although lifestyle intervention programs
are reportedly beneficial in preventing diabetes in subjects
with IGT,(37) improvement of lifestyle may also be indicated for
healthy subjects.

While the OGTT is currently used to identify glucose into-
lerance, false reactive hypoglycemia has often been associated
with adverse epigastric symptoms, including discomfort, anxiety
and lethargy, and does not reflect daily glucose excursions and

insulin response. Accordingly, mixed meals containing protein
and fat in addition to carbohydrate, have been recently developed
for the OGTT.(38) Compared to a liquid test meal such as that used
in this study, a solid test meal complicates the standardization of
the conditions of ingestion, including the number of mastications
and the time required to eat. Moreover, since the main carbo-
hydrate in our test meal is isomaltulose, which is digested and
absorbed more slowly than glucose and sucrose, this meal does not
induce rapid increases in plasma glucose and insulin levels and
their associated side effects.(21,22)

In summary, nutritional balanced liquid loading test using ΔPG
and ΔIRI as the evaluation index is useful for the detection of
primary metabolic disorders in young subjects. However, meta-
bolic syndrome is a complex disease such as environmental and
genetics, so it is necessary to further analysis of the genetic
evaluation. And we must follow up to reveal whether subjects
with high ΔPG and ΔIRI will develop metabolic syndrome.
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