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Obesity and the resultant metabolic complications have been associated with an

increased risk of cancer. In addition to the systemic metabolic disturbances in obesity

that are associated with cancer initiation and progression, the presence of adipose tissue

in the tumor microenvironment (TME) contributes significantly to malignancy through

direct cell-cell interaction or paracrine signaling. This chronic inflammatory state can

be maintained by p53-associated mechanisms. Increased p53 levels that are observed

in obesity exacerbate the release of inflammatory cytokines that fuel cancer initiation

and progression. Dysregulated adipose tissue signaling from the TME can reprogram

tumor cell metabolism. The links between p53, cellular metabolism and adipose tissue

dysfunction and how they relate to cancer, will be presented in this review.
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INTRODUCTION

Cancers associated with obesity are estimated to account for up to 40% of all cancers diagnosed
in the US (Centers for Disease Control and Prevention, CDC). Per CDC reports, the incidence of
non-obesity related cancers showed a decline from 2005 to 2014, while the rates of obesity-related
cancers increased (1). Causes of obesity and cancer are multifactorial with significant contribution
from genetics and environmental factors. TP53 (p53) is themost commonlymutated gene in cancer
with nearly half of all human cancers showing protein loss or mutation (2). Of the cancers that
do not have mutations in the p53 gene locus, the majority exhibit mutations or altered levels of
negative regulators of p53 (3, 4). Classically, p53 is known as a tumor suppressor, but recent work
highlights the diverse functions of p53, including p53’s contribution tometabolic and adipose tissue
regulation. As increasing evidence links obesity to the onset of cancer, in this review, we discuss the
crosstalk between adipose tissue and metabolism in cancer and the central role of p53 therein.

P53 OVERVIEW

p53 is best known as a tumor suppressor that maintains genomic stability and inhibits cell
proliferation pathways (5–11). Its significant role in tumor suppression is dependent on its activity
as a transcription factor regulating expression of genes in cell cycle regulation, apoptosis, DNA
repair, differentiation, and senescence pathways (Figure 1). Under conditions of mild stress, p53
initiates cell cycle arrest and DNA repair pathways. However, in response to catastrophic stress that
inflicts irreparable damage, p53 triggers an apoptotic response designed to limit propagation of
impaired cells.
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FIGURE 1 | Transcript ion-dependent and -independent p53 function. Different combinations of posttranslational modifications (red circles)—the PTM signature—will

dictate the context-specific transcriptional response that will translate to a phenotypic outcome. The PTMs dictate interactions of proteins with p53, enabling

stimuli-specific cellular output. Transcription-independent response involving mitochondria require mono-ubiquitination (blue circles) of p53. Localization of p53 at the

mitochondrial membrane and interaction with anti-apoptotic Bcl proteins stimulates apoptosis. Translocation into the mitochondrial matrix requires interactions with

proteins (denoted in green and yellow) where it interacts with mitochondrial proteins to preserve mitochondrial integrity. See text for details.

p53 protein levels are ubiquitously high in early
embryogenesis in germ layer progenitors and embryonic
stem cells until nearly mid-gestation (5, 12, 13), after which time
expression is restricted to specific tissues during organogenesis
as development progresses. Protein levels decrease postnatally to
follow the recognized expression pattern of stabilization under
cellular stress (5, 12, 14). Stimuli-induced post-translational
modifications (PTM) stabilize the protein (15–21). In the
absence of stress stimuli, negative regulation of p53 function is
mediated by Mdm2 and Mdmx (22, 23). Different combinations
of PTMs—the PTM signature—drive context-specific pathway
activation. Protein stability and function are controlled by:
(a) phosphorylation (b) acetylation (c) poly-ubiquitination (d)
sumoylation (e) neddylation and (f) methylation (17, 21, 24–28).
The N-terminus contains the transcription activation domain
(TAD). In addition to stabilizing p53, the PTMs dictate the
interactions of proteins with p53, enabling stimuli-specific
cellular output. For example, p53 interacts with histone
modifying enzymes and chromatin remodelers [e.g., HATs
p300/CBP (29, 30), lysine-specific demethylase LSD1 (31)]
which alter chromatin structure, along with interactions
with proteins in the basal transcription machinery complex
[TBP (32), and TBP-associated factors such as TFIIA and
TAF1 (33, 34)] to regulate gene transcription (33, 35, 36).
Transcription-dependent functions of p53 play a key role
in cell-fate decisions by regulating expression of genes that
control cell cycle arrest, DNA repair, apoptosis, senescence,
and autophagy to limit the propagation of cells with damaged
genomes (33–36).

Research in the last decade has revealed a critical role for
p53 well beyond its role in tumor suppression. These roles
include preserving stem cell health and differentiation in
embryonic life, development of senescence and maintaining
mitochondrial function in aging (5, 7, 37–41). Recent
evidence strongly implicates p53 in the regulation of

metabolism, linking p53 to metabolic abnormalities
observed in aging, obesity, inflammation, and cancer
(37, 42).

P53-MEDIATED REGULATION OF
INTERMEDIARY METABOLISM

Choice of metabolic pathway usage is determined by the
cell’s energy, biomass and metabolite demands. Many cancer
cells depend on glycolysis, even under aerobic conditions
(Warburg Effect) (43, 44). The shift to aerobic glycolysis
is an active reprogramming event that enables anabolic
growth. Intermediates from the glycolytic pathway serve
as precursors for biomass synthesis that are necessary for
proliferation. Additionally, the pentose phosphate pathway
(PPP) produces precursors for the synthesis of nucleotides that
are essential for DNA replication. In contrast, differentiated cells
preferentially utilize mitochondrial oxidative phosphorylation
(OXPHOS) (45).

Consistent with its role as a tumor suppressor, p53 inhibits
multiple steps of glycolysis and the PPP while promoting
OXPHOS (46). Expression of glucose transporters Glut1 and
Glut4 are downregulated by p53, resulting in the inhibition
of glucose uptake. Induction of the phosphatase TP53-
induced glycolysis and apoptosis regulator (TIGAR) decreases
the production of fructose-2,6-bisphosphate (F2, 6BP) which
allosterically activates phosphofructokinase 1 (PFK1) to increase
glycolytic flux (9). By inhibiting expression of the negative
regulator of the pyruvate dehydrogenase complex that is
responsible for the transfer of cytosolic pyruvate to the
mitochondria, p53 promotes OXPHOS by directing pyruvate to
acetyl CoA rather than lactate (47). Increased lactate levels in
the cell due to transcriptional repression of monocarboxylate
transporter 1 (mct1) expression, a p53 target gene which
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transports lactate out of the cell, also decreases glycolytic
flux (48).

p53 is a critical regulator of mitochondrial morphology,
mitochondrial genomic integrity, mitophagy, aerobic
metabolism and cellular redox state (38, 41, 49). In contrast to
inhibitory effects on anabolic glycolysis, p53 drives catabolic
mitochondrial respiration via induction of key genes such as
mitochondrial glutaminase (Gls2), Synthesis of cytochrome
c oxidase 2 (Sco2) and Complex 1 proteins that are involved
in fueling the tricarboxylic acid (TCA) cycle and driving
electron transport (50, 51). p53 was demonstrated to adaptively
regulate OXPHOS in Drosophila Myc+ cells and maintain
their super-competitive status by enhancing the metabolic flux
(52). In contrast to increased proliferation observed in cancer
cells upon the loss of p53, the response of Drosophila Myc+
cells to p53 loss is impaired metabolism and reduced viability,
suggesting a cell-context dependent regulation of cellular
processes. By inducing expression of the mitochondria-eating
protein (Mieap), p53 functions as a guardian of mitochondrial
health, facilitating the removal of damaged mitochondria
by mitophagy (53). Mitochondrial p53 physically interacts
with TFAM, the factor that is responsible for mitochondrial
DNA transcription, replication, and repair (11). Accordingly,
decreased mitochondrial DNA content or mitochondrial DNA
mutations are detected in fibroblasts from Li-Fraumeni patients
(54).

p53 also plays a critical role in both normal and pathological
lipid metabolism (55, 56). Generally, p53 is a negative regulator
of lipid synthesis and activates fatty acid oxidation (FAO)
via induction of expression of carnitine acetyltransferase genes
(CPT1) that transport fatty acids to the mitochondria for
oxidation. However, chronic p53 activation by nutrient stress
(obesity) leads to hepatic steatosis, insulin resistance, and
diabetes, pointing to the complexity of the homeostatic response
(57–59). Dysregulated cell metabolism is an accepted hallmark
of cancer and p53 can influence the function of many
metabolic pathways (60). Obesity is also recognized as a state of
dysregulated cell metabolism, and p53 is influential in adipose
tissue differentiation, accumulation, and cytokine secretion.

ADIPOSE TISSUE

Adipose tissue is broadly subdivided into white and brown
adipose tissue. The largest component of white adipose tissue
is the large, spherical adipocyte with a unilocular lipid droplet
occupying most of the cell volume. The primary role of white
adipose tissue is to store energy in the form of triglycerides.
When hormones signal the need for energy, fatty acids and
glycerol are released through lipolysis. White adipose tissue is
subdivided into unique depots highlighting the function and
location of the adipose tissue. Visceral adipose tissue surrounds
organs, subcutaneous adipose tissue forms a layer between the
muscle and dermal fascia, and intramuscular adipose tissue
protects tissue and supplies nourishment. Approximately 80%
of human adipose tissue is deposited in subcutaneous depots.
However, visceral adipose tissue is more metabolically active, and

its accumulation is more prognostic of obesity-related mortality
(61, 62). Both white adipose tissue depots store excess energy,
but visceral fat also protects organs from physical trauma. White
adipose tissue is capable of significant expansion that can lead
to the accumulation of excess adipose tissue and thus increased
propensity for obesity and related metabolic disorders (63).

In contrast to white adipose tissue, brown adipose tissue is
specialized to burn sugars and lipids to generate heat and to help
maintain body temperature through adaptive thermogenesis.
Brown adipose tissue is abundant in neonates but undergoes
rapid involution with age in humans. Consequently, adult human
brown adipose tissue is relatively limited in mass and restricted
to depots near the aorta and within the supraclavicular region
of the neck (64). Brown adipose tissue is densely innervated
by the sympathetic nervous system and is highly vascularized.
Brown adipocytes contain multilocular lipid droplets and large
numbers of mitochondria. The hallmark of brown adipose
tissue function is the presence and activation of mitochondrial
uncoupling protein 1 (UCP1) which uncouples OXPHOS from
ATP synthesis in the inner mitochondrial membrane, thereby
dissipating chemical energy as heat (65). A third adipose tissue
type termed beige or “brown-in-white” (brite) adipose, has
recently been characterized. Beige adipocytes can be induced by
cold and a broad spectrum of pharmacological substances and,
therefore, they are also known as “inducible brown adipocytes.”
These depots can be induced to appearmorphologically similar to
brown adipose tissue, but appear in classical white adipose tissue
depots and are derived from a non-classical brown adipose tissue
lineage (66, 67).

Recently, the bone marrow has been identified as a unique
adipose depot. Although the bone marrow contains few
adipocytes at birth, the number increases with age, and by
adulthood, bone marrow adipose tissue constitutes over 10%
of the total fat mass in lean, healthy humans. There are two
types of bone marrow adipose tissue classified as “regulated” that
may influence hematopoiesis and “constitutive” that is important
during early vertebrate development (68). The ontogeny of bone
marrow adipose tissue is not well defined. Bone marrow adipose
tissue differs in diet response, phenotype, gene expression and
physiological actions from other adipose depots [reviewed in
(69)]. For example, during conditions of starvation bone marrow
adipose tissue volume increases whereas white adipose tissue
volume decreases.

It is now clear that all adipose tissue acts in an
autocrine/paracrine and endocrine manner. Adipocytes secrete
an array of signaling molecules such as leptin, adiponectin,
plasminogen activator inhibitor (PAI-1), vascular endothelial
growth factor (VEGF), tumor necrosis factor-alpha (TNF-α),
and interleukin (IL)-6, collectively referred to as adipokines, that
communicate with other organs such as the brain, liver, muscle,
the immune system, and adipose tissue itself. An example
is metabolic symbiosis that occurs between tumor cells and
adjacent adipose tissue during cancer progression. Adipokines
and lipids are released from mature adipocytes and taken up
by cancer cells. Paracrine factors from adipose tissue-derived
stromal and immune cells that have infiltrated tumors, are
secreted into the tumor microenvironment (70).
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Differentiation of preadipocytes to mature adipocytes requires
transcription regulators such as the peroxisome proliferator-
activated receptor gamma (PPARγ) and members of the
CCAAT/enhancer-binding protein family (C/EBPs) (71). p53 is
a negative regulator of PPARγ expression, and concomitantly of
white adipocyte differentiation both in vivo and in vitro (72).
p53 inhibits an adipogenic program in 3T3-L1 preadipocytes
and mouse embryonic fibroblasts (MEFs) (73, 74). Knockdown
of p53 by specific shRNA enhances the adipogenic capacity in
both mouse and human cell lines, indicated by increased levels
of adipogenic markers such as PPARγ, AP2, and adiponectin
even without hormonal induction (74). Moreover, differentiation
of p53-null MEFs into adipocytes is more robust compared to
wild-type cells in an adipogenic medium (73–75). Accordingly,
transgenicmice overexpressing active p53 demonstrate decreased
adipose tissue deposition and reduction in body mass (76).
However, p53 is a positive regulator of brown adipocyte
differentiation (75). Also, using a murine model of diet-induced
obesity (DIO) weight gain was reduced in p53-null mice, and the
mechanism was through an increase in UCP1 expression, both in
brown and white adipose tissue (77).

ADIPOSE TISSUE
DYSFUNCTION—PROMOTED BY P53?

As adipose tissue expands, adipogenesis is upregulated,
mature adipocytes enlarge, and angiogenic processes promote
neovascularization. In obese states, enlarged adipocytes
experience hypoxic conditions due to larger distances from the
vasculature (78), as cardiac output and total blood flow do not
increase with increased obesity (79). In association with these
changes, the adipose tissue starts to produce chemotactic factors,
such as monocyte chemoattractant protein (MCP)-1, that attract
monocytes/macrophages into adipose tissue (80). Murine studies
have demonstrated that excess adiposity increases the proportion
of proinflammatory M1 to anti-inflammatory M2 macrophages
in white adipose tissue (81). As the adipose tissue becomes
inflamed, production of inflammatory cytokines increases and
production of adiponectin decreases, resulting in the inability to
store surplus free fatty acids (FFAs) leading to further adipose
tissue dysfunction (82). In vitro and in vivo studies by Shimizu
et al. indicated that increased release of FFAs led to ROS-induced
DNA damage and upregulation of p53 in adipose tissue (59)
(Figure 2). Activation of p53 upregulated the expression of
proinflammatory adipokines via the NF-κB signaling pathway,
and promoted adipose tissue inflammation, insulin resistance,
and diabetes, whereas inhibiting p53 activity attenuated the
inflammation (59). These changes in p53 expression related to
obesity have been observed in both murine models and obese
human subjects (55, 58, 83–86). The chronic inflammation
associated with dysfunctional adipose tissue is thought to
contribute to a favorable microenvironment for tumor growth
and progression (Figures 2, 3).

In addition to data indicating p53 stimulation in dysfunctional
adipose tissue exacerbates the pathology of adiposity, recent
studies implicate p53 as a primary mediator of adiposity. As

demonstrated by Kung et al. mice harboring the proline-to-
arginine 72 (P72R) variant of p53 developed more severe obesity
and glucose intolerance on a high-fat diet than mice with proline
72 variant (87). Further evidence supporting the adverse effect
of high p53 activity in promoting obesity was demonstrated in
mutant MDM2C305F mice that have impaired p53 regulation
of lipid metabolism (88). The mutation disrupts ribosomal
protein-MDM2 interaction that serves to sequester MDM2 and
allow p53 activation. Also, pharmacological inhibition of p53
was demonstrated to prevent high-fat diet-induced weight gain
observed in control mice (89). In summary, the data suggest that
high p53 levels, whether induced in response to or as an inducer
of adiposity, are likely counter-productive inmaintaining adipose
tissue homeostasis.

P53, ADIPOSE TISSUE, AND
METABOLISM—AN UNEXPLORED LINK IN
CANCER

Secretion of adipokines (leptin, adiponectin, endotrophin, etc.)
and growth factors from AT promote tumor growth. There
are more than 600 different adipokines currently identified
and many cancers, such as breast cancer, have adipokine
receptors present on the cancer cells (90, 91). Adipokine-linked
cancer progression may occur through increased proliferation,
migration, inflammation and anti-apoptotic mechanisms. Leptin
secretion from adipose tissue near tumors is increased, but
not in adipose depots that are distant from the tumors (92).
Interestingly, leptin is a known regulator of p53 expression
(93). Leptin binding to its receptor enhances the proliferation
and growth of breast cancer cells through numerous signaling
pathways including estrogen receptor, JAK/STAT3, and PI3K/Akt
pathways (94–96) (Figure 2). Aberrant signaling through these
pathways activates expression of genes that contribute to
cancer cell survival, proliferation, and migration (97–99).
Moreover, signaling pathway activation can reprogram cellular
metabolism to support the specific metabolite demands of
proliferating cells. Thus, ectopic activation of these pathways
promotes tumor progression (Figure 2). Leptin was also
shown to induce aromatase and this correlated positively
with BMI, leading to increased risk for breast cancer (100)
(Table 1). Given the participation of p53 in adipose tissue
inflammation (as discussed above in section Adipose Tissue
Dysfunction—Promoted by p53?) that promote proliferative
pathways vs. the known involvement of p53 as a tumor
suppressor restricting proliferation and cell growth, the role
of p53 in adipose tissue-driven tumorigenesis remains to be
elaborated.

Wild-type p53 in an inactivated or dysfunctional form
accumulates in the cytoplasm whereas stable p53 binds to
target genes in the nucleus. Expression of the p53 transcript,
nuclear localization of the protein and phosphorylation at
Ser15 was decreased in ASCs due to the effect of prostaglandins
(PGE2) (101). Wang et al. showed that the decrease in p53
protein expression and activity is through an inhibitory effect
of PGE2 on AMP-activated kinase (AMPK). AMPK can no
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FIGURE 2 | White adipose tissue and cancer. Excess adiposity increases the proportion of proinflammatory M1 to anti-inflammatory M2 macrophages in white

adipose tissue, resulting in production of inflammatory cytokines and stabilization of p53, further increasing adipokine transcription via p53/NF-κb activation. Adipokine

release from the white adipose tissue and action on the neighboring tumor cell, or cancer stem cell, activates oncogenic signaling pathways that can impact energy

metabolism pathways and transcriptional output via post-translational modifications of enzymes, transcription factors/co-factors, respectively, facilitating tumor

initiation/promotion.

FIGURE 3 | Yin and Yang of p53. (A) The p53/white adipose tissue/Cancer nexus. (B) The adipose tissue microenvironment contributes significantly to malignancy

through tumor microenvironment communication. Regardless of the p53 status of the tumor cell, stimulation of oncogenic signaling pathways by p53-dependent

adipokine production from the white adipose tissue in the microenvironment may facilitate tumor propagation.

longer phosphorylate p53 at Ser15 (103, 104), resulting in
decreased nuclear localization and transcriptional activity of
p53. In clinical samples of breast cancer, tumor-associated ASCs
had reduced nuclear p53 staining and increased perinuclear
staining compared to normal ASCs (101). This is important
as increased PGE2 is linked with many cancers and PGE2
associated inflammation is specifically associated with obesity
and breast cancer (105). PGE2 and TNFα may contribute to the
Warburg effect due to stimulation of GLUT1 and GLUT3 in
ASCs (106). Again, this mechanism is through adipose-derived

inflammation altering the metabolic microenvironment
resulting in reduced p53 nuclear localization. A mechanism
to the observed obesity-associated increase in aromatase and
its link to breast cancer has been suggested (100). Adipose
or ASC leptin secretion resulted in activation of PKC/MAPK
signaling pathways and inhibition of p53. Furthermore, HIF1α
and PKM2 were stabilized, resulting in increased expression of
aromatase, and an increased risk of estrogen-dependent breast
cancer. Conversely, p53 related mechanisms have been shown
to promote hepatocellular carcinoma cell apoptosis. Omentin-1,
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TABLE 1 | p53 and adipose tissue metabolism.

Type of cancer Model Mechanism Cancer-related outcome References

Breast cancer Primary breast adipose

stromal cells

Prostaglandin E2 (PGE2) decreases p53

expression and increases aromatase

levels.

Increased aromatase is associated with

increased estrogen production

(101)

Breast cancer Primary preadipocytes Leptin-mediated induction of aromatase

was dependent on PKC/MAPK signaling

and inhibition of p53

Increased aromatase is associated with

increased estrogen production

(100)

Hepatocellular cancer HepG2 and HuH-7 cell

line

Omentin-1 upregulated p53 through

sirtuin1-dependent deacetylation of p53

Apoptosis (102)

an adipokine, was added to hepatocellular carcinoma cells and
resulted in an inhibition of proliferation and an induction of
apoptosis (102). It was shown that omentin-1 upregulated p53
through sirtuin1-dependent deacetylation of p53. This is in
contrast to the actions of most reports on adipokines and cancer,
which show promotion of metastatic potential and cancer cell
survival.

Obesity has long been linked to increased local inflammation.
As discussed above, obesity also reprograms metabolism
systemically and can lead to increased levels of glucose and
dyslipidemia in the blood (107). Although these examples are
associated with obesity, the distribution of adipose tissue results
in proximate or direct contact of tumors with adipose tissue, both
in obese and non-obese conditions. This growing field of study
suggests that the adipose tissue microenvironment contributes
significantly to malignancy through tumor-microenvironment
communication (Figure 3). In an invasive ductal carcinoma
breast cancer model, increased lymph node metastasis was
reportedly linked to adipose tissue invasion at the tumor
margin (108). Tumor cells have been reported to induce
delipidation of adipocytes and promote lipolysis in the tumor
microenvironment (109). Regardless of the p53 status of the
tumor cell, stimulation of oncogenic signaling pathways by

p53-dependent adipokine production from the white adipose
tissue in the microenvironment may facilitate tumor propagation
(Figure 3).

Finally, bone marrow adipose tissue (BMAT) has recently
been shown to affect metastatic progression and drug resistance
in prostate and breast cancer. The mechanisms involved in
this new adipose depot are currently being resolved. Fairfield
et al. used a 3D culture model of BMAT to show that
BMAT adipocytes, when co-cultured with tumor cells, undergo
delipidation (110). This supports the model of exogenous lipid
dependency by tumor cells for metabolic flexibility within
the metastatic niche. Lipids from adipocytes in the tumor
microenvironment could potentially regulate metabolic and
signaling pathways in cancer cells, providing themwith a survival

advantage. A role for p53 in bone marrow adipose tissue has not
yet been investigated.

CONCLUSIONS AND FUTURE
DIRECTIONS

An increased risk of cancer development and a poorer cancer
prognosis is associated with increased obesity (107, 111–114).
Cancer survivors with a higher body mass index are more likely
to experience a cancer recurrence (115). The mechanisms linking
increased adiposity to malignancy are not entirely understood.
Altered interactions between adipose tissue and systemic or
neighboring tissue, changing endocrine hormone and adipokine
secretion that would facilitate tumor invasion and metastasis
are hypothesized to drive metabolic reprogramming in tumor
cells and provide metabolites and lipids required for tumor
progression and growth. Although brown adipose tissue is
metabolically more active than white adipose tissue, the link
between chronic metabolic diseases and brown adipose tissue
is unknown. Given the differential regulation by p53 of white
vs. brown adipose tissue, it will be interesting to compare the
influence of these different adipose depots for their potential to
contribute to cancer. A thorough understanding of the crosstalk
between cancer cells and the adiposemicroenvironmentmay well
reveal novel therapeutic targets for cancer treatment.
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