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Automatic detection 
of microaneurysms in optical 
coherence tomography images 
of retina using convolutional neural 
networks and transfer learning
Ramin Almasi1, Abbas Vafaei1*, Elahe Kazeminasab1 & Hossein Rabbani2*

Microaneurysms (MAs) are pathognomonic signs that help clinicians to detect diabetic retinopathy 
(DR) in the early stages. Automatic detection of MA in retinal images is an active area of research due 
to its application in screening processes for DR which is one of the main reasons of blindness amongst 
the working-age population. The focus of these works is on the automatic detection of MAs in en face 
retinal images like fundus color and Fluorescein Angiography (FA). On the other hand, detection of 
MAs from Optical Coherence Tomography (OCT) images has 2 main advantages: first, OCT is a non-
invasive imaging technique that does not require injection, therefore is safer. Secondly, because of 
the proven application of OCT in detection of Age-Related Macular Degeneration, Diabetic Macular 
Edema, and normal cases, thanks to detecting MAs in OCT, extensive information is obtained by 
using this imaging technique. In this research, the concentration is on the diagnosis of MAs using 
deep learning in the OCT images which represent in-depth structure of retinal layers. To this end, OCT 
B-scans should be divided into strips and MA patterns should be searched in the resulted strips. Since 
we need a dataset comprising OCT image strips with suitable labels and such large labelled datasets 
are not yet available, we have created it. For this purpose, an exact registration method is utilized to 
align OCT images with FA photographs. Then, with the help of corresponding FA images, OCT image 
strips are created from OCT B-scans in four labels, namely MA, normal, abnormal, and vessel. Once 
the dataset of image strips is prepared, a stacked generalization (stacking) ensemble of four fine-
tuned, pre-trained convolutional neural networks is trained to classify the strips of OCT images into 
the mentioned classes. FA images are used once to create OCT strips for training process and they are 
no longer needed for subsequent steps. Once the stacking ensemble model is obtained, it will be used 
to classify the OCT strips in the test process. The results demonstrate that the proposed framework 
classifies overall OCT image strips and OCT strips containing MAs with accuracy scores of 0.982 and 
0.987, respectively.

Nowadays, a lot of researches have been conducted on the retinal image analysis area. One of the most important 
applications of these works is Diabetic retinopathy (DR) screening because this disorder is one of the leading 
reasons for vision loss in the working-age population, especially in developed countries. Since Microaneurysms 
(MAs) are early signs of DR, their detection in retinal images aids screening tasks of diagnosis DR. That is why, 
automatic detection of MAs from retinal images is extremely important. Although several researches have been 
done in automatic detection of MAs, detection of MAs is still a challenging task due to the variations in MAs 
appearance in retinal  images1,2. The focus of these researches is on the en face retinal images like FA and color 
fundus photograph. The main steps in MA detection include (1) preprocessing (2) detection of MA candidates 
and (3) classification of candidates. In the first step, preprocessing tackles the problems related to contrast and 
non-uniform illumination of MA regions. Afterwards, the initial set for MA candidates is detected and, finally 
some techniques (often machine learning) are applied to eliminate false-positive cases of MA and enhance the 
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accuracy of MA detection. Many algorithms are proposed  in1–23, each of which brings some improvements into 
the above-mentioned steps. Table 1 indicates some of the recent works in details.

On the other hand, since OCT images depict the in-depth structure of retinal layers, to the best of our knowl-
edge, optimistically there are few researches that pursue detection of MAs in OCT photographs. As shown in 
Table 2, most of the researches in OCT classification present the algorithms to classify OCT volumes or OCT 
B-scans into the AMD, DME, and normal  classes24–27. AMD is a retinal disease resulting in blurred, blind spots 
or complete loss of vision in the center of visual field and DME is the most common cause of diabetic vision loss 
in different  societies28. The method presented  in29 classifies OCT images into normal and MA categories. For 
this purpose, features are extracted from the images using Bag of Features (BoF) and SURF descriptor. After that, 
images are classified into normal and MA classes utilizing a multilayer perceptron network.

Amid the above-mentioned researches,  only29 has focused on the detection of MAs in OCT images. Detec-
tion of MAs from OCT images has the following advantages: first, OCT is a non-invasive imaging technique 
that does not require injection, therefore is safer. Second, as mentioned before, OCT images are normally used 
for distinguishing between DME, AMD, and normal cases. Detection of MAs from OCT images results in 
achieving comprehensive information from this single imaging technique. This may reduce the need for using 
other imaging methods. It is worth mentioning that, there is another retinal imaging technique called Optical 
Coherence Tomography Angiography (OCTA) which is fast and non-invasive. This method provides volumetric 
data with the clinical capability of specifically localizing and delineating pathology along with the ability to show 
both structural and blood flow information in tandem. However this method has some limitations. First, this 

Table 1.  Recent works on MA detection from fundus photographs (CPM = Competition measure, CV = cross 
validation, BV = Blood vessel, ROC dataset = retinopathy online challenge datas et AUC = area under 
curve, ROC = receiver operating characteristic, SSAE = stacked sparse auto encoder, NB = Naive Bayesian, 
KNN = K-nearest neighbor, SVM = support vector machine, MMMF = multi-scale and multi-orientation sum 
of matched filter, and LLDA = local linear discrimination analysis).

Author Dataset Image type Initial candidates method
Classifier for false positive 
reduction Results

Habib et al. 1 New dataset based on the MESSI-
DOR dataset Color fundus Gaussian matched filter Tree Ensemble classifier ROC score = 41.5%

Hatanaka et al. 9 DIARETDB1 and ROC datasets Color fundus DCNN (GoogLeNet) DCNN and three-layer perceptron 
with 48 features

Sensitivity = 84%
Shan et al. 16 DIARETDB dataset Color fundus SSAE with two hidden layers plus 

a Softmax classifier

AUC = 96.2%

With tenfold CV

f-score = 91.3%

Deepa et al. 4 DIARETDB1 dataset Color fundus CNN
Sensitivity = 97.62%
Specificity = 100%
Accuracy = 97.75%

Zhang et al. 23 IDRiD_VOC dataset Color fundus Deep neural network with a multi-
layer attention mechanism

Refining initial candidates using 
spatial relationships between MAs 
and BVs

Sensitivity = 86.8%

Eftekhari et al.5 ROC and E-Ophtha-MA datasets Color fundus Basic CNN Thresholded probability map and 
final CNN CPM = 0.461

Long et al.13 E-Ophtha-MA and DIARETDB1 
datasets Color fundus

BV removal, shape characteris-
tics and connected components 
analysis

Classification using NB, KNN 
and SVM

AUC -ROC = 87% on E-Ophtha-
MA

AUC of ROC = 86% on 
DIARETDB1

Wu et al.21 ROC dataset Color fundus MMMF
Extracting 37 dimensional features 
and using modified KNN, LLDA, 
and SVM

Averaged number of false posi-
tives per image = 0.286

Table 2.  Some recent works on OCT image classification considering diabetic retinopathy (MCME = multi-
scale convolutional mixture of experts, LBP = local binary patterns, BoF = bag of features, SURF = speeded up 
robust features, and MLP = multilayer perceptron).

Author Dataset Image type Method Results

Lemaître et al.24 SERI Dataset of normal, DME-cyst, DME-Exudate SD-OCT images LBP features, different mapping strategies and using 
linear and nonlinear classifiers

Sensitivity = 81.2%
Specificity = 93.7%

Rasti et al.25 Duke university dataset and private dataset of AMD, 
DME, and normal Macular OCT MCME model containing CNN experts and gating 

network are fed by specific scales of the input pattern
Precision = 98.86%

AUC-ROC = 99.85%

Shih et al.26 Dataset of DME, CNV, Drusen, and  normal30 OCT images Pre-trained VGG16 Accuracy = 99.48%

Tsuji et al.27 Dataset of DME, CNV, Drusen, and  normal30 OCT images Capsule network Accuracy = 99.6%

Kazeminasab et al.29 Dataset of MA and normal OCT strips OCT images BoF and SURF, MLP classifier Accuracy = 94.5%
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method is relatively new and not yet very common. Second, it has a relatively small field of view and is not able 
to show leakage well.

For doing so, we need a dataset comprising OCT image strips with suitable labels including MA, normal, 
abnormal, and vessel. The abnormal category includes OCT strips that contain objects in the shape of cysts and 
fluid-associated abnormalities in the retina. Abnormal strips do not have the normal layer structure of a nor-
mal OCT strip. To the best of our knowledge, such large labelled datasets are not yet available for OCT images, 
therefore we have created it. Since MAs and vessels are hard-to-detect objects in OCT images, to create OCT 
strips with appropriate labels, an accurate image registration method is performed to align OCT images and 
FA photographs. After that, with the help of corresponding FA images, the OCT strips are created from OCT 
B-scans in four labels, namely MA, normal, abnormal, and vessel. Once the OCT strips are created and organized 
as four-class dataset, a stacking  ensemble31 comprising four fine-tuned, pre-trained CNNs is trained to classify 
the strips of OCT images into the mentioned classes. After the model is obtained, it classifies the strips from the 
test B-scans. It should be noted that FA images are used once to create OCT strips for training process. After 
that, the FA images are no longer needed and the stacking ensemble model classifies the OCT strips in the test 
process independently. To apply our model to the new test images, test B-scans should be divided into strips and 
the resulted strips should be fed to the stacking ensemble model to be classified into one of the above-mentioned 
classes. For clinical applications, to find MAs in an OCT volume, first, the B-scans are extracted, then overlapping 
OCT strips are created (to find all MAs) and after that, the strips are fed to the model for testing. Once the strip 
label is determined as MA, it can be stated in which B-scan and which strip (known location) the MA is located.

The outline of this paper is organized as follows: “Methods” section describes the data acquisition, dataset 
organization, and proposed stacking ensemble method used in this study. In “Results” section, the evaluation 
criteria and the results are presented, and “Discussion” section concludes this study.

Methods
The overall block diagram of proposed method is presented in Fig. 1 and the details are explained in the next 
subsections.

Image registration and OCT strips preparation. For classification purposes, we need a dataset com-
prising OCT image strips with suitable labels including MA, normal, abnormal, and vessel. To the best of our 
knowledge, such labelled datasets are not yet available for OCT images, therefore we had to create it. MAs and 
vessels are hard-to-detect objects in OCT images, therefore to prepare the dataset of OCT image strips with 
appropriate labels, a precise registration is performed to align OCT images and FA photographs. To do so, the 
dataset and the method proposed  in32 is used for accurate registration of OCT and FA images using SLO photo-

Figure 1.  Overall block diagram of proposed method (SLO = Scanning Laser Ophthalmoscopy).
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graphs as intermediate images.  In32, dataset includes 36 pairs of FA and SLO images of 21 subjects with diabetic 
retinopathy, where SLO image pixels are perfectly in correspondence with OCT B-scans. The FA, OCT, and 
SLO images are captured via Heidelberg Spectralis HRA2/OCT device. Moreover, the FA and SLO images are 
the same size as 768 × 768 pixels and FA images were captured with two different fields of views (30 and 55°). In 
this method, after preprocessing, retinal vessel segmentation is applied to extract blood vessels from the FA and 
SLO images. Afterwards, a global registration is used based on the Gaussian model for curved surface of retina 
and for this purpose, first a global rigid transformation is applied to FA vessel-map image using a feature-based 
method to align it with SLO vessel-map photograph and then the transformed image is globally registered again 
considering Gaussian model for curved surface of retina to improve the precision of the previous step. Next, a 
local non-rigid transformation is performed to register two images perfectly.

After that, as shown in Fig. 2, with the help of related FAs, the OCT strips are created from OCT B-scans in 
four labels including MA, normal, abnormal, and vessel. The FA images are associated only once to create OCT 
strips for the training process. In the test process, the FA images are no longer needed. In our dataset, MA, nor-
mal, abnormal, and vessel classes comprise 87, 100, 72, and 131 strips of OCT images, respectively. In this study, 
the scale factor of the OCT images in the x direction equals 0.0115. So, in the OCT image, the value of x per pixel 
is 0.0115 mm. On the other hand, as reported  in33, the MA has a maximum external diameter of 266 µm. Apply-
ing this to our dataset, the maximum external diameter of the MA is calculated as 23.2 pixels, approximately. 
Therefore, here, the width of the OCT strip is considered to be 31 pixels, which is slightly larger than 23 pixels. 
The images are cropped in a way that they contain only retinal layers while the other pixels are withdrawn. For 
this purpose, first the segmentation method presented  in34 is used to detect the Retinal Nerve Fiber Layer (RNFL) 
and Retinal Pigment Epithelium (RPE) layer, afterwards the OCT B-scan is cropped to include the highest part of 
NFL and the lowest part of RPE. This process is demonstrated in Supplementary Fig. S1 online. That is why the 
images have various heights. The process of gathering the dataset of OCT strips and testing B-scans is depicted 
in Supplementary Figs. S2 and S3 online. It should be noted that when they are used as input for CNNs, the 
image will be resized to a new dimension of 150 × 150 × 3. The dataset is publicly available in https:// misp. mui. 
ac. ir/ en/ four- class- datas et- oct- image- strips- png- forma t-% E2% 80% 8E-1.

Organizing train, validation and test data. The dataset is organized into train, validation, and test 
folders each of which includes MA, normal, abnormal, and vessel image folders. Twenty percent of entire dataset 
is allocated to the test set, and is not utilized in the training process. This is referred to as Hold-out method. To 
validate each CNN, the Bayesian optimization tuner class of the Keras  tuner35 is used to run the search over the 
search space. The search space includes the learning rate, momentum, and the number of units in the first dense 
layer. The number of trials and epochs in the validation process is considered to be 10 and 80, respectively. The 
tuned hyperparameters for each CNN are listed in Supplementary Table S1 online. Fifteen percent of the entire 
dataset is allocated to the validation set. Because the dataset of our work is small compared to common deep 
learning task datasets and this may lead to overfitting, the data augmentation technique is applied. Using this 
technique, some transformations including rotation, zooming, horizontal flip, re-scaling, and shift are applied to 
the dataset images in each single training epoch by the image data generator. This helps the model not to memo-
rize images and as a result not to overfit.

Stacked generalization ensemble. The overall structure of the classifier presented in this research is 
shown in Fig. 3. As can be observed, the stacked generalization (stacking) ensemble of four CNNs pretrained on 
the ImageNet dataset is utilized. Stacking ensemble includes two levels, namely 0 and 1. The elements and train-
ing process of each level is elaborated in the next sections.

Level 0 of stacking ensemble. The CNNs used in this stacking ensemble include VGG16,  VGG1936,  Xception37, 
and  InceptionV338. These CNNS or so-called base-learners form level 0 of the stacking ensemble. The basic 
architecture of these base-learners are depicted in Fig. 4. Here, the image size for the CNNs input is 150 × 150 × 3 
and the average pooling is used. To use these networks, the last layer is removed and then, flatten, batch nor-
malization, dense, drop-out and dense layers are added to the end one after the other. The added drop-out layer 
has the factor of 0.35, and the last added dense layer includes 4 units with Softmax activation function to deal 
with our 4-class classification problem. The Relu activation function is considered for the first added dense layer, 
while the number of its units is determined using Keras tuner in validation process. Afterwards, by freezing the 
previous layers, only the added layers are trained with the data in both train and validation folders for 5 epochs. 
In this step, the Adam optimizer with the learning rate of 0.0001 is selected for training the newly-added layers 
in each CNN. Now, the added layers have the initial weights.

After validating each CNN, each network is trained for 100 epochs using whole train and validation data. 
In this second round of the training process, some of the last layers are trained and the previous layers remain 
frozen, therefore their weights are not adjusted.

The Stochastic Gradient Descent with Momentum (SGDM) is considered as the optimizer. The learning rate, 
momentum values, and the number of trainable layers for CNNs are listed in Supplementary Table S1 online. 
Moreover, the categorical cross-entropy is used as loss function which should be minimized in both training 
processes.

In the training process, two callbacks are used for early-stopping and saving the model with the highest effi-
ciency. Therefore, if there is no improvement in the performance of the model (minimizing the loss function) for 
a certain number of epochs (patience parameter), the training process is stopped before the maximum number 
of epochs is met. In this work, the patience parameter equals 25 and the minimization of the loss function is 
monitored for early-stopping. Also, since the model obtained from completing the training epochs or stopping 

https://misp.mui.ac.ir/en/four-class-dataset-oct-image-strips-png-format-%E2%80%8E-1
https://misp.mui.ac.ir/en/four-class-dataset-oct-image-strips-png-format-%E2%80%8E-1
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early (the last trained model) might not necessarily be the best model, saving the model with the highest accuracy 
and loading it will resolve this issue.

Figure 2.  The process of creating OCT strips for MA, normal, abnormal, and vessel with the help of 
corresponding FA. (a) Red circle shows MA in FA. (b) B-scan Corresponds to green line in (a). (c) Cropped ROI 
from (b). (d–f) Creating strip for normal class. (g–i) Creating strip for abnormal class. (j–l) Creating strip for 
vessel class (in color).
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Level 1 of stacking ensemble. After training all the base-learners by the training dataset, a meta-learner is pre-
sented as level 1 part of stacking ensemble and trained to achieve higher accuracy through combining the results 
of the trained base-learners. In this study, MLP classifier is used as meta-learner for level 1 of stacking ensemble. 
This meta-learner is trained on the whole train and validation dataset taking the outputs (predictions) of the 
base-learners trained in the previous step as input. For this purpose, the predictions from base-learners are 
stacked and reshaped to be used as input tensors for the MLP model. In fact, the base-learners of the previous 
step were trained directly by the training dataset, and the MLP model is indirectly trained by the training dataset. 
To apply obtained model to the new test images, test B-scans should be divided into strips and the resulted strips 
should be fed to the stacking ensemble model to be classified into one of the mentioned classes. MLP classifier 
includes 100 hidden layers and maximum iteration parameter is set to be 300.

Figure 3.  Overall structure of the stacked generalization ensemble.
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Results
In this work, to have a complete evaluation of the proposed classification model, a number of criteria have been 
considered, which are mentioned in the caption of Table 3.

Here, TP (True Positive) for a specific class represents the number of cases that have been correctly classified 
in that class and TN (True Negative) represents the number of cases that have been correctly classified as not 
belong to that class. The FP (False Positive) for a specified class also determines the number of items that were 

Figure 4.  Basic structure of CNNs used in stacking  ensemble39.
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incorrectly predicted in that class, and finally the FN (False Negative) indicates the number of items that were 
incorrectly predicted in other categories than the class under review.

As can be seen in Table 3, the above-mentioned measures can be expressed per class for stand-alone CNNs 
and the stacking ensemble. Also, the measures of different classes can be combined to have a single measure for 
the model. In the second case, the weighted average is used taking a weighted mean of the measures. The weights 
for each class are the total number of samples of that class. In addition, Table 3 indicates the weighted average 
measure for stand-alone CNNs and the stacking ensemble. As can be seen in Table 3, the stacking ensemble 
has the accuracy of 0.987, 0.961, 0.974, and 1 in classifying MA, normal, abnormal, and vessel strips. Also, 
from this Table, the overall accuracy of stacking ensemble is 0.982. Some misclassified examples can be found 
in Supplementary Fig. S4 online. According to Tables 3, proposed method outperforms the method presented 
 in29. Figure 5b–f indicates confusion matrices resulted from performing classification utilizing different CNNs 
and stacking ensemble. The experiment is repeated on the dataset whose test data is prepared from the images 
of cases who have not been included in the training and validation processes. Confusion matrix is a matrix or 
table in a way that one axis represents true labels and the other one expresses predicted labels. In this matrix, 
according to the pair of the true and predicted values for each class label, the matrix entries or the table cell 
values are calculated. The relationship between confusion matrix and TP, TN, FP, and FN is shown in Fig. 5a for 
MA class. The results show that the ensemble outperforms each stand-alone CNN. The experiments are repeated 
on the dataset whose test data is prepared from the images of cases that have not been included in the training 
and validation processes, and the results are shown in Supplementary Fig. S5 and Supplementary Table 2 online.

Table 3.  Per class and weighted average measures for method  in29, stand-alone CNNs and stacking ensemble 
of our method. Accuracy = (TP + TN)/(TP + TN + FP + FN), Precision = TP/(TP + FP), Recall(sensitivity) = TP/
(TP + FN), Specificity = TN/(TN + FP), F1score = (2 × Recall × Precision)/(Recall + Precision) = (2TP)/
(2TP + FP + FN), ROC-AUC score: the closer this criterion is to one, the greater the number of correctly 
predicted cases. On the other hand, the closer this criterion is to zero, the greater the number of incorrectly 
predicted cases.

Model per class parameter Inception V3 VGG16 VGG19 Xception Method  in29 MLP ensemble

Accuracy

Abnormal 0.948 0.792 0.922 0.883 0.931 0.974

MA 0.883 0.883 0.987 0.922 0.962 0.987

Normal 0.935 0.948 0.922 0.857 0.943 0.961

Vessel 0.896 0.961 0.987 0.974 0.946 1

Weighted average accuracy 0.913 0.91 0.958 0.916 0.945 0.982

Precision

Abnormal 0.813 0.464 1 0.619 0.952 0.928

MA 0.682 1 0.945 0.739 0.964 0.944

Normal 0.895 0.944 0.797 1 0.97 0.947

Vessel 0.95 1 0.963 1 0.964 1

Weighted average precision 0.851 0.888 0.921 0.873 0.963 0.961

Recall (sensitivity)

Abnormal 0.929 0.929 0.571 0.929 0.86 0.928

MA 0.882 0.471 1 1 0.913 1

Normal 0.85 0.85 0.95 0.45 0.907 0.9

Vessel 0.731 0.885 1 0.923 0.883 1

Weighted average recall 0.831 0.792 0.909 0.818 0.890 0.961

Specificity

Abnormal 0.952 0.762 1 0.873 0.866 0.984

MA 0.883 1 0.983 0.9 0.941 0.983

Normal 0.964 0.982 0.912 1 0.86 0.982

Vessel 0.980 1 0.980 1 0.887 1

Weighted average specificity 0.95 0.952 0.967 0.818 0.888 0.989

F1-score

Abnormal 0.867 0.619 0.727 0.743 – 0.928

MA 0.769 0.64 0.971 0.85 – 0.971

Normal 0.872 0.895 0.863 0.621 – 0.923

Vessel 0.826 0.939 0.981 0.96 – 1

Weighted average F1-score 0.833 0.803 0.902 0.808 – 0.961

Weighted average ROC-AUC score 0.981 0.97 0.99 0.989 – 0.998
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Discussion
In this paper, a method is presented to detect MAs in OCT images using deep convolutional neural networks and 
transfer learning. For the lack of large labeled datasets which comprise OCT image strips with suitable labels, 
we have created our dataset. Because MAs and vessels are hard-to-detect objects in OCT images, to create OCT 
strips with appropriate labels, an accurate image registration method is performed to align OCT images and FA 
photographs. After that, with the help of corresponding FA images, the OCT strips are created from OCT B-scans 
in four labels, namely MA, normal, abnormal, and vessel. Once the OCT strips are created and organized as 
four-class dataset, a stacking ensemble comprising four fine-tuned, pre-trained CNNs is trained to classify the 
strips of OCT images into the mentioned classes. Once the model is obtained, it can be used to classify the strips 

Figure 5.  Confusion matrices. (a) The relationship between confusion matrix and TP, TN, FP, and FN for MA 
class. (b–f) Confusion matrices of different CNNs and stacking ensemble (rows: True labels and cols: Predicted 
labels) (in color).
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from the test B-scans without the need for FA images. The experimental results show that the proposed method 
classifies OCT image strips and specially detects OCT strips containing MA in a more precise way.

In the current study, we created and organized a dataset containing a limited number of OCT image strips 
with specific labels, namely MA, normal, abnormal, and vessel. For future works, increasing the number of 
samples of the dataset enables creating, using, and training deep convolutional neural networks from scratch. 
Also, analyzing information from the 3D nature of OCT imaging and especially neighboring B-scans can lead 
to more accurate classification results. For future work, and with a larger dataset, B-scans or OCT volumes can 
be taught to the CNNs according to their several labels such as normal, MA, etc. without the need for cropping 
operations, and test data can also be fed as B-scans or volumes to the network.

Data availability
The authors declare that the main data supporting the findings of this study are available within the article and 
its Supporting Information files. Extra data are available from the corresponding author on a reasonable request.
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