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ABSTRACT

Objective: Twitter posts are now recognized as an important source of patient-generated data, providing unique

insights into population health. A fundamental step toward incorporating Twitter data in pharmacoepidemio-

logic research is to automatically recognize medication mentions in tweets. Given that lexical searches for med-

ication names suffer from low recall due to misspellings or ambiguity with common words, we propose a more

advanced method to recognize them.

Materials and Methods: We present Kusuri, an Ensemble Learning classifier able to identify tweets mentioning drug

products and dietary supplements. Kusuri ( , “medication” in Japanese) is composed of 2 modules: first, 4 different

classifiers (lexicon based, spelling variant based, pattern based, and a weakly trained neural network) are applied in par-

allel to discover tweets potentially containing medication names; second, an ensemble of deep neural networks encod-

ing morphological, semantic, and long-range dependencies of important words in the tweets makes the final decision.

Results: On a class-balanced (50-50) corpus of 15 005 tweets, Kusuri demonstrated performances close to hu-

man annotators with an F1 score of 93.7%, the best score achieved thus far on this corpus. On a corpus made of

all tweets posted by 112 Twitter users (98 959 tweets, with only 0.26% mentioning medications), Kusuri

obtained an F1 score of 78.8%. To the best of our knowledge, Kusuri is the first system to achieve this score on

such an extremely imbalanced dataset.

Conclusions: The system identifies tweets mentioning drug names with performance high enough to ensure its

usefulness, and is ready to be integrated in pharmacovigilance, toxicovigilance, or more generally, public health

pipelines that depend on medication name mentions.
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INTRODUCTION

Twitter has been utilized as an important source of patient-

generated data that can provide unique insights into popula-

tionhealth.1 Many of these studies involve retrieving tweets that

mention drugs, for tasks such as syndromic surveillance,2,3

pharmacovigilance,4 and monitoring drug abuse.5 A common ap-

proach is to search for tweets containing lexical matches of drug

names occurring in a manually compiled dictionary. However, this

approach has several limitations.Many tweets contain drugs that

are misspelled or not referred to by name (eg, “it” or “antibiotic”).

Even when a match is found, oftentimes the referent is not actually a
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drug; for example, tweets that mention Lyrica are predominantly

about the singer, Lyrica Anderson, and not about the antiepileptic

drug. In this study, when using the lexical match approach on a

corpus where names of drugs are naturally rare, we retrieved only

71% of the tweets that we manually identified as mentioning a drug,

and more than 45% of the tweets retrieved were noise. Enhancing the

utility of social media for public health research requires methods that

are capable of improving the detection of posts that mention drugs.

The task of automatically detecting mentions of concepts in text

is generally referred to as named entity recognition (NER).6 State-

of-the-art NER systems are based on machine learning (ML) and

achieve performances close to humans when they are trained and

evaluated on formal texts. However, they tend to perform relatively

poor when they are trained and evaluated on social media.7,8 Tweets

are short messages, so they do not provide large contexts that NER

systems can use to disambiguate concepts. Furthermore, the collo-

quial style of tweets—misspellings, elongations, abbreviations, neo-

logisms, and nonstandard grammatical structures, cases, and

punctuations—poses challenges for computing features in ML-based

NER systems.9 Although large sets of annotated corpora are avail-

able for training NER systems to detect general concepts on Twitter

(eg, people, organizations), there is a need for the collection and an-

notation of additional data for automatic detection of more special-

ized concepts (eg, drugs and diseases).10

Over the last decade, researchers have competed to

improveNER on tweets. Most challenges were organized for tweets

written in not only English (eg, the Named Entity Recognition and

Linking challenges series11 or the Workshop on Noisy User-

generated Text series)12, but also other languages (eg, Conference

surl’ApprentissageAutomatique201713). Specifically for drug detec-

tion in Twitter, we organized the Third Social Media Mining for

Health Applications shared task in 2018.14 The sizes of the corpora

annotated during these challenges vary, from 4000 tweets15 to

10 000 tweets.13 ML methods have evolved over recent years, with

a noticeable shift from support vector machine (SVM)– or condi-

tional random field–based frameworks trained on carefully engi-

neered features,16 to deep neural networks that automatically

discover relevant features from word embeddings. In the 2016

Workshop on Noisy User-generated Text, a large disparity between

the performances obtained by the NERs on different types of entities

was observed. The winners,17 with an overall F1 score of 52.4%,

reported an F1 score of 72.61% on Geo-Locations, the most fre-

quent NEs in their corpus, but much lower scores on rare NEs, such

as an F1 score of 5.88% on TV Shows. Kusuri ( , “medication” in

Japanese; https://en.wiktionary.org/wiki/%E8%96%AC) detects

names of drugs with sufficient performance even on a natural corpus

in which drugs are very rarely mentioned.

The primary objective of this study was to automatically detect

tweets that mention drug products (prescription and over-the-

counter) and dietary supplements. The Federal Drug Administration

(FDA Glossary of Terms: https://www.fda.gov/drugs/informatio-

nondrugs/ucm079436.htm; Drug; Drug product) defines a drug

product as the final form of a drug, containing the drug substance gen-

erally in association with other active or inactive ingredients.This

study includes drug products that are referred to by their trademark

names (eg, NyQuil), generic names (eg, acetaminophen), and class

name (eg, antibiotic or seizure medication). We formulate this prob-

lem as a binary classification task. Formally, given a set of tweets T,

our goal is to learn a function f such that f(t)¼1 for all tweets t in T

containing at least 1 phrase referring to a drug product/dietary supple-

ment, f(t)¼0 otherwise. A tweet is a positive example if it contains

text referring to a drug (and not only “matching” a drug name), a neg-

ative example otherwise. For example, the tweet “I didn’t know

Lyrica had a twin” is a negative example because Lyrica refers to the

singer, Lyrica Anderson, whereas the tweet “Lyrica experiences? I

was on Gabapentin.” is a positive example because, in this context, it

mentions 2 antiepileptics. The use of sequence labeling to delimit drug

name boundaries in the positive examples (named entity recognition)

and their mapping to a standardized name (named entity identifica-

tion) are outside the scope of this work.

The main contributions of this study are (1) a gold standard cor-

pus of 15 005 annotated tweets, for training ML-based classifiers to

automatically detect drug products mentioned on Twitter; (2) a

binaryclassifier based on Ensemble Learning, which we call Kusuri;

and (3) an evaluation of Kusuri on 98 959 tweets with the natural

balance of 0.2% positive to 99.8% negative for the presence of med-

ication names. We describe the corpora in the Materials and Meth-

ods as well as the details of ourclassifier followed byits evaluation

in the Results.

Automatic drug name recognition has mostly been studied for

extracting drug names from biomedical articles and medical docu-

ments, with several articles published18 and challenges organized in

the last decade.19–21 Most works that have tackled the task of

detecting drug names in Twitter have focused on building corpora.

Sarker et al22 created a large corpus of 260 000 tweets mentioning

drugs. However, they restricted their search by strict matching to a

preselected list of 250 drugs plus their lexical variants, and they did

not annotate the generated corpus. In a similar study, Carbonell

et al10 explored the distributions of drug and disease names in Twit-

ter as preliminary work for drug-drug interaction. While the authors

searched for a larger set of drugs (all unambiguous drugs listed in

DrugBank database), they did not annotate the corpus of 1.4 million

tweets generated, and nor did they count false positives—ambiguous

mentions—in their statistical analysis.

The first evaluation of automatic drug name recognition in Twit-

ter that we are aware of was performed by Jimeno-Yepes et al,23 on

a corpus of 1300 tweets. Two off-the-shelf classifiers, MetaMap and

the Stanford NER tagger, as well as an in-house classifier based on a

conditional random fields with hand-crafted features, were evalu-

ated. The latter obtained the best F1 score of 65.8%. Aside from the

aforementioned problem of selecting the tweets using a lexical

match, other limitations to their study lie in additional choices

made. To remove nonmedical tweets, they retained only tweets con-

taining at least 2 medical concepts (eg, drug and disease). This ensured

a good precision, but also artificially biased their corpus in 2 ways: by

retaining only the tweets that mentioned the drugs in their dictionary

and eliminating tweets that mention a drug alone (eg, “me and

ZzzQuil are best friends”). In November 2018, we organized the

Third Social Media Mining for Health Applications shared task

(SMM4H),14 with Task 1 of our challenge dedicated to the problem

of the automatic recognition of drug names in Twitter. Eleven teams

tested multiple approaches on the provided balanced corpus, which

we selected using 4 classifiers (the first module of Kusuri). A wide

range of deep learning–based classifiers were used by participants, as

well as some feature-based classifiers and a few attempts with ensem-

ble learning systems. The system THU_NGN by Wu et al,24 an en-

semble of hierarchical neural networks with multihead self-attention

and integrating features modeling sentiments, was the top performer,

with an F1 score of 91.8%. This established a recent benchmark for

the community for an artificially balanced corpus (with approxi-

mately the same number of positive and negative examples). Our eval-

uation data, described in the UPennHLP Twitter Pregnancy Corpus
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subsection, includes both the artificially balanced corpus and, in addi-

tion, a corpus of all available tweets posted by selected Twitter users

where the mentions of drug products were manually annotated. We

refer to the later as a corpus with “natural” balance.

MATERIALS AND METHODS

We collected all publicly available tweets posted by 112 500 Twitter

users (their timelines). To do so, we first used the Twitter streaming

application programming interface to detect tweets mentioning key-

words used when announcing a pregnancy. These keywords were

manually defined. Then, we used a simple SVM classifier to confirm

that the tweets were really announcing a pregnancy and discarded

other tweets. The keywords and the SVM classifier are described in

our previous work.25 Once a tweet announcing a pregnancy was iden-

tified, we collected the timeline of the author of the tweet. We used

the REST application programming interface provided by Twitter to

download all tweets posted by this user within the Twitter-imposed

limit of 3200 most recent tweets, and continued collection afterward.

We did not remove bots or accounts managed by businesses and other

entities, as they may also tweet about drugs. We intermittently col-

lected posts from January 2014 to April 2017. After April 2017, we

systematically collected posts until September 2017. Through this pro-

cess, we collected a total of 421.5 million tweets. Using this dataset as

a source allows us to avoid the bias of a drug-name keyword based

collection. When a dataset is collected using a list of drug names, the

resulting dataset will obviously contain only tweets mentioning the

drugs occurring in the list: the you-find-what-you-are-looking-for bias

(ie, confirmation) bias. This is evident when reported recall climbs to

98% or more. Our method, collecting all tweets posted by the users in

our cohort, captured drugs mentioned by the users in the way that

they naturally occur. Our dataset represents natural variants of drug

names occurring in our collection, as expressed by Twitter users, and

that would have been missed if not present in the list upfront.

All tweets were collected from public Twitter accounts, and a

certificate of exemption was obtained from the Institutional Review

Board of the University of Pennsylvania. All tweets used and re-

leased to the community were used and released without violating

Twitter’s terms and conditions.

UPennHLP Twitter Drug Corpus
Building a corpus of tweets containing drug names to train and evaluate

a drug name classifier is a challenging task. Tweets mentioning drug

names are extremely rare. We found that they only represent 0.26% of

the tweets in the UPennHLP Twitter Pregnancy Corpus (see the follow-

ing section), and are often ambiguous with common and proper nouns.

If a naive lexicon matching method is used to create the corpus, it often

matches a large number of tweets not containing any drug names.

Therefore, to build a gold-standard corpus, we had to rely on a

more sophisticated method than simply lexicon matching. We cre-

ated 4 simple classifiers to detect tweets mentioning drug names:

one based on a lexicon matching, one on lexical variants matching,

one on regular expressions, and a classifier trained with weak super-

vision. The 4 classifiers are described briefly below, and in detail in

Supplementary Appendix A.

Lexicon-based drug classifier

The first classifier is built on top of a lexicon of drug names

generated from the RxNorm Database (https://www.nlm.nih.gov/

research/umls/rxnorm/overview.html, Accessed June 11, 2018). If a

tweet contains a word or phrase occurring in the lexicon, the tweet

is classified as a positive example without any further analysis. We

chose RxNorm because it has a large coverage. It combines, in a

unique database, 15 existing dictionaries, including DrugBank, a

database often used in previous works on drug names detection.

Variant-based drug classifier

Names of drugs may have a complex morphology and, as a conse-

quence, are often misspelled on Twitter. Lexicon-based approaches

detect drugs mentioned in tweets only if the drug names are cor-

rectly spelled. The incapability to detect misspelled drug names

results in low recall for the lexicon-based classifier. In an attempt to

increase recall, we used a data-centric misspelling generation algo-

rithm26 to generate variants of drug names and used the variants to

detect tweets mentioning misspelled drugs.

Weakly trained drug long short-term memory classifier

Our third classifier is a long short-term memory (LSTM) neural net-

work that integrates an attention mechanism27 and is trained on

noisy training examples obtained through weak supervision. One

annotator identified drug names tending to be unambiguous28 in

our timelines (eg, Benadryl or Xanax). We selected the �126 500

tweets containing these unambiguous names in our timelines as posi-

tive examples. Then, given that drug names occur very rarely in

tweets, we randomly selected an additional �126 500 tweets from

our timelines as negative examples and trained our LSTM on these

examples. We chose this simple classifier to discover a large number

of tweets that could potentially contain drug names, and integrated

an attention mechanism to ensure that the neural network focuses

on the words occurring recurrently in the context of drug mentions

in tweets and discards irrelevant words.

Pattern-based drug classifier

Our last classifier implements a common method to detect general

named entities, regular expressions (REs). REs describe precisely the

linguistic contexts used in Twitter to speak about drugs. We manu-

ally crafted our REs by inspecting 9530 n-grams, which were the

most frequent n-grams occurring before and after the most frequent

unambiguous names of drugs in our �126 500 tweets. We retained

81 patterns (eg, “prescibed me”, “prescription filled for”, “doctor

switched”). When inspecting these n-grams, one annotator used his

knowledge of the language to reject noisy patterns. Before including

a pattern in the list, the annotator confirmed empirically by querying

the pattern in a search engine indexing our dataset that the pattern

actually retrieved tweets mentioning drugs in the first 100 tweets re-

trieved for the query. Davy Weissenbacher created the REs.

To obtain positive examples, we selected tweets retrieved by at

least 2 classifiers, as they were most likely to mention drug names.

To obtain negative examples, we selected tweets detected by only 1

classifier, given that if these tweets did not contain a drug name,

they were nonobvious negative examples. Following this process,

from our 421.5 million tweets, we created a corpus of 15 005

tweets, henceforth referred to as the UPennHLP Twitter Drug Cor-

pus (Table 1). We removed from the corpus duplicated tweets,

tweets not written in English, and tweets that were no longer on

Twitter (eg, tweets deleted by the users) at the time of the collection.

Two annotators annotated the corpus in its entirety, with a high

interannotator agreement (IAA) measured as Cohen’s kappa of

.892. Our corpus was annotated by our 2 staff annotators, who

have over 7 years combined experience annotating texts in the
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biomedical domain. One annotator holds a degree in biology and

our senior annotator has a master of science degree in biomedical

informatics. We randomly selected 9623 tweets for the training set

(4975 positive and 4648 negative examples) and 5382 tweets for the

testing set (2852 positive and 2530 negative examples). We publicly

released the corpus and our guidelines to the research community

for Task 1 of the SMM4H 2018 shared task.14

UPennHLP Twitter Pregnancy Corpus
A balanced corpus, such as the UPennHLP Twitter Drug Corpus, is a

useful resource to study how people speak about drugs on social me-

dia. However, due to the mechanism of its construction, a balanced

corpus does not represent the natural distribution of tweets mention-

ing drugs on Twitter. Consequently, any evaluation made on a bal-

anced corpus will never be indicative of the performance expected

from a drug name classifier used in practice. To further assess whether

Kusuri could reliably be used in practice, we ran additional experi-

ments on the corpus used for an epidemiologic study of birth defect

outcomes.29 For that, we collected 397 timelines of women that had

announced their pregnancy on Twitter and that had tweeted during

their pregnancy, and manually identified all tweets mentioning a drug

during the period of pregnancy. It took an average of 2.5 hours to an-

notate each timeline. We ran our experiments on a subset of 112 time-

lines (98 959 tweets) from this corpus, referred to as UPennHLP

Twitter Pregnancy Corpus in the remainder of the article (Table 1).

The annotators manually verified that these timelines were owned by

individuals by looking at their profiles and their posts and making a

judgment call, and removed all timelines administered by bots or asso-

ciation/companies. Our senior annotator and the main author of this

article annotated these timelines. An IAA of 0.88 (Cohen’s kappa)

was computed over 12 timelines, which were dual annotated by the

senior annotator. We randomly selected 70% (69 272 tweets) of the

Pregnancy Corpus for training and the remaining 30% (29 687

tweets) for testing. When splitting the corpus into a training set and a

testing set, we kept the same percentage ratio, 70%/30%, of positive/

negative examples in the training and in the testing sets (ie, 181/69

091 and 77/29 610 respectively).

Kusuri architecture
Kusuri, described in Figure 1, applies sequentially 2 modules to de-

tect tweets mentioning drugs in the UPennHLP Twitter Pregnancy

Corpus. This section describes each module. The success of deep

learning classifiers in natural language processing lies on their ability

to automatically discover relevant linguistic features from word

embeddings30—an ability even more valuable when working on

short and colloquial texts such as tweets. For this reason, we pre-

ferred to integrate in our modules deep learning classifiers over

more traditional classifiers based on feature engineering.

Module 1: tweet prefilter

Kusuri applies our 4 classifiers—the lexicon-based, variant-based,

pattern-based, and weakly trained LSTM classifiers—in parallel to

discover tweets that potentially contain drug names. Among the

tweets discovered, Kusuri selects the tweets classified by the lexicon

classifier, by the variant-based classifier, and the tweets selected by

both the pattern-based and the weakly trained classifiers. The tweets

discovered by only 1 of the 2 last classifiers were too noisy and dis-

carded. The tweets selected are then submitted to the Module 2, an

ensemble of deep neural networks (DNN) that makes the final deci-

sion for the labels. The 4 classifiers act as filters, collecting only

good candidates for the ensemble of DNNs, which was, in turn, op-

timized to recognize positive examples among them.

Module 2: ensemble of DNNs

As a single element for the ensemble of neural networks composing

the second module of Kusuri, we designed a DNN following a stan-

dard architecture for classification of NEs. Described in Figure 2,

our DNN starts by independently encoding each sequence of charac-

ters composing the tokens of a tweet through 3 layers sequentially

connected: a recurrent layer, an attention layer, and a densely con-

nected layer. All resulting vectors, encoding the morphological prop-

erties of the tokens, are then concatenated with their respective

pretrained word embedding vectors, which encode the semantic

properties of the tokens. The concatenated vectors are passed to a

bidirectional-gated recurrent unit (GRU) layer to learn long-range

dependencies between the words, followed by an attention layer

that, as additional memory, helps the NN to focus on the most dif-

ferentiating words for the classification. A final dense layer com-

putes the probability for the tweet to contain a mention of a drug.

All neural networks in our study were given pretrained word vectors

as input. We chose the word vectors trained with the Glove algo-

rithm on 2 billion tweets, available for download on the webpage of

the project (https://nlp.stanford.edu/projects/glove/). Supplementary

Appendix B describes in detail the preprocessing steps, the embed-

dings, and the parameters of our training. We experimented with

early stopping to avoid overfitting when training our models. We

kept 70% of our training corpus to train a model, and 30% for vali-

dation. We found that 8 iterations were sufficient to train the model

before overfitting the training corpus. However, contrary to our ex-

pectation, the models trained with 8 iterations gave slightly lower

performances on the test set of the UPennHLP Drug Corpus than

models trained with 20 iterations, with F1 scores of 92.7% and

93.1%, respectively. The reason for this is not clear, but it may be

because our model continues to improve as more examples are pro-

vided in the training corpus, making the estimation of the best num-

ber of iterations inexact with early stopping. We report the results of

our model trained with 20 iterations.

Owing to the stochastic nature of the initialization of the NN,

the learning process may discover a local optimum and return a sub-

optimal model. To reduce the effect of local optimums, we resort to

ensemble averaging. We independently learned 9 models using our

DNN and computed the final decision, for a tweet to mention a

medication name or not, by taking the mean of the probabilities

Table 1. Statistics of the UPennHLP Twitter Drug and Pregnancy

Corpora

UPennHLP Twitter

Drug Corpus

UPennHLP Twitter

Pregnancy Corpus

Training set 9623 tweets

(4975 1/4648 2)

69 272 tweets

(181 1/69 091 2)

Testing set 5382 tweets

(2852 1/2530 2)

29 687 tweets

( 77 1/29 610 2)

Users in training/

testing set

7584/4535 112/112

Users posting in

training

set and in

testing set

1054

(these users posted

1713 tweets in

testing set, 31.8%

of testing set)

112

—

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1621

https://nlp.stanford.edu/projects/glove/
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz156#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz156#supplementary-data


computed by the models (because a soft voting algorithm31 in our

experiments did not improve over the simple averaging method, we

kept the latter). When applied on the Pregnancy Corpus, all DNNs

of the ensemble were trained on the Drug Corpus, and, at test time,

all DNNs of the ensemble only have to classify the tweets in the

Pregnancy Corpus filtered by the first module of Kusuri.

RESULTS

This section details the performances of Kusuri and its ensemble of

DNNs during 2 series of experiments on the Drug Corpus and on

the Pregnancy Corpus.

Drug detection in the UPennHLP Twitter Drug Corpus
We first ran a series of experiments to measure the performances of

the ensemble of DNNs composing the second module of Kusuri.

The detailed results are reported in Table 2. We compare the perfor-

mance of our ensemble with 3 baseline classifiers.

The first baseline classifier is a combination of the lexicon- and

variant-based classifiers. It labeled as positive examples all tweets of

the test set of the Drug Corpus that contained a phrase found in our

Lexicon or in our list of variants. This baseline classifier provides a

good estimation of the performances to expect when a lexicon-based

approach is used. We chose as a second baseline system a

bidirectional-GRU classifier. Because this baseline system has a sim-

pler architecture than our final DNN, their comparison allows us to

estimate the benefits of the components we added in our system.

The baseline system was trained on the same training data with the

same hyperparameters, and took as input the same word embed-

dings, but it did not have information about the morphology of the

words or the help of the attention mechanism. As a third strong

baseline, we compare our system with the best system of the Task 1

of the SMM4H 2018 competition, the THU_NGN system.24

The results in Table 2 are interesting in several ways. The combined

lexicon- and variant-based classifier has a high recall on the test data

(88.5%), an unsurprising result considering the central role played by

the lexicon and the variants during the construction of the Drug Cor-

pus. This classifier is vulnerable to the frequent ambiguity of drug

names, resulting in a low precision of 66.4%. The classifier has no

knowledge of the context in which the name of a drug appears, and

thus cannot disambiguate tweets mentioning Lyrica (antiepileptic vs

Lyrica Anderson), lozenge (type of pills vs geometric shape), or halls

(brand name vs misspelling for Hall’s), for example. The fully super-

vised bidirectional-GRU confirms its ability to learn the features only

from the word embeddings,32 and achieves an F1 score of 91.4%, a

higher score than the IAA computed on this corpus. However, such sys-

tems can be improved as demonstrated by the better performances of

the best DNN in the ensemble (4 in Table 2). The encoding of the token

morphology and the attention layer of the best DNN improve the F1

score by 1.7 points. Also, despite having a simpler architecture and at-

tention mechanism, the best DNN system performs better than the en-

semble of hierarchical NNs proposed by Wu et al.24 The reason for this

result is not clear, but it may be a suboptimal set of hyperparameters

chosen by the authors or the difficulty to train such a complex network.

The highest performance is obtained by the ensemble DNNs,

which shows an improvement of 0.6 points over the best model in

the ensemble, with a final F1 score of 93.7%. We confirmed the dis-

agreement between the ensemble DNNs and the THU_NGN sys-

tems to be statistically significant with a McNemar test.33 The null

hypothesis was rejected with a significance level set to .001. We ana-

lyzed randomly selected labeling errors made by the ensemble

DNNs (Table 3). We distinguished 8 nonexclusive categories of false

positives. With 41 cases, most false positives were tweets discussing

Figure 1. Architecture of Kusuri, an ensemble learning classifier for drug detection in Twitter. LSTM: long short-term memory.
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medical topics without mentioning a drug. As medical tweets often de-

scribe symptoms or discuss medical concepts, their lexical fields are

strongly associated with drug names (eg, cough, flu, doctor) and con-

fuse the classifier. The causes of false negatives seem to mirror those

for the false positives. With 36 cases, false negatives were mostly

caused by the ambiguity of not only common English words (eg, air-

borne), but also dietary supplements and food products sometimes

consumed for their medicinal properties (eg, clove, arnica, aloe). This

could be a positive turn of events if nutritional supplements are to be

included in a study. A second important cause was unseen, or rarely

seen, drug names in our training corpus, with 25 cases.

The ensemble DNNs correctly detected 245 tweets that were in-

correctly detected by the THU_NGN system. On the other hand, the

THU_NGN system correctly detected 138 tweets that were incor-

rectly detected by our system. We manually analyzed 100 tweets

that were randomly selected from the 245 tweets, but could not dis-

cern any evident patterns explaining the differences in performances

between the 2 systems. Further linguistic analysis, such as the analy-

sis proposed in Vanni et al,30 may help uncover these patterns, but is

beyond the scope of this study.

Drug detection in the UPennHLP Twitter Pregnancy

Corpus
The results of the ensemble DNNs on the Drug Corpus are prom-

ising, but they were obtained based on ideal conditions. The

training corpus is balanced, and most of the drugs found in the

test set were present in the training set. These conditions are un-

likely to be satisfied when the classifier is used on naturally oc-

curring data. We ran a second series of experiments on the

Pregnancy Corpus to get a more realistic evaluation of our classi-

fiers. As for the previous experiments, we kept the lexicon- and

variant-based classifier as well as an ensemble of bidirectional-

GRU networks as baseline systems (1 and 2 in Table 4, respec-

tively). Each network of the ensemble was trained on the Preg-

nancy Corpus with 5 iterations and a batch size of 64 examples,

and a simple averaging was used to combine their results. Since

the ensemble DNNs gave the best performances on the Drug Cor-

pus (Table 2), we chose it as a third baseline system. This base-

line applies the ensemble of DNNs without prefiltering the

tweets using the first module of Kusuri. In system 3.a, we trained

all DNNs of the ensemble on the training set of the Drug Corpus,

with 20 iterations and a batch size of 2 examples. In system 3.b,

we trained all DNNs of the ensemble on the training set of the

Pregnancy Corpus, with 4 iterations and a batch size of 64 exam-

ples. These hyperparameters were the best parameters found af-

ter early stopping and a manual search through standard batch

sizes of 2, 64, and 128. The last system evaluated was the

“complete” Kusuri system, with both modules applied

sequentially.

The results are reported in Table 4. What is striking about the

figures in this table is the poor performances of the lexicon- and var-

iant-based classifier and the ensemble DNNs classifier. The score of

the former dropped from an F1 score of 75.9% when applied on the

Drug Corpus, to 62.2% when applied on the Pregnancy Corpus. As

we used the lexicon to build the Drug Corpus, the drugs in the lexi-

con were overrepresented in this corpus, increasing the baseline’s re-

call by 17.1 points. The ensemble DNNs classifier (3.a) did worse,

with an F1 score of only 18%. Trained on a balanced set of medi-

cally related tweets, the classifier was found too sensitive. It gives

too much weight to words that are related to medication but used in

other contexts such as overdose, bi-polar, or isnt working, resulting

in a total of 549 false positives, in which only 77 tweets mentioned a

drug in the test set. Surprisingly, the ensemble of bidirectional-GRU

Figure 2. Deep neural network predicting ŷ, the probability for a tweet to mention a drug name. GRU: gated recurrent unit.

Table 2. Precision, recall, and F1 scores for drug detection

classifiers on the test set of the UPennHLP Twitter Drug Corpus

System Precision Recall F1 score

1. Lexicon þ variant classifier 66.4 88.5 75.9

2. Supervised bidirectional-GRU 93.5 89.5 91.4

3. THU_NGN hierarchical-NNs 93.3 90.4 91.8

4. Best DNN model in the ensemble 93.7 92.5 93.1

5. Ensemble DNNs (module 2 of Kusuri) 95.1 92.5 93.7

DNN: deep neural network; GRU: gated recurrent unit; NN: neural

network; THU_NGN.
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networks (system 2.a) was capable of learning our task with very

few positive examples. Despite the 5.11-point difference in F1 score

of Kusuri over system 2.a, a McNemar test shows that we cannot

conclude this difference is significant. Additional experiments, with

more positive examples, are needed to confirm Kusuri’s superiority.

While lower than the ideal score of the ensemble DNNs classifier on

the Drug Corpus, the F1 score of Kusuri (78.8%) is comparable to

the scores published for the best NERs when applied on the most

frequent types of NEs in Twitter.17 More importantly, we believe

that this score is high enough to expect a positive impact of Kusuri

when integrated in larger applications.

DISCUSSION

As stated before, our experiments show Kusuri outperforming

the system 2.a (Table 4), a bidirectional GRU, but the difference

is not statistically significant. Increasing the number of positive

examples to the point at which the performance difference is sta-

tistically significant would require the collection and annotation

of a much larger corpus that exhibits the natural balance (<1%

of tweets positive for a drug mention). This could prove cost

prohibitive.

In this study, we opted for an oversampling strategy and cre-

ated an artificially balanced corpus to train our classifier, the

UPenn Twitter Drug Corpus. However, while our ensemble of

DNNs performs well on the Drug Corpus (an F1 score of

93.7%), its performance drops considerably when we applied it

to the Pregnancy Corpus (an F1 score of 18%). Trained on our

balanced corpus, this classifier was biased toward disambiguat-

ing examples easily recognizable by our basic filters and could

not generalize well on other examples occurring in the Preg-

nancy Corpus, making the ensemble useless for real

applications.

The solution we implemented with Kusuri is to prefilter the

tweets of the timelines before applying our ensemble of DNNs.

This solution increases performance by 5.1 points over the best

baseline system (2.a in Table 4). However, our strategy is far

from perfect, as it reduces the number of FPs with hard filters

and, consequently, also limits the overall performance of Kusuri

by removing 27% (21 tweets) of the few tweets mentioning drugs

in the Pregnancy Corpus. We are currently replacing the hard fil-

ters with active learning to further train our ensemble of DNNs

and reduce its oversensitivity to medical phrases in general

tweets.

One may argue that, given that the selection of users in our co-

hort are women reporting a pregnancy, the drugs mentioned in our

dataset are biased to a specific set of mediations, with a higher num-

ber of tweets mentioning drugs commonly used in pregnancy and a

lower number of tweets mentioning drugs not recommended during

this period. However, this limitation is alleviated to an extent due to

the fact that our dataset includes tweets beyond those that were

posted during pregnancy; we collected the full timelines available

from the users, including a large number of tweets posted before and

after pregnancy.

Finally, we designed our neural network around a standard

representation of a sentence as a sequence of word embeddings

learned on local windows of words. Better alternatives have re-

cently been proposed34 and could be integrated in our system to

help drug name disambiguation. We could replace our word

embeddings with ELMo or BERT, which learn each word

embeddings within the whole context of a sentence,35,36 or sup-

plement our current sentence representation with sentence

embeddings.37

Table 3. Categories of false positive and false negative made by

the drug detection classifier on the test set of the UPennHLP

Twitter Drug Corpus

Error category Errors Examples

False positive

Medical topic 41 <user> you should see a dermatolo-

gist if you can. You may just need

something to break you out of a cy-

cle. I used a topical and took pills

Lola may has a stye, or pink eye.

Doc recommends warm com-

presses to see if it gets better today,

but my eyes are itchy just looking

at her.

Weighted words/

patterns

19 i can take a wax brazillian a g

<user> i was robbed a foul when i

took a three point shot and they

got a few three pointers in. good

game.

Ambiguous name 12 <user>I actually really like Lyrica &

A1.

Food topic 11 This aerobically fermented product

was tested & it’s antibiotic residue

free. also certified organic.

Insufficient context 7 <user> adding Arnica to my shop-

ping list

Cosmetic topic 5 Doc prescribed me this dandruff

shampoo, if it works, I’m defi-

nitely getting a sew in after I’m

done using it

Unknown 2 Ice_Cream, Ice-Cream and More Ice-

Cream. . .thats Ol i Want

Error annotation 3 �
False negative

Ambiguous name 36 Trying Oil of Oregano & garlic for

congestion for my sinus infection.

[ambiguous dietary supplement]

In the church the person close to

me’s sniffling & coughing. . . I need

a bathe of bactine and some Air-

borne, right now [ambiguous En-

glish word]

Drug not/rarely

seen

25 That’s the benzo effects! [missing

variant]

Pennsylvania Appellate Court

Revives 1, 000 Prempro Cases

Against Pfizer [missing in lexicon]

the percocet-thief plot makes Real

World New Orleans look almost

intriguing [preprocessing error]

Generic terms 18 Tossing and turning. I need ur sleep

aid. Waiting patiently <user>

Nonmedical topic 11 <user>Meet Mr an Mrs Lexapro. . ...

guarenteed fidelity.

Short tweets 3 arnica-ointment-7

Error annotation 7 �
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CONCLUSION

In this article, we presented Kusuri, an ensemble learning classifier

to identify tweets mentioning drug names. Given the unavailability

of a labeled corpus to train our system, we created and annotated

a balanced corpus of 15 005 tweets, the UPennHLP Twitter Drug

Corpus. The ensemble of deep neural networks at the core of

Kusuri’s decisions (Module 2) demonstrated performances close to

human annotators without requiring engineered features on this

corpus, with an F1 score of 93.7%. However, because we built this

corpus artificially, it did not represent the natural distribution of

drug mentions in Twitter. We evaluated Kusuri on a second cor-

pus, UPennHLP Twitter Pregnancy Corpus, made of all tweets

posted by 112 Twitter users, a total of 98 959 annotated tweets,

with only 258 tweets mentioning drugs. On this corpus, Kusuri

obtained an F1 score of 78.8%, a score comparable to the score

obtained on the most frequent types of NEs by the best systems

competing in well-established challenges, despite our corpus hav-

ing only 0.26% positive instances in it. The code of Kusuri and the

models used for these experiments are publicly available at https://

bitbucket.org/pennhlp/kusuri/. The UPennHLP Twitter Drug Cor-

pus is available at https://healthlanguageprocessing.org/kusuri. We

will release the UPennHLP Twitter Pregnancy Corpus during the

Fifth Social Media Mining for Health Applications shared task in

2020.
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