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Ischemic stroke contributes to ∼80% of all stroke cases. Recanalization with

thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies

for rebuilding the blood supply following ischemic stroke. However, recanalization is often

accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress

and inflammation. Resolution of inflammation belongs to the end stage of inflammation

where inflammation is terminated and the repair of damaged tissue is started. Resolution

of inflammation is mediated by a group of newly discovered lipid mediators called

specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that

SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury,

and decrease both oxidative stress and the production of inflammatory cytokines in

various in vitro and in vivo models of ischemic stroke. In this review, we summarize the

mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.

Keywords: cerebral ischemia reperfusion, inflammation, resolution, specialized pro-resolving lipid mediators,

stroke

OVERVIEW OF CEREBRAL ISCHEMIC REPERFUSION INJURY

Stroke is one of the most common causes that leads to morbidity and mortality all over the
world. In the acute phase of ischemic stroke, treatments should focus on saving penumbral tissue
as much as possible. There are two main recanalization methods: (1) intravascular thrombolysis
with recombination tissue-type plasminogen activator (rt-PA) (1, 2), and (2) endovascular
thrombectomy (3). It has been demonstrated that recanalization improves the clinical prognosis in
acute stroke patients. However, in some cases, severe side effects, such as fatal edema or intracranial
hemorrhage, are reported after ischemia reperfusion (4). Moreover, animal studies showed that
reperfusion after a long ischemic period could result in a larger damage size than the volume that
corresponds to the permanently occluded vessel (5, 6). Therefore, even though reperfusion may
reduce infarct size and improve clinical outcomes, it may also exacerbate cerebral injury via a
process named “cerebral ischemia reperfusion injury (CIRI)” (4). Many studies support the idea
that oxidative stress and inflammation are involved in CIRI, and ultimately lead to apoptosis and
cell death (7, 8).

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00617
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00617&domain=pdf&date_stamp=2018-07-31
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mingqin.zhu@hotmail.com
mailto:fengjcfrank@qq.com
https://doi.org/10.3389/fneur.2018.00617
https://www.frontiersin.org/articles/10.3389/fneur.2018.00617/full
http://loop.frontiersin.org/people/589500/overview
http://loop.frontiersin.org/people/589509/overview
http://loop.frontiersin.org/people/560388/overview
http://loop.frontiersin.org/people/543699/overview


Yin et al. Resolution in Cerebral Ischemia Reperfusion

Cellular Events Involved in CIRI
Endothelial Cells (ECs)
CIRI is characterized by increased blood-brain barrier (BBB)
permeability. ECs are critical structures that make up the BBB,
a strong mechanical barrier in the brain that prohibits the
transcellular movement of large molecules. ECs are tightly
interconnected through specific proteins called tight junctions,
which function to seal the inter-endothelial spaces, thereby
inhibiting the delivery of immune cells and hydrophilic
molecules. Under ischemic conditions, excessive accumulation of
reactive oxygen metabolites may cause ECs to swell and detach,
leading to impaired BBB function, protein extravasation, and
interstitial edema (9). Furthermore, BBB breakdown induces ECs
to produce selectins, integrins, and pro-inflammatory cytokines
and chemokines, such as interleukin (IL)-1β, tumor necrosis
factor (TNF)-α, IL-6, and prostaglandins. The released pro-
inflammatory mediators affects the microvasculature in the
injury site, where leukocytes attach to the ECs and cause
reduced blood supply and hypoxia (9). Leukocytes activation
including the production of cytokines, which then further
upregulating the expression of adhesion molecules on the
surface of both ECs and leukocytes. The increased expression of
leukocyte adhesion molecules and the increased production of
reactive oxygen species, leading to the peroxidation of cellular
membrane components, further lead to the element of vascular
permeability and vasogenic edema (10). Therefore, a vicious cycle
of inflammation finally occurs.

Microglial Cells
Microglial cells are resident macrophages in the brain.
Traditionally, activated microglia are classified into two
subtypes: M1 and M2 phenotypes, with M1 phenotypes
having pro-inflammatory and M2 phenotypes playing anti-
inflammatory roles (11, 12). Evidence shows that microglial cells
are activated quickly after ischemia onset and produce a series
of pro-inflammatory mediators, such as reactive oxygen species
(ROS) (13), IL-1, IL-6, TNF-α, and matrix metalloproteinase
(MMP)-9, which can be toxic to neurons. It has been found
that these events precede leukocyte infiltration into the brain.
Thus, early microglial activation plays a detrimental role by
increasing BBB permeability, therefore, contributing to the
increased number of leukocytes infiltration to the brain (14, 15).
In fact, inhibiting microglial activation in the early phase of
CIRI protects the brain against injury by maintaining BBB
integrity (14). Furthermore, inhibiting M1 microglial migration
in the hyper-acute phase of transient middle cerebral artery
occlusion (MCAO) significantly attenuates infarct volumes and
improves neurological outcomes (16). In later phases of CIRI,
blood monocytes/macrophages infiltrate the brain. Microglia
and macrophages share some common features, but many
investigations have shown that there are markers that distinguish
microglia from hematogenous infiltrating macrophages (17).
Activated microglia/macrophages could play a protective role
in later phases of CIRI by triggering neutrophil apoptosis
and phagocytosis of apoptotic neutrophils, thereby preventing
the release of toxic molecules into the nearby tissue. This is
a crucial step in resolution of inflammation and preventing

further tissue damage of CIRI (18). The protective role of
microglia/macrophages may also be mediated by their ability
to produce various neurotrophic factors and anti-inflammatory
cytokines, such as fibroblast growth factor, transforming growth
factor (TGF)-β1, IL-4, IL-10, and IL-13, which are involved in
ending inflammation and initiating tissue repair (12, 19, 20).
A recent study found that microglia depletion exacerbated
post-ischemia inflammation and brain injury via augmented
inflammatory mediators produced by astrocytes. Microglia can
restrict the ischemia-induced astrocytic response (21).

Astrocytes
After cerebral ischemia, astrocytes undergo reactive astrogliosis,
characterized by swelling in morphology, enhanced expression of
glial fibrillary acidic protein, and upregulated Calcium signaling
(22). Astrocytes upregulate major histocompatibility complexes
and inflammatory mediators, such as pro-inflammatory
cytokines (IL-6 and IL-1β), chemokines [CXC-chemokine ligand
(CXCL) 1, CXCL10, CXCL12, and monocyte chemoattractant
protein 1 (MCP-1)], and inducible nitric oxide synthase (iNOS).
Although astrocytes may be harmful due to their hyper reactivity
to toxic injuries and glial scar, astrocytes also perform multiple
homeostatic functions for neurovascular unit survival and
maintenance (23). For instance, astrocytic glycogen stores
maintain neuronal metabolism under hypoglycemia (24, 25).
Furthermore, astrocytes modulate the ion buffering (26), uptake
toxic neurotransmitters (27, 28), synthesize neuroprotective
mediators (29), control cerebral blood flow (CBF) via the
release of vasoactive substances, such as prostaglandin E2
and epoxyeicosatrienoic acids (30), transport water, release
antioxidant molecules (31), and likely participate in adult
neurogenesis (32).

Neutrophils
Neutrophils infiltrate the injury site early following CIRI (33).
They are recruited from the blood to injury site through specific
bindings with chemokines, for instance CXCL1, CXCL2, and
CXCL3. A recent study has shown that blocking neutrophil-
specific chemokine receptors, such as CXC-chemokine receptor
(CXCR), reduces ischemic brain injury (34). Scavenger receptors,
such as cluster of differentiation 36 (CD36), may also play
important roles in neutrophil accumulation after ischemic CNS
injury (35). Neutrophils respond to damage-associatedmolecular
patterns (DAMPs) via binding to toll-like receptors (TLRs). Once
activated by inflammatory mediators, neutrophils upregulate
their surface adhesion receptors, such as CD15 and CD11b,
to promote their adherence to ECs and their migration into
inflamed tissue (36). The mechanisms underlying neutrophil-
mediated damage in CIRI include neutrophil sludging, causing
microvascular hypoperfusion, excessive production of ROS,
release of pro-inflammatory cytokines and chemokines, elastase,
and MMPs, and increased adhesion molecule expression. In
one study, there were three-fold more neutrophils in permanent
MCAO compared to transient MCAO, suggesting that ongoing
hypoxia is a major stimulus for immune cell infiltration (37).
Although evidences have suggested that preventing neutrophil
infiltration into the ischemic tissue inside the brain can minimize
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infarct size (38, 39), some studies also suggest that the number of
neutrophils in an ischemic brain does not predict stroke severity
(40). Hence, the role of neutrophils in stroke is more complicated
than what we currently know.

Platelets
The inflammatory roles of platelets have recently been
highlighted (41, 42). During inflammation, ECs express
intercellular adhesion molecule (ICAM)-1, platelet selectin (P-
selectin), endothelial selectin (E-selectin) as well as vascular cell
adhesion molecule (VCAM) (43), causing platelets to adhere to
and activate ECs. Platelets express CD154 (also known as CD40L)
on their surface and secrete IL-1β . In turn, platelet CD154 can
cause ECs to secrete adhesion molecules including E-selectin,
ICAM-1, and VCAM-1, as well as chemokines such as MCP-1
and anti-inflammatory cytokines IL-8 (44). IL-1β release further
increases EC permeability and recruits leukocytes to attach to
ECs (45). Together, this augments inflammation and activates
inflammatory cells, such as monocytes and neutrophils. Platelet
P-selectin and CD154 are respectively recognized by P-selectin
glycoprotein ligand 1 of monocytes and CD40 of neutrophils,
leading to the formation of platelet-leukocyte aggregates and
thereby contributing to the innate immune response (46). In
addition, platelet activation can release serotonin and chemokine
ligand (CCL) 5, which are known to mediate T cell activation and
differentiation. Platelets also produce many pro-inflammatory
chemokines and cytokines, and may also promote inflammation
by releasing microparticles (47–49). Platelets are major sources of
circulating microparticles (50). Microparticles contain proteins
including P-selectin, chemokines, such as CCL5, and cytokines,
such as IL-1β (51). Microparticles also contain different forms
of RNAs, such as microRNA (miRNA), small non-coding RNAs
that play important roles in post-transcriptional regulation
of gene expression. Platelets may affect the nearby cells by
transferring miRNA (52, 53). For example, miR-320b transferred
into ECs can decrease ICAM-1 expression (52). In the same way,
miR-126-3p, can be taken up by macrophages, resulting in an
increased phagocytic phenotype (53).

T Cells and B Cells
As BBB permeability increases, DAMPs may invade the brain
and function as antigenic molecules for the immune system.
After stroke onset, an infiltration of lymphocytes may also
directly contribute to brain injury (54). Studies utilizing ischemic
stroke mice models have demostrated that the numbers of
both T cells and antigen-presenting cells increase in delayed
phase (3–7 days) of post-reperfusion, suggesting that antigen
presentation and T cell responses may play a role in the
pathophysiology of ischemic stroke (55, 56). CD4+ helper,
CD8+ cytotoxic, and γ δT cells play detrimental roles in various
stroke models (57, 58). CD4+ T cells produce pro-inflammatory
cytokines, such as interferon (IFN)-γ , and CD8+ T cells secrete
perforin/granzymes (59, 60), all of which could cause neuronal
death and worsen stroke outcomes. It is thus unsurprising
that, in mice, CD4+ helper/CD8+ cytotoxic T cell deficiency
results in smaller infarct size, less infiltrating leukocytes, and
better prognosis after transient MCAO (57). γ δT lymphocytes

are involved in ischemic brain injury by producing the pro-
inflammatory molecule IL-17 (58, 61). In stroke, IL-17 and TNF-
α synergistically stimulate astrocytes to secrete chemokines that
are attractive for neutrophils, such as CXCL-1, leading to the
infiltration of neutrophil, and thus increased damage of brain
tissue (62). Furthermore, T regulatory cells (Tregs) might play
a protective role in ischemic brain injury by producing the anti-
inflammatory cytokines IL-10 as well as TGF-β (63) and down-
regulating the neutrophil production of MMP-9, protecting the
BBB (64, 65). In addition, the anti-CD28 antibody CD28SA
was proved to improve neurological function after experimental
ischemic stroke by increasing the number of Treg cells (66). On
the contrary, there have been suggestions that Treg cells could
be harmful in the early phase of ischemic brain injury for the
reason that they may cause dysregulation of immune system and
vascular malfunction (67, 68).

In the weeks to months after stroke, immunoglobulin
synthesis was found in the cerebrospinal fluid (CSF) of ischemic
stroke patients (69), suggesting B cell were activated as a result
of brain damage. Consistent with this finding, it has also been
found that activated B cells could have an impact on the cognitive
function and recovery (70).

Dendritic Cells (DCs)
DCs serve as antigen presenting cells in the brain that process
antigenic materials and present them on their surface to immune
cells. Under normal conditions, DCs cannot be found inside
the brian (71). It has been demonstrated that DCs are present
in the parenchyma of inflamed brains as early as 1 h after
ischemia in an MCAO rat model (72). In line with this findings,
Gelderblom et al. demonstrated that DCs were observed inside
the brain together with other type of immune cells after CIRI (55).
Importantly, results from experimental studies prove that DC
infiltration after ischemia stroke worsens the clinical outcomes
(73). Granulocyte-colony stimulating factor (G-CSF) mediates
the migration of DCs after transient MCAO and, thus, inhibiting
G-CSF could attenuate cerebral infarct volume and inflammation
(73). Furthermore, DCs that present in the ischemic brain injury
site can activate T cells, initiating a long-lasting immune response
and worsening the clinical outcomes.

Mast Cells (MCs)
MCs locate in various parts of in the brain, including the cerebral
cortex, thalamus, and diencephalic parenchyma. Importantly,
MCs that locate in the perivascular positions have the capability
to quickly respond to stimuli, and produce of a series
mediator such as vasodilatory, pro-inflammatory mediators and
proteolytic molecules. Therefore, MCs can play an important role
in the defense of various stimuli. Several mediators synthesized
by MCs can affect stroke outcomes. TNF-α which comprises
25% of the MC granule, enhances BBB permeability and
increases T cell infiltration, proliferation, function, and cytokine
production (74). MC-derived endothelin, endoglin, and MMP-
9 increase neutrophil infiltration, BBB leakage, and edema after
reperfusion in a transient MCAO mouse model (75). MC-
derived gelatinase contributes to early ischemic BBB disruption
and edema formation (76). MC-derived IL-6 contributes to
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increased brain granulocytes, macrophage activation, infarct size
exacerbation, and brain swelling (77).

Molecular Events Involved in CIRI
Free radicals and pro-inflammatory mediators are quickly
produced from the damaged tissue after ischemic stroke.
These mediators can cause cerebral ECs to synthesize adhesion
molecules, increase adhesion and trans-endothelial migration
of leukocytes from the periphery. Infiltrating leukocytes can
then release more cytokines and chemokines, which produce
free radicals that complement and activate MMPs. This
further amplifies inflammation by promoting local immune cell
activation and leukocyte infiltration, eventually leading to BBB
disruption, brain edema, and neuronal death.

The Role of Free Radicals in CIRI
There are two major classes of free radicals: ROS and reactive
nitrogen species (RNS). During thrombolysis, reperfusion may
cause increased ROS and RNS production, both of which are
mediators of neurotoxicity and BBB breakdown.

ROS

ROS consists of active species, including hydroxyl radicals,
superoxide anion radicals, peroxide (H2O2), hydrogen, and
singlet oxygen, among others. Under normal conditions,
ROS have critical biological functions and function as redox
signaling molecules. However, under pathological conditions,
such as CIRI, excessive ROS are produced. In various
ischemia/reperfusion (I/R) organs, xanthine oxidase, ROS
are synthesized by the enzymatic activity of NOS and
nicotinamide adenine dinucleotide phosphate (NADPH). In
CIRI, the mitochondria are the main source of ROS (78).
I/R cause electron leakage and excessive production of free
radical in the mitochondrion. Over abundant free radicals can
cause oxidative injury to the mitochondrial respiratory chain,
metabolizing enzymes further increase the electron leakage
and free radical release (79, 80). Moreover, free radicals
damage mitochondrial membrane structures (81), and increase
mitochondrial permeability transition pore opening (82), leading
to impairment of membrane potential and more oxidative
stress (80). Increased mitochondrial permeability also increases
the release of pro-apoptotic mediators into the cytoplasm
(83). Moreover, I/R-induced damage also impairs mitochondrial
dynamics and mitophagy, thereby affecting the quality control of
the mitochondrial network (84, 85). Eventually, mitochondrial
dysfunction leads to increased apoptosis. ROS also directly
contribute to neuronal death by oxidizing proteins, damaging
DNA, and inducing lipid peroxidation.

RNS

Two common RNS that are well documented in CIRI are nitric
oxide (NO) and peroxynitrite (ONOO−). A low-concentration
of NO produced by endothelial NOS (eNOS) acts as an
indispensable messenger to regulate pre- and/or post-synaptic
activities (86), as well as maintaining vascular physiological
functions (87), CBF (88), and inflammatory responses (89),
whereas high-concentrations of NO produced from iNOS and

neuronal NOS can trigger cell death and BBB leakage during I/R
injury (90). iNOS activation upregulates autophagy of vascular
ECs and increases apoptosis during CIRI (91). During CIRI,
NO is synthesized together with superoxide (O2−·) and quickly
interacts with O2−· at a diffusion-limited rate to produce
ONOO−. In physiological conditions, ONOO− can directly react
with thiols, or the radical products of ONOO− decomposition
may indirectly oxidize other cellular components, such as
lipids, proteins, and DNA. However, excessive ONOO− triggers
inflammation, lipid membrane peroxidation, and mitochondrial
dysfunction (92), subsequently exacerbating BBB disruption
and brain dysfunction (93). Plasma 3-nitrotyrosine, which is
often used as an ONOO− footprint, has a positive correlation
with brain ischemic severity in stroke patients. RNS-mediated
autophagy/mitophagy may play an indispensable role in CIRI.
ONOO−-mediated autophagy could also induce tight junction
protein degradation (94).

The Role of Complement Proteins in CIRI
Complement proteins play a key role in the inflammatory
reaction following CIRI. In ischemic stroke, BBB disruption
allows circulating complement proteins to enter the CNS;
further, complement proteins can also be locally produced
by CNS resident cells. Due to excessive glutamate and ionic
imbalance, CIRI results in a depletion of cellular energy
resources, as well as an increase in ROS release, apoptotic and
necrotic cell death, and excitotoxic insults. These pathological
processes result in the activation of complement proteins
via different pathways including the classical, alternative and
extrinsic protease pathways. All of these pathways are involved
in the formation of membrane attack complexes (MACs). The
other two products that emerge following complement protein
activation are opsonins (C1q, mannose-binding lectin (MBL)
and C3b/i C3b/C3d) and anaphylatoxins (C3a and C5a). The
alternative pathway is consistently active, and hydrolyzed C3
can be placed on the surface of immune cells that can lead to
subsequently C3 activation. The classical pathway is activated
by apoptotic cells or through recognition by Clq. The extrinsic
protease pathway is activated through the specific binding of
carbohydrate molecules by ficolins or MBL. Activation of these
pathways leads to activation of C3. C3 cleavage generates C3a
and C3b, the latter is cleaved further to generate membrane-
bound iC3b, C3d, C3dg and opsonins, which are recognized by
their specific receptors on the immune cells. C3 cleavage also
result in C5 cleavage, generating soluble C5a and membrane-
bound C5b, the later starts the terminal pathway and leads to the
formation of MAC that directly lyse the cells and stimulates cells
to produce pro-inflammatory mediators. The anaphylatoxins
C3a and C5a recruit and activate leukocytes. The complement
opsonins promote microglial phagocytosis and release IFN-γ and
other cytokines (95). Signaling of C3d through complement
receptor 2 inhibits neuronal progenitor cell proliferation (96).

Infarct development was strongly correlated with robust
complement protein activation (97). The presence complement
molecules including Clq, MBL, C3, C4d, C5a, and C9 has
been observed in ischemic brain sites (98, 99) and increased
levels of C3, C4d, C5a, and C5b-9 have also been found
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in the plasma of stroke patients (100). CD59, expressed
by astrocytes and microglia, is a MAC inhibitory protein.
Exacerbated pathology and behavior deficits have been found
in CD59 knockout ischemic stroke mice (101). In line with
these findings, experiments using other complement related
genetic models proved the pathological roles of Clq (102), C3
(103, 104), and C5 (105) in stroke. Genetic MBL deficiency
is protective in clinical and experimental severe cerebral I/R
injuries (106), but not in mild cerebral ischemia (107). It
has been demonstrated that intravenous rt-PA dramatically
upregulates complement cascade activation in ischemic brains,
and pharmacologic inhibition of complement proteins protects
brains against the adverse effects of rt-PA thrombolysis in stroke
(108). These studies have led many researchers to focus on
inhibiting complement proteins to alleviate stroke injuries (109–
112), including depletion of complement proteins, suppressing
complement-driven cellular recruitment, neutralizing MBL, and
inhibiting complement protein activation, among others. Other
investigations have targeted down-stream mediators of the
activated complement system. Anaphylatoxin C3a was thought
to have neuroprotective and neurotrophic properties (113). C3a
regulated astrocytes response to ischemia and increased their
capacity to react to ischemic stress (114). Studies have also
shown that applying specific C3a receptor agonists protects
against intestinal I/R injury by inhibiting neutrophil mitigation
(115). In subacute to chronic phases of ischemic stroke, C3a–
C3a receptor signaling stimulated post-stroke synaptogenesis and
axonal plasticity, and intranasal treatment with C3a receptor
agonists improved functional recovery (116). C5a interacts with
its canonical receptor C5aR1 and initiate the complement-
mediated inflammatory processes. Its inhibition is generally
thought to mitigate acute cerebral I/R injury (117). Since
complement proteins are also important for immune surveillance
and homeostatic activities, many therapies that systemically
inhibit complement systems have potential risks. Nonetheless,
complement inhibitors that target specific sites are under
investigation (118).

The Role of MMPs in CIRI
MMPs are responsibe for protein digestion and extracellular
matrix (ECM) turnover and belong to a group of zinc-binding
endopeptidases. There are 23 different types ofMMPs in humans,
which are classified according to their structural similarity (119).
Microglia are major sources of MMPs (39). Activated MMPs can
be found immediately after ischemia onset and last for 5 days (39,
119). MMPs mediate basal lamina protein disruption by causing
BBB hyperpermeability, leukocyte extravasation, cerebral edema,
and hemorrhagic transformation (HT). Although different types
of MMPs act differently, there is accumulating evidence that
MMP-2, MMP-9, and MMP-12 are involved in the pathogenesis
of BBB disruption and cerebral edema formation during ischemic
stroke.

MMP-9-deficient mice had smaller ischemic volumes
compared with controls in a permanent focal cerebral ischemia
mouse model (120). Some clinical studies have suggested that the
levels of circulating MMP-9 are significantly correlated to disease
severity and infarct volume in the hyperacute phase (121, 122),

as well as late hemorrhagic infarction incidence between 5 and 7
days after stroke onset (123). A recent study showed that higher
MMP-9 levels in the serum of patients with acute ischemic stroke
is correlated with the severity of clinical symptoms; Therefore,
MMP-9 may serve as an important biomarker for ischemic
stroke patent (124). Furthermore, rt-PA was shown to upregulate
MMP-9 levels in vivo in a rat model of stroke (125), emphasizing
the impact of MMP-9 activation in rt-PA-associated side effects,
such as HT.

The role of MMP-2 in ischemic stroke is more complex. It has
been shown previously that the levels of MMP-2 are lower in the
acute phase of stroke mice model. However, the levels of MMP-2
in the serum of stroke patients are not correlated to infarct size or
stroke disability (126). Actually, MMP-2 activity has been shown
increased in the latter phase of in ischemic mice model (119) and
the MMP-2 levels are higher in ischemic stroke patients in the
recovery phase (126). A recent study using a non-human primate
MCAO model sampled CSF and found that MMP-2 and MMP-
13, but not MMP-9, correlate to the CSF/serum albumin ratio, a
sign of BBB permeability (122).

MMP-12 expression increases as early as 1 h after permanent
focal cerebral ischemia (127) and can persist for 14 days after
I/R (128). Elevated MMP-12 after ischemic stroke disrupts
the BBB by degrading tight junction proteins (127). MMP-
12 also contributes to ischemic brain cell apoptosis, infarct
volume enlargement, myelin basic protein degradation, and
demyelination (128). Additionally, MMP-12 can activate other
MMPs, such as pro-MMP-1 and pro-MMP-9 (129). Thus, MMP-
12 enhances the proteolysis cascade. Studies show that plasma
MMP-12 levels are associated with stroke severity and elevated
MMP-12 might predict poor outcomes (130).

The inflammatory response after cerebral ischemia is
described in Figure 1.

RESOLUTION OF INFLAMMATION IN CIRI

A transient inflammatory reaction exists within the first
week after ischemic stroke (131). Ultimately, the inflammation
subsides, and inflamed brain tissue returns to homeostasis.
Resolution of inflammation is an active and highly regulated
biochemical process mediated by a group of lipid mediators,
termed specialized pro-resolving mediators (SPMs). Four classes
of SPMs have been discovered, including resolvins, lipoxins,
protectins, and maresins. The complete stereochemistry of
each SPM is known (132). The biological functions of SPMs
include cessation of neutrophil infiltration, decreased production
of pro-inflammatory mediators, increased uptake of apoptotic
neutrophils and cellular debris, and promotion of macrophage
transformation from the M1 to M2 phenotype, among others
(49, 133).

Synthesis of SPMs
In the acute phase of the inflammatory response, free
polyunsaturated fatty acids (PUFAs) were released from the
membrane by the activity of phospholipase enzymes [e.g.,
cytosolic phospholipase A2 (cPLA2)]. SPM are derived from
PUFAs, which including arachidonic acid (AA) that belongs
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FIGURE 1 | Inflammatory response after cerebral ischemia. Brain post-ischemic inflammatory responses are characterized by innate immune activation followed by

adaptive immune activation. Microglial cells are activated within minutes of ischemia onset and produce a plethora of pro-inflammatory mediators (ROS, IL-1, IL-6,

TNF-α, and MMP-9, etc.). These mediators induce expression of adhesion molecules on cerebral ECs and leukocytes and, thus, promote adhesion and

transendothelial migration of circulating leukocytes. ECs express P-selectin, E-selectin, VCAMs, and ICAM-1, which lead to platelets adhering to and activating ECs. In

the subacute phase (hours to 1 day), MCs release vasodilatory and pro-inflammatory mediators to regulate early brain swelling and neutrophil accumulation. Infiltrating

leukocytes release cytokines, chemokines, ROS and MMPs (mainly MMP-9), which amplify brain-inflammatory responses further by causing more extensive activation

of resident cells and infiltration of leukocytes, eventually leading to disruption of the BBB, brain edema, and neuronal death. Complements, either originating from the

circulation after BBB disruption or locally produced by resident cells directly cause cell lysis and stimulate cells to release inflammatory molecules. Astrocytes secrete

both pro-inflammatory (CXCL10, MCP-1) and anti-inflammatory chemokines (IL-10, TGF-β)/cytokines to promote injury or repair. In the delayed phase (3–7 days),

macrophages, microglia, astrocytes, and DCs act as antigen-presenting cells (APCs) to present CNS antigens to CD4+ or CD8+ T cells that secrete inflammatory

cytokines, including IFN-γ and IL-21 and perforin-granzyme. γδT lymphocytes secrete IL-17 to control neutrophil infiltration. Tregs release IL-10 to promote resolution.

to omega-6 fatty acid and eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA) that belong to omega-3 fatty
acids. The crucial enzymes involved in this synthesis are
lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome
P450 monooxygenases (CYP450). SPMs are generated by
leukocytes, structural cells, some organs, and tissue during
the resolution of inflammation (134) and their production is
ultimately controlled by the vagus nerve (135, 136).

Lipoxins are biosynthesized from AA. Three main lipoxin
synthesis pathways have been reported. In the first pathway,
Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are produced by
the oxygenation of AA by 15-LOX and 5-LOX, and then by
enzymatic hydrolysis in mucosal tissues (137). In the second
pathway, LXA4 is produced by 5-LOX in blood vessels and
LXB4 is synthesized by 12-LOX in platelets. The third pathway
is aspirin-triggered pathway, aspirin changes COX-2 activity by
increasing the acetylation of COX-2, leading to the production
of a new lipoxin analog termed aspirin-triggered lipoxins (138).
Inactivation of lipoxin catalysis by the enzyme 15-prostaglandin
dehydrogenase can result in the synthesis of a series of stable
lipoxin analogs (139) that retain all of the biological functions of
lipoxins.

Two groups of resolvins exist: the the D-series, derived
from DHA and E-series, derived from EPA (140). Two resolvin
E1 (RvE1) formation pathways have been reported. The first
is the acetylation of COX-2 at Ser516 by aspirin and 5-LOX
(141). The second is oxidation by CYP450 followed by 5-
LOX oxidation (142). RvE2 is derived from EPA via the 18R-
hydroxyeicosapentaenoic acid and 5S-hydroperoxide, which is
5-LOX dependent (143). Afterwards, the 5S-hydroperoxide is
directly converted to RvE2 without epoxidation process. Unlike
RvE1 and RvE2, the formation of a third member, RvE3,
does not require 5-LOX (144). DHA can be converted to 17-
hydroperoxide intermediate (17-H(p)DHA) in the presence of
15-LOX, which can further give rise to D-series resolvins (RvDs).
The hydroperoxide 5-LOX can be converted to 7S, 8S-epoxide
by epoxidation. 7S, 8S-epoxide can then further converted to
RvD1 or RvD2 enzymatic hydrolyzation (145). RvD3–D4 as well
as aspirin-triggered 17R D-series resolvins (AT-RvDs) have also
been discovered and their stereochemical structures have been
reported recently (146, 147).

Protectins are also biosynthesized from DHA. DHA is firstly
to a 17S-hydroxyperoxide-containing intermediate converted by
lipoxygenase, and then the intermediate is engulfed by leukocytes
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to give rise to protectin D1 (PD1 or NPD1) (148). Besides,
aspirin-triggered protectin D1 (AT-NPD1), has been uncovered
as well (149).

The maresins (MaRs) synthesis pathway is started by the
14-lipoxygenation of DHA to generate a 14S-hydro(peroxy)-
4Z,7Z,10Z,12E,14S,16Z,19Z-docosahexaenoic acid intermidate
and then 13S,14S-e MaR by the enzymatic activity of 12-LOX.
13S,14S-e MaR converted to MaR1 by enzymatic hydrolyzation
or epoxy hydration, to MaR2.

The Roles of SPMs in CIRI
As discussed above, inflammation plays an important role in
CIRI, so it is plausible that resolving inflammation would be
a promising therapeutic target for CIRI. In animal models of
ischemic stroke, SPMs and their aspirin-triggered forms, are
endogenously produced (150–152) and have protective roles.

The Effects of SPMs on ECs
Vascular ECs play an important role in modulating the passage
of molecules and cells from the circulation cross the vessel
wall during the inflammation. Therefore, vascular permeability
and EC activation is critical to resolve inflammation in CIRI.
Moreover, ECs are involved in SPM production and can
express receptors that SPMs can directly interact with during
acute phase of inflammatory response (153). For example,
ECs express ALX/FPR2 (formyl-peptide receptor type 2 or
LXA4 receptor; termed Fpr2/3 in mice) and G-protein coupled
receptor (GPR) 32, which are receptors both for LXA4 and
RvD1. Upon binding to these receptors, SPMs can regulate
leukocyte recruitment and adhesion. It has been demonstrated
that LXA4 downregulates VCAM-1, E-selectin (154), and
ICAM-1 (155), and increases prostacyclin production, which
then counter-regulates leukocyte–EC interactions and platelet
activation (156). Moreover, LXA4 has further EC-specific effects,
such as downregulating NADPH oxidase, which decreases ROS
generation (157). An LXA4 analog reduces brain injury by
improving BBB function, inhibiting MMP-9 expression, and
upregulating tissue inhibitor of metalloproteinase-1 (TIMP-
1) protein (158). Resolvins also have the ability to regulate
microvasculature permeability. RvD1 protects the human EC
barrier against endotoxin-induced impairment (159) and aspirin-
triggered-RvD1, reducing the endothelial barrier permeability in
an acute lung injury mice model (160).

The Effects of SPMs on Polymorphonuclear

Leukocytes (PMNs)
After ischemia, leukocyte infiltration, as well as ROS and pro-
inflammatory mediator production, results in tissue damage.
Therefore, inhibiting leukocyte accumulation or removing
leukocytes altogether, is crucial for brain protection during
ischemia. Various ischemia models in different organs have
supported the idea that SPMs inhibit leukocyte accumulation and
promote phagocytosis of apoptotic leukocytes. In a mesenteric
artery I/R mouse model, an LXA4 analog detached leukocytes
from endothelium cells by binding to FPR (161) and also
diminished PMN infiltration into lungs after hind limb I/R
(162–164). RvD1 has been reported to reduce fibrosis and the
accumulation of leukocytes, as well as enhancing cardiac function

after in experimental mice model of myocardial infarction (MI)
(152). Biosynthesis of RvDs and protectins has been found
after I/R in the kidneys. Furthermore, treatment with RvDs
prior to ischemia decreases leukocyte infiltration and tissue
fibrosis (151). In the context of CIRI, RvD1 and PD1 are also
protective, as they reduce the number of infiltrating leukocytes
and prevent NF-κB and COX-2 activation in neurons (150). In a
mouse hind limb I/R model, resolvins protect against leukocyte
recruitment into the lungs (165, 166). RvEl has potent effects on
leukocytes by decreasing migration, inhibiting rolling, enhancing
CCR5 expression, and downregulating NF-κB pathway signaling
(167). In a mouse renal pedicle I/R model, PD1 reduces kidney
PMN influx and amplifies renoprotective heme-oxygenase(HO)-
1 protein and mRNA expression (168).

The Effects of SPMs on Macrophages
Efferocytosis, or the clearing of dead cells, is essential for tissue to
successfully resolve the inflammatory response. Cardiac function
impairment has been found in acute MI mice deficient in Mertk
and/or Mfge8, which are the receptors of efferocytosis. This is
caused by an abrogation of efferocytosis rather than a change in
circulating or tissue-resident macrophage/monocyte infiltration
(169, 170). A study using a bilateral common carotid artery
occlusion (BCCAO)/reperfusionmouse model has demonstrated
that LXA4 analogs can enhance efferocytosis, thereby promoting
a resolution of inflammation (171). Macrophage/microglia
survival and phagocytosis in a highly oxidative environment
after CIRI is of critical importance. It has been demonstrated
that RvD1, upon binding to ALX/FPR2, has protective effects
on macrophages during efferocytosis from apoptosis induced by
oxidative stress, by down-regulating NADPH oxidase and the
reducing the levels of apoptotic proteins such as Bcl-x and Bcl-
2 (172). During efferocytosis, SPM production increases, further
enhancing debris and apoptotic cell clearance (173).

SPMs are also thought to modify macrophage phenotype from
pro-inflammatory M1 to anti-inflammatory M2 by binding to
GPR32 (174). The shift in phenotype toward M2 is associated
with reparative and anti-inflammatory functions. RvD1 has been
proved protective I/R injury model of liver by promoting M2
polarization of macrophage and promoting efferocytosis (175).
It has also been shown to induce M2 macrophage phenotypes
to resolve adipose tissue inflammation (176). It has been
demonstrated that RvD2 administration increases macrophage
polarization to the M2 phenotype in the arterial walls of a murine
model of arterial neointima formation (177). MaR1 has also been
shown to stimulate the M1 to M2 phenotype transformation
besides its pro-resolving bio functions and tissue restorative
abilities (178).

As we know, ECs, PMNs, and microglia/macrophages are
primary sources of inflammatory molecules during CIRI. The
pro-inflammatory mediators such as cytokines, chemokines
as well as adhesion molecules, which contribute to leukocyte
infiltration, oxidative stress, BBB disruption, and neurotoxic
substance release, among others. Anti-inflammatory cytokines
inhibit pro-inflammatory cytokines and stimulate tissue
repair during inflammation resolution. SPMs can increase
anti-inflammatory mediators and decrease pro-inflammatory
mediators. In a superior mesenteric artery I/R mouse model,
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FIGURE 2 | The roles of SPMs in cerebral ischemia reperfusion injury. SPMs can display their protective roles through interacting with leukocytes,

macrophages/microglia, vascular endothelial cells, and neurons in cerebral ischemic reperfusion injury. The main functions of SPMs in cerebra ischemic reperfusion

injury include regulating leukocytes adhesion, infiltration and apoptosis, mediating inflammatory mediators release, adjusting macrophages/microglia polarization,

protecting blood brain barrier, inhibiting neuronal apoptosis, promoting tissue restitution, suppressing oxidative stress. LXA4, lipoxin A4; RvD1, resolving D1; MaR1,

maresin1; NPD1, protectin D1; MCTR, maresin conjugates in tissue regeneration.

an LXA4 analog decreases vascular permeability, leukocyte
influx, and hemorrhage in the intestines, as well as inhibiting
reperfusion-induced remote injury to the lungs by activating
ALX/FPR2 for IL-10 production (179). In a bilateral kidney
I/R mouse model, an LXA4 analog alleviates I/R injury by
reducing PMN infiltration and pro-inflammatory cytokine (IL-1,
IL-6) and chemokine (growth regulated oncogene-1 [GRO1])
mRNA levels, and increasing renal mRNA levels of (SOCS)-1
and SOCS-2 that are suppressors of cytokine signaling (180).
Further, by using oligonucleotide microarray and bioinformatics,
Kieran et al. found that the LXA4 analog is renoprotective
since it modifies changes in the mRNA levels of many families
of harmful molecules, including pro-inflammatory cytokines,
cellular adhesion molecules, and proteases (181).

The Effects of SPMs on Oxidative Stress and

Metabolism
As discussed above, oxidative stress plays an important role
in the pathogenesis of CIRI. SPMs can attenuate CIRI by
acting as potent antioxidants and mediators. In a spinal
cord I/R rabbit model, LXA4 improves neurological function
and reduces cell apoptosis, partly by decreasing MDA levels
and increasing superoxide dismutase (SOD) activity (182). In
different I/R experimental models, the mechanisms by which
LXA4 attenuates oxidative stress includes downregulating GRP-
78 (78 kDa glucose-regulated protein) and caspase-12 (183),
activating the Keap1/Nrf2 (Ketch-like ECH-associated protein
1/nuclear respiratory factor 2) (184) and Nrf2 (185) pathways,
and acting as an agonist of peroxisome proliferator-activated

receptor (PPAR)γ (186). MaR1 suppresses free radicals by
activating HO-1 pathway mediated by Nrf-2 in a left pulmonary
hilum I/R mouse model (187).

In CIRI, SPMs may improve energy metabolism disorders to
protect tissue from injury. RvD1 has been shown protective for
mitochondrial in I/R lung model, by increasing Na+-K+-ATPase
activity, retune the balance of ATP/ADP ratio, and decreasing
apoptosis (188). LXA4 attenuates metabolic disturbance in MI
by upregulating Na+-K+-ATPase expression (189). LXA4 also
upregulates Cx43 expression to prevent arrhythmogenesis (189).
The roles of each SPM on cells and moleculars in CIRI are
summarized in Figure 2.

PROMOTING INFLAMMATION
RESOLUTION TO TREAT I/R INJURY

The discovery that the resolution of inflammation is a highly
regulated process is crucial, because this knowledge has led to
investigations of new therapeutics with selective targets that will
safely resolve inflammation without compromising host defense
(190). Each SPM has potent pro-resolving functions that are
fundamental to inflammation resolution. Current experiments
are investigating if targeting these pro-resolution functions can
be useful in the treatment of CIRI (Table 1).

LXA4
LXA4 binds with high affinity to the GPR termed ALX/FPR2,
which is expressed on various cellular types, such as leukocytes,
ECs, fibroblasts, microlgia, macrophage, and neuronal cells
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TABLE 1 | Studies of SPMs in I/R injury experiment models.

SPMs Disease model Action Mechanisms References

Lipoxin and its analogs MCAO/reperfusion

model

Ameliorating BBB dysfunction. Inhibiting MMP-9 and increasing

TIMP-1 protein expression.

(158)

Regulating neutrophil-platelet aggregate (NPA)

formation, inhibiting cerebral microvasculature

reactivity.

Through binding with ALX/FPR2 (191)

Inhibiting 5-lipoxygenase translocation and

leukotrienes biosynthesis

Through ERK signal transduction

pathway.

(192)

Suppressing PMNs infiltration and lipid peroxidation

levels, inhibiting microglia and astrocytes activation,

reducing pro-inflammatory cytokines and

up-regulating anti-inflammatory cytokines.

Inhibiting NF-κB activation. (193)

Reducing oxidative stress. Activating Nrf2 pathway and its

nuclear translocation, as well as HO-1

expression and GSH synthesis.

(194)

Mesenteric artery I/R

model

Provoking adherent leukocytes detachment from

endothelium.

Through binding with ALX/FPR2. (161, 195)

Decreasing vascular permeability, leukocyte influx,

and hemorrhage in intestine, suppressing TNF-α

production.

Associated with enhanced IL-10

production.

(179)

Reducing oxidative stress Through activating Keap1/Nrf2

pathway.

(184)

Hindlimb I/R model Inhibiting PMNs infiltration in remote organs. (162–164)

Bilateral common

carotid artery occlusion

(BCCAO)/reperfusion

model

Reducing the number of rolling cells, adherent

leukocytes and activated microglial cells, increasing

plasma MCP-1 and IL-6 levels.

Through binding with FPR2/3. (171)

Bilateral kidney I/R

model.

Inhibiting PMNs infiltration, reducing IL-1β, IL-6, and

GRO-1 expression.

Modulation of renal mRNA levels for

the suppressors of cytokine signaling

SOCS-1 and SOCS-2.

(180)

Modifing many pathogenic mediators expression,

including cytokines, growth factors, adhesion

molecules, and proteases.

(181)

Spinal cord I/R model. reducing cell apoptosis and MDA levels, increasing

SOD activity.

(182)

Left anterior

descending coronary

artery I/R model.

Inhibiting neutrophil activation, attenuating

myocardial oxidative stress and inhibition of

apoptosis, attenuating metabolic disturbance.

downregulation of GRP-78 and

caspase-12, upregulating

Na+-K+-ATPase expression.

(183, 189)

Permanent MCAO. Decreasing infarct volume and neurological deficit. Through agonist of PPARγ. (186)

Primary cultured

astrocytes exposed to

OGD/recovery

Reducing oxidative stress. Through activating Nrf2 pathway. (185)

Celiac artery I/R model. Preventing mucosal injury induced by either

cyclooxygenase or lipoxygenase inhibitors.

(196)

Resolvins Left anterior

descending coronary

artery occlusion model

1) Discontinuing neutrophil priming in spleen and LV

post-MI.

2) Stimulating macrophages clearance from

infarcted area.

3) Reducing ECM gene expression and collagen

deposition.

Reducing pro-fibrotic genes and

decreasing collagen deposition.

(152)

Decreasing infarct size and attenuating

Depression-like symptoms.

(197)

Left coronary artery I/R

model.

H9c2 cells exposed to

hypoxia /reoxygenation

Increasing cell viability and decreased apoptosis. Activation of pro-survival pathways

(Akt and ERK1/2).

(198)

(Continued)
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TABLE 1 | Continued

SPMs Disease model Action Mechanisms References

Bilateral kidney I/R

model.

Swine kidney epithelial

cells treated with

H2O2.

RvDs reduced kidney interstitial fibrosis. RvDs and

PD1 reduced infiltrating leukocytes numbers and

activation of macrophages.

Blocking TLR. (151)

hind LIMB I/R model Inhibiting PMNs infiltration in remote organs. (165, 166)

Hepatic portal triad I/R

model

Inhibiting PMNs infiltration, enhancing M2

macrophage polarization and efferocytosis.

(175)

Attenuating IL-6, TNF-α, and myeloperoxidase

levels, reducing apoptosis.

Increasing phosphorylation of Akt. (199)

Lung hilum I/R model Improving energy metabolism disturbance,

protecting mitochondrial structure and function and

decreasing apoptosis.

Increasing ATP, glycogen content and

Na+-K+-ATPase activity, balancing

the ratio of ATP/ADP.

(188)

Inhibiting complement, immunoglobulin, and PMNs

activation and inflammatory factors expression.

Down-regulating TLR4/NF-κB. (200)

Protectins MCAO/reperfusion

model

Improving neurological scores, reducing infarction

volumes and edema.

Through activation of Akt and

p70S6K pathways.

(201, 202)

MCAO/reperfusion

model, human neural

progenitor cells

exposed to IL-1β

Reducing leukocytes infiltration, preventing

pro-inflammatory gene expression.

Inhibiting NF-κB activation and

cyclooxygenase-2 expression.

(150)

MCAO/reperfusion

model, retinal pigment

epithelial (RPE) cells

exposed to UOS

Protecting cells against death induced by cerebral

ischemia and UOS.

Upregulating ring finger protein 146

which facilitated DNA repair.

(203)

Renal pedicles I/R

model, glomerular

mesangial cells

exposed to serum

starvation.

Reducing leukocytes infiltration. Amplifing Reno protective HO-1

protein and mRNA expression.

(168)

Maresins and MCTR Lung hilum I/R model. Suppressing oxidative stress. Through activation of the

Nrf-2-mediated HO-1 signaling

pathway.

(187)

MCAO/reperfusion

model.

Mitigating inflammation. Inhibiting NF-κB activation. (204)

Hindlimb I/R model. Inhibiting PMNs infiltration, regulating cell

proliferation, and tissue repayment.

Up-regulating Ki67 and Roof

plate-specific spondin3 expression.

(205)

ADP, adenosine diphosphate; ATP, adenosine triphosphate; ALX/FPR2, synonym formyl peptide receptor; BBB, blood brain barrier; ECM, extracellular matrix; ERK, extracellular signal-

regulated kinase; GRO-1, growth regulated oncogene-1; GRP-78, glucose-regulated protein; GSH, glutathione; HO-1, haeme oxygenase-1; IL, interleukin; I/R, ischemia/reperfusion;

LV, left ventricle; MCAO, middle cerebral artery occlusion; MCP-1, monocyte chemoattractant protein; MCTR, maresin conjugates in tissue regeneration; MDA, malondialdehyde; MI,

myocardial infarction; MMP-9, metalloproteinase-9; NF-κB, nuclear factor-κB; Nrf2, nuclear factor erythroid 2-related factor 2; OGD, oxygen-glucose deprivation; PD1, protectin D1;

PMN, polymorphonuclear leukocyte; PPARγ, mediated by transcription factor peroxisome proliferator-activated receptors gamma; Rv, resolvin; SOCS, suppressors of cytokine signaling;

SOD, superoxide dismutase; TIMP-1, tissue inhibitors of metalloproteinase-1;TLR, toll-like receptor; TNF-α, tumor necrosis factor-α; UOS, uncompensated oxidative stress.

(206). Activation of this receptor could promote a resolution
of inflammation and tissue repair. Exogenous introduction
of LXA4 in Fpr2/3+/+mice attenuates inflammation in I/R
injury, while this result cannot be observed in Fpr2/3−/− mice,
demonstrating the protective role of Fpr2/3 in I/R injury modles
(191, 195). Consistent with these findings, studies in CIRI rats
have found that LXA4 is also neuroprotective, reducing leukocyte
infiltration and astrocyte activation, decreasing TNF-α and IL-
1β production, and reducing leukotrienes, as well as extracellular
signal-regulated kinase (ERK) phosphorylation (192, 193). It has
been demonstrated that LXA4 reduces infarct size and improves
neurological scores, partially by inducing Nrf2 synthesis and its
translocation into the nucleus, as well as increasing HO-1 and

glutathione (GSH) synthesis; thus, combating increased oxidative
stress (194). In addition, the PPAR agonist rosiglitazone has been
shown to be neuroprotective by increasing LXA4 and reducing
leukotriene B4 (LTB4) in experimental stroke (186). Besides
its neuroprotective effects, LXA4 may also attenuate the side
effects of drugs that treat cerebrovascular diseases. In a celiac
artery I/R rat model, LXA4 prevents against cyclooxygenase or
lipoxygenase inhibitors induced injury of celiac mucosal (196).

Resolvins
RvD1 binds to and activates humanGPR32 and ALX/FPR2, while
recombinant GPR32 can be active by RvD3 and RvD5 (207).
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RvD2 activates a novel GPR termed DRV2/GPR18, and RvD2-
DRV2 interactions could stimulate macrophage phagocytosis
(166, 208). RvDs may inhibit PMN activation and decrease their
infiltration, as well as enhancing macrophage phagocytosis of
apoptotic cells/bacteria (190). RvD1 is endogenously produced
in response to I/R injury in kidneys, inhibition of leukocyte
accumulation, and TLR-mediated macrophage activation (151).
Moreover, RvD1 resolves inflammation and enhances ventricular
function after MI (152). In rats, RvD1 inhibits inflammatory
responses following liver I/R injury (199) and this protective
effect is related to a shift to M2 phenotype of macrophage
and enhanced efferocytosis induced by ALX/FPR2 activation.
The underlying mechanisms mediating the protection of I/R
injury might involve the inhibition of complements, activation of
immunoglobulin and neutrophils, downregulation of TLR4/NF-
κB, and decreased expression of pro-inflammatory factors (200).
Inflammation resolution involves a specific miRNA, regulated by
SPM receptors (209, 210). RvD1-GPR32 increases miR-208 and
the anti-inflammatory cytokine IL-10, and downregulates miR-
219, decreasing LTB4 via the regulation of 5-LOX (209). In a
left anterior descending coronary artery I/R rat model, RvD1
not only decreases infarct size, but also attenuates depression-
like symptoms, suggesting that RvD1 might be involved in
neurotransmitter secretion (197).

RvE1 binds to GPR ChemR23 and LTB4 receptor 1
(BLT1). ChemR23 is highly expressed in dendrites and
macrophages (141). RvE1 has been shown to decrease infarct
size in a rat model of MI/reperfusion injury by decreasing
apoptosis in cells induced by hypoxia (198). RvE1 stimulates
macrophage phagocytosis of apoptotic leukocytes, decreases the
pro-inflammatory cytokines IFN-γ as well as IL-6 production
(211), inhibits DC migration, and reduces pro-inflammatory
cytokine release (141) via phosphoprotein-mediated signaling
(212). The pro-inflammatory lipid mediator LTB4 binds to BLT1
and promotes leukocyte survival. RvE1 competes with LTB4 and
blocks the binding of LTB4 to BLT1 to increase the apoptosis
of leukocytes and efferocytosis (213). It has also been reported
that ChemR23 expression is restricted to naive M1, but not
M2, macrophages (214). The authors also found that treating
M1 macrophages that express ChemR23 with RvE1 enhanced
the phagocytosis of microbial particles and increased IL-10
transcription, resulting in a resolution-type macrophage that is
different from the anti-inflamatory M2 phenotype.

NPD1
NPD1 is generated in rodents after ischemia and plays an
important role in PMN decrement (150). Bazan and colleagues
have demonstrated the beneficial roles of NPD1 in the CNS.
NPD1 reduces oxidative stress, thus improving cell survival.
NPD1 also has effect on microglia cells in ocular disease
models (215). AT-NPD1 is endogenously generated by aspirin
and DHA treatment in the cerebral stroke models. Synthetic
17R-NPD1 has been shown reduced the brain edema and the
infarct size and reduces the neurological deficiency (201). 17R-
NPD1 derived from aspirin-triggered DHA reduces human PMN
infiltration, enhances microphage efferocytosis (216), improves
neurological scores, and reduces total lesion volume and brain

edema, as computed by T2-wighed image (T2WI) (201). In an
MCAO/reperfusion rat model, NPD1 significantly reduces the
infarct sizes in aged rats via activation of the Akt and p70S6K
pathways (202). Furthermore, NPD1 up-regulates ring finger
protein 146, which facilitates DNA repair and protects cells
against death induced by cerebral ischemia (203).

Maresin
Intracerebroventricular injection of MaR1 has been shown to
significantly reduce infarct volumes and neurological defects,
protecting the neurons from injury in a CIRI mouse model,
by reducing the pro-inflammatory responses and inhibiting the
activation of NF-κB p65 and its translocation to the nucleus
(204). In a hindlimb I/R mouse model, maresin conjugates in
tissue regeneration (MCTR) protects the lungs and spleen from
tissue damage mediated by leukocytes and increases cell growth
and tissue restoration in the lungs (205). A recent study has found
that platelets express the SPM receptors GPR32 and ALX. MaR1
could enhance platelet aggregation, spreading and suppressing
the release of pro-inflammatory and pro-thrombotic mediators;
therefore, MaR1 may be used as a new class of antiplatelet agents
(217).

CONCLUSIONS AND FUTURE
PERSPECTIVES

CIRI can worsen patient outcomes through excessive
inflammation. However, neuronal damage following CIRI
is often irreversible; therefore, there is an unmet clinical need
to explore novel therapeutic options to resolve the aggressive
inflammatory state after cerebral ischemic insults to limit the
irreversible neural damage. Dietary n-3 supplements are widely
used, but clinical trials with n-3 fatty acids have yielded mixed
results (218). The lack of success may be because aging patients
and those with obesity-associated diseases may have difficulty
converting PUFAs into SPMs (219). The biosynthesis pathways
for both omega-3 and omega-6 fatty acids are complex and
involve competition for enzymes to produce various bioactive
mediators without pro-resolving actions. Thus, SPMs may be
more potent and biologically relevant than fatty acids, their
nutritional precursors (220, 221). The new challenge ahead is
if the novel SPMs that stimulate inflammation resolution can
be harnessed to treat I/R injury. Stable synthetic mimetics to
endogenous SPMs and synthetic SPM receptor agonists are
under development for various chronic inflammatory disease
models (133); however, the side effects accompanying these
need to be investigated further (222). It is our hope that the
results from these studies will provide new stroke treatments
by controlling resolution and downstream mechanisms of
inflammatory responses.
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