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Melanin, as a natural product, has been used as an extraordinary ingredient for
nanomedicine due to its great biocompatibility and light responsive property. In this
study, polydopamine (PDA), an analog of melanin, was extracted from dopamine and
encapsulated with doxorubicin (DOX). The as-prepared nanoparticles (NPs) with good
stability, great biosafety and high near infrared (NIR) responsive property ameliorated the
cell uptake of DOX in OS-RC-2/ADR cells, exhibited synergistic chemo/photothermal
(PTT)/photodynamic (PDT) effects, induced the release of damage associated molecular
patterns (DAMPs), and finally, led to immunogenic cell death (ICD). In general, it was
suggested that PDA-DOX NPs with NIR irradiation could serve as a promising agent for
tumor therapy.

Keywords: immunogenic cell death, melanin, natural product, photothermal, photodynamic, ROS, DOX

INTRODUCTION

Cancer is a challenging health issues for human beings, with 14 million new cases and over
eight million deaths worldwide every year (Bray et al., 2018). As the investigation of tumor
characteristics continues, a number of potent cancer fighting strategies have been successfully
adopted in clinical practice. Among these combating methods, chemotherapy remains the most
preferred and remarkable treatment. For example, doxorubicin (DOX) can not only restrain the
proliferation and metastasis of tumor cells, but can also simultaneously lead to immunogenic cell
death (ICD) (Casares et al., 2005). ICD, as a promising treatment, aims at enhancing anti-tumor
immunity, controlling and damaging cancer cells, and sensitizing therapy by immune system
activation. Antineoplastic chemotherapeutic agents can alter the tumor microenvironment that has
been infiltrated by various immune cells; whose characteristics usually determine the therapeutic
outcome. So, it is prospectively used to facilitate antitumor chemo-immunotherapy (Casares et al.,
2005; Obeid et al., 2007; Lu et al., 2018). However, their clinical use is greatly compromised
by their adverse systemic effects arising from poor specificity on cancerous tissue. Furthermore,
the therapeutic effect could be dramatically reduced owing to drug resistance and an adverse
tumor microenvironment. Clinicians often choose to increase the dosage of drugs or change the
therapy scheme when topical drug concentration in the cancer region is reduced. Nevertheless,
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this method could also lead to systemic toxicity, such as liver
damage, bone marrow suppression, neuritis, and other unknown
adverse events. As a result, there is an urgent need to explore the
deeper mechanisms of drug resistance and to find other ways of
improving therapeutic efficiency.

Numerous DOX-based nanomedicines have been synthesized
to enhance the absorption of DOX at the cancer region,
by taking advantage of the enhanced permeability and
retention (EPR) effect. However, the therapeutic performance
of these nanomedicines remains unsatisfactory. Whether
chemotherapeutic resistance is inherent or acquired (Dean et al.,
2005; Iyer et al., 2013; Pérez-Herrero and Fernández-Medarde,
2015; Liang et al., 2016) is one of the greatest challenges of
effective therapy. Consequently, nanomedicines incorporated
into additional therapeutic modalities have the potential to
yield better clinical benefits. In recent years, phototherapy based
on near infrared (NIR) coupled with chemotherapy, has been
developed as a desirable treatment strategy due to its precise
tumor localization, highly efficient ablating capability, and
better biocompatibility (Zhu et al., 2018). Phototherapy can
accelerate the release of drugs to a deeper part of the tumor,
by increased vascular permeability and reverse drug resistance
(Li et al., 2015, Li F. et al., 2017; Huang et al., 2019). On the
other hand, the integrity and permeability of the cancer cell
membrane would be damaged by phototherapy, which can also
stimulate the release of tumor-related antigens and can activate

the immune response, namely ICD (Sweeney et al., 2018; Li et al.,
2019; Shang et al., 2020; Wang et al., 2020). Detecting a proper
photosensitive agent for cementing between chemotherapy
and phototherapy to achieve ICD and therapy sensitization is
therefore of great urgency.

Melanin and its analogs are distributed in many creatures,
and widely utilized as ubiquitous biomaterials, owing to their
optical absorption property, photoconversion, and affinity. They
are wonderful nanocarriers applied to the field of biological
imaging, phototherapy, antioxidant therapy, and drug delivery
systems, etc. (Solano, 2017; Huang et al., 2018). Moreover,
it is worth noting that melanin-like nanoparticles (NPs) can
modulate an immune response, as it has been elaborated that
NPs from cuttlefish ink mediated the repolarization of M2
TAMs to M1 (Ye et al., 2017; Deng et al., 2019; Rong et al.,
2019). As a result, melanin and melanin-like nanoparticles
are suitable nanoplatform for drug loading, phototherapy, and
immune activation.

Polydopamine (PDA) was synthesized, as one kind
of melanin-like NPs, while the characteristics and the
biocompatibility of PDA and DOX loading PDA (PDA-
DOX) NPs were also detected. Synergistic antitumor efficiency of
PDA-DOX NPs with NIR was investigated on cancer cells. More
importantly, it was found that PDA-DOX NPs could induce
the release of damage associated molecular patterns (DAMPs)
leading to ICD (as shown in Scheme 1).

SCHEME 1 | The mechanism of PDA-DOX with NIR inducing ICD in OS-RC-2/ADR cells.
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MATERIALS AND METHODS

Materials and Characterization
Dopamine hydrochloride (98%), Sodium hydrate (99%), and
Poly-(ethylene glycol) (NH2-mPEG-NH2 MW 2000, 98%) were
obtained from Guangzhou Tanshui Co., Ltd (Guangzhou, China).
Deionized (DI) water (18.2 M� cm), obtained from a water
purification system (Synergy, Millipore, MA), was used in
all preparation processes. Transmission electron microscope
(TEM) images were taken by a JEOL JEM-2100F TEM.
Zeta potential and hydrodynamic diameter measurement was
performed by Zetasizer Nano ZS (Malvern). Shimadzu UV-
2600 UV–vis spectrophotometer was used to acquire UV–
vis absorption spectra. Nicolet/Nexus 670 Fourier transform
infrared (FTIR) Analyzer (Thermo Nicolet, United States) was
used to obtain FTIR spectra.

Synthesis of Different Sizes of PDA NPs
300 mg of dopamine hydrochloride (1.95 mmol) (Aladdin) were
dissolved in 216 mL of deionized water. 1,700 µL of 1 mol/L
NaOH solution was added to a dopamine hydrochloride solution
at 50◦C under vigorous stirring. When the solution’s color turned
to pale yellow, NaOH was added into the solution, and gradually
the color changed to dark brown. After stirring for 6 h, the
solution was further centrifuged with a centrifugal-filter (Amicon
centrifugal filter device, MWCO = 10 kDa) and washed with
deionized water; this was repeated three times.

Surface Modification of PDA NPs With
NH2-PEG5000-NH2 (PEG-Melanin-Like
NPs)
1 mol/L NaOH solution was added to 5 mL of melanin-like
aqueous solution (5 mg/mL of water) to adjust the pH of the
solution to 9. This mixed solution was added dropwise into a
25 mg NH2-PEG2000-NH2 aqueous solution with pH = 9. After
vigorous stirring for 8 h, PEG-modified PDA NPs was retrieved
by centrifugation with a centrifugal-filter (Amicon centrifugal
filter device, MWCO = 10 kDa), followed by washing with
deionized water several times to remove the unreacted NH2-
PEG2000-NH2. Finally, the aqueous solvent was removed by
freeze-drying, and a PEG-PDA-like powder was obtained.

Photothermal (PTT)/Photodynamic (PDT)
Effects of PDA-DOX NPs
PDA-DOX NPs were treated by 808 nm wavelength laser
irradiation (0.7 W/cm2, 5 min), as a thermal probe was
used to detect the temperature changes at different time-
points, while an equivalent amount of PBS with the same
laser irradiation was chosen as the negative control. The
images of temperature changes were recorded by an infrared
imaging device (ThermaCAMSC3000, Flirsystem Incorporation,
United States) at 0.5 min internals for a total of 5 min. To further
validate PDT potentials, the yield of ROS produced by PDA-
DOX NPs under NIR (0.7 W/cm2) was quantitatively analyzed by
DPBF. The absorption value of DPBF and PDA-DOX NPs mixed
solution at 410 nm was detected every 1 min.

Drug Loading Efficiency of PDA-DOX
NPs
Doxorubicin and PDA NPs was mixed at ratios of 1:0.125, 1:0.25,
1:0.5, and stirred in the dark at room temperature for 24 h. The
formed NPs were centrifuged with a centrifugal-filter (Amicon
centrifugal filter device, MWCO = 30 kDa) and washed with
deionized water to remove unloaded DOX. Unloaded DOX was
collected and analyzed using a UV–vis–NIR spectrophotometer.
The loading content [weight of loaded DOX/(weight of loaded
DOX + weight of NPs) × 100%] and loading efficiency (weight
of loaded DOX/weight of added DOX × 100%) of DOX on the
NPs was calculated.

pH-Responsive Drug Release of
PDA-DOX NPs
10 mg PDA NPs loaded with DOX were resuspended in 10 mL
deionized water. The samples were transferred into a dialysis
membrane bag with a MWCO of 3,500, which was immersed in
30 mL buffer at 5.5, 6.5 and 7.4, respectively. At predetermined
time points, 3 mL of release medium was taken out and 3 mL fresh
buffer was added. The content of released DOX was measured by
a PerkinElmer UV750 spectrophotometer (PE Co., United States)
at a wavelength of 480 nm.

Cell Culture and Preparation
Human renal proximal tubule epithelial cell (HK-2) cells
and OS-RC-2/ADR cells (American Type Culture Collection)
were bought, cultured, and maintained by Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, Langley, OK, United States)
supplemented with 10% fetal bovine serum (FBS; Gibco)
and antibiotics (100 U/mL) at 37◦C in 5% CO2. For the
preparation of experiments, cells were seeded into 6-well
plates or 96-well plates, respectively, and incubated with
appropriate DMEM added with 10% FBS. The prepared
cells were exposed to the DMEM with 10% FBS (the blank
control), DOX (the DOX group), PDA (the PDA group), and
PDA-DOX (the PDA-DOX group) at different concentrations.
After incubation with these nanomaterials, half of the treated
cells were irradiated with an 808 nm laser (NIR group)
(0.7 W/cm2, 5 min), and all continued to incubate for
further experiments.

Confocal Laser Scanning Microscope
Imaging
OS-RC-2/ADR cells were seeded in confocal laser scanning
microscope (CLSM) dishes, cultured for 24 h in DMEM
supplemented with 10% FBS. Cells were then incubated
with PDA-DOX NPs for 1–4 h. The cells were then
washed, fixed by 4% paraformaldehyde, and stained
with DAPI. Finally, the dishes were imaged by CLSM
(Olympus, Japan).

Flow Cytometry Assay
OS-RC-2/ADR cells were seeded in 6-well plates, cultured for
24 h in DMEM supplemented with 10% FBS. Cells were then
incubated with PDA-DOX NPs for 1–4 h, harvested, suspended,
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and analyzed by flow cytometry. Furthermore, in our study, the
fluorescence channel of DOX and PE is similar so that the PE-
positive cells were considered to have internalized DOX, and flow
cytometry assays were also used to assess the amount of Reactive
Oxygen Species (ROS).

Cell Counting Kit-8 Assay
HK-2 cells were cultured for 24 h in DMEM supplemented
with 10% FBS before the incubation with PDA-DOX,
at the varying concentrations for 24 h. Then a Cell
Counting Kit-8 (CCK-8) detection kit was applied to prove
the biosafety of PDA-DOX NPs following the protocol.
The biosafety was assumed by the cell viability ratio of
exposed groups to the blank control (cells exposed to the
DMEM with 10% FBS).

To detect the anti-tumor effect of PDA-DOX NPs, OS-RC-
2/ADR cells were seeded into 96-plates, cultured for 24 h in
DMEM supplemented with 10% FBS. After that, cells were
exposed to different treatments, and cell viabilities were analyzed
using CCK-8 assay.

Live and Death Assay
The antitumor effect of PDA-DOX with/without NIR was
assessed by Live and Death Staining Kit (KeyGen, Nanjing,
China). OS-RC-2/ADR cells were plated and cultured overnight.
Then, cells were incubated with different concentrations of
DOX, PDA, and PDA-DOX, respectively. Following the above
treatment, cells were subsequently treated with the absence
or presence of NIR irradiation (0.7 W/cm2, 5 min). Next, as
per the manufacturer’s instruction of Live and Death Staining
Kit, treated cells were labeled as green (live) or red (dead),
and finally monitored by a confocal laser scanning microscope
(CLSM, Olympus).

5-Ethinyl-2′ DNA Nucleoside Uracil (EdU)
Assay
The antitumor effect of PDA-DOX with/without NIR was
assessed by 5-ethinyl-2′ DNA nucleoside uracil (EdU) assay
(KeyGen, Nanjing, China). OS-RC-2/ADR cells were plated
and cultured overnight. Cells were then incubated with the
same concentration of DOX, PDA, and PDA-DOX, respectively.
Following the above treatment, cells were subsequently treated
with or without NIR irradiation (0.7 W/cm2, 5 min). Next,
as per the manufacturer’s instruction of EdU assay, treated
cells were labeled, fixed, stained, and finally monitored by a
confocal laser scanning microscope (CLSM, Olympus). The three
random zones were captured to calculate the number of EdU-
positive cells.

ROS Assay
OS-RC-2/ADR cells were seeded into a 6-well plate and cultured
for 24 h (37◦C, 5% CO2). After that, cells were incubated with
the same concentrations of DOX, PDA, and PDA-DOX for 48 h
respectively, with or without the presence of NIR irradiation
(0.7 W/cm2, 5 min). Finally, cells were incubated with ROS Assay
Kit (KeyGen, Nanjing, China).

In vitro Detection of ICD Biomarkers
The treated OS-RC-2/ADR cells were collected and fixed with 4%
paraformaldehyde for 10 min. After being blocked for 1 h at room
temperature by 5% BSA, the cells were further incubated with
rabbit anti-Rabbit chaperone calreticulin (CRT) or large amounts
of high-mobility group box 1 (HMGB1) primary antibodies,
respectively, at 4◦C overnight. The cells were subsequently
incubated with PE or FITC-labeled goat anti-rabbit secondary
antibodies away from light for an additional 1 h. Finally, the
nuclei were stained with DAPI and the CRT and HMGB1
expression levels were observed under CLSM (Olympus, Japan).
Additionally, the HMGB1 ELISA kit was used to detect the release
of HMGB1 in the supernatant, while the Luminescent ATP
Detection Assay was applied to evaluate the release of adenosine
triphosphate (ATP) in the supernatant.

Statistical Analysis
Mean ± standard deviation (SD) was used to value the data.
All experiments were repeated at least three times, unless
indicated otherwise. The unpaired Student’s t-test or the analysis
of variance (ANOVA) followed by Scheffe’s post hoc test was
applied to value the data. A P < 0.05 was considered to be a
significant difference.

RESULTS AND DISCUSSION

Synthesis and Characterizations of
PDA-DOX
Melanin, as a natural product, has been used for cancer
phototherapy due to its great biocompatibility and NIR light
responsive properties. In this study, a cancer phototherapy
nanoplatform was obtained based on PDA, by oxidation–
polymerization of dopamine monomers in alkaline
environments. The different sizes were synthesized from
∼80 to 370 nm (Supplementary Figure 1) by simply adjusting
the pH value, as the size of PDA would decrease with the
increase of the pH value (Hawley et al., 1967; Ju et al., 2011).
The antitumor drug, DOX was loaded into PDA NPs (named
as PDA-DOX) for the purpose of synergetic chemotherapy, as
DOX can be loaded onto PDA by means of π-π conjugation and
coordination (Li W. Q. et al., 2017). The DOX loading capacity
(DLC) increased with the amount of feeding DOX, and a DLC
as high as 67% was obtained when the feeding DOX vs. PDA
(w/w) was 1:0.125 (Supplementary Figure 2A). However, the
DOX loading efficiency (DLE) gradually decreased as the feeding
DOX/PDA mass ratios increased (Supplementary Figure 2B).
Therefore, considering the economical utilization efficiency, we
chose the feeding ratio of 1:0.25 (DOX vs. PDA) for the following
experiments. To further improve the water solubility, PEG
was applied to modify the surface of PDA NPs. The successful
synthesis of PDA-DOX NPs was characterized by TEM, zeta
potential, UV–vis spectra analysis, and FTIR analysis. PDA-DOX
NPs exhibited an average size distribution of 79.21 ± 27.11 nm
with a negative charged surface zeta potential of −41.3 ± 4.2 eV,
as demonstrated by the TEM, zeta potential and DLS results
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(Figures 1A–C). The broad absorption bands shown in the
ATR-FTIR analysis of PDA-DOX NPs between 3,690 and
3,000 cm−1 are characteristics of the O–H or N–H stretching
vibration modes. These broad absorption bands were resulted
by carboxylic acid, phenolic, and aromatic amino functions
present in the indolic and pyrrolic systems (Ozlu et al., 2019).

At 1,612 cm−1, NH2 scissoring could be seen, representing the
successful modification of PEG on PDA-DOX NPs (Figure 1D).

Apart from that, several studies have reported that melanin
and its analogs could respond well to NIR light (650–900 nm),
in most conditions transferring light into heat (Baldea et al.,
2018; Deng et al., 2019; Rong et al., 2019; Xiong et al., 2019).

FIGURE 1 | (A) TEM image, (B) Zeta potentials, (C) DLS, (D) FT-IR, and (E) UV results of PDA-DOX NPs. (F) The temperature increase curve induced under different
powers of NIR irradiation. (G) The temperature increase curve induced by different concentrations of PDA-DOX NPs and PBS. (H) PTT stability of PDA-DOX NPs
under NIR irradiation (0.7 W/cm2). (I) The production of 1O2 by PDA-DOX NPs with or without NIR irradiation (0.7 W/cm2). (J) The pH-responsive release curve of
PDA-DOX.
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The NIR-responsive properties of PDA-DOX NPs were then
measured by irradiating with a NIR laser (808 nm). It could
be seen that the temperature increases of the PDA-DOX NPs
solution showed both concentration and laser power density
dependent properties, indicating their good photothermal effect
(Figures 1F,G). Moreover, the temperature increase remained
almost the same even after five laser on/off cycles, demonstrating
their good photothermal stability (Figure 1H). Furthermore, in
our previous works (Hou et al., 2018; Chen et al., 2019; Guo
et al., 2020) it has been found that some photothermal agents
also possess the ability to generate ROS under NIR irradiation
and could be used as photosensitizers for photodynamic therapy.
Herein, ROS generation ability of our as-prepared NPs was also
investigated using a ROS probe DPBF. As seen from Figure 1I,
the absorption of DPBF decreased most in the PDA-DOX-treated
group than in the other groups, suggesting that more 1O2 could
be produced when the NPs were irradiated by NIR laser. The
above results indicate that the PDA-DOX NPs could be applied
as a promising PTT and photodynamic therapy (PDT) agent.

The encapsulation of DOX was characterized by UV–vis
spectra. It could be seen that a distinctive absorbance peak
appeared at approximately 480 nm of the PDA-DOX NP
compared with PDA NPs only, indicating the successful
encapsulation of DOX (Figure 1E). The loading efficiency of
DOX was calculated as 30%. The drug release property of PDA-
DOX NPs was also evaluated under different pH values (pH
7.4, pH 6.5, and pH 5.5). It could be seen that only a small
amount of DOX would be released at a neutral pH value,
which could decrease the side effects to the normal tissues.
The drug was released more rapidly at lower pH values and
exhibited an obvious pH-dependent drug release performance
(Figure 1J). Considering the acid tumor microenvironments, the
pH-sensitive dox release makes the PDA-DOX NPs a promising
DOX delivery system.

Cellular Uptake and Biosafety of
PDA-DOX in vitro
As a natural product, it has already been proven that melanin and
its analogs can easily enter cancer cells, making them a widely
used drug delivery platform (Ju et al., 2013; Jiang et al., 2017).
It is therefore expected that cellular uptake of DOX in cancer
cells could increase greatly using PDA nanocarriers. To confirm
the synergistic uptake of PDA-DOX, OS-RC-2/ADR cells were
exposed to DOX and PDA-DOX separately from 0 to 4 h and
analyzed with CLSM and flow cytometry. CLSM showed that red
fluorescence intensity from DOX increased as time passed, both
in DOX and PDA-DOX groups. It could be observed that the
fluorescence intensities in PDA-DOX group were stronger than
those in the free DOX group at different time points (Figure 2A),
indicating that PDA indeed helps to gain a more desired cell
uptake ratio of DOX. Correspondingly, the accumulation of DOX
in OS-RC-2/ADR cells treated with free DOX and PDA-DOX
was also analyzed by flow cytometry. The result revealed that
cellular uptake of DOX at 4 h was threefold that of free DOX
(Figure 2B), indicating that the as-prepared PDA-DOX NPs
could significantly enhance the cellular uptake of DOX.

In addition, a prerequisite of nanoparticles for therapy is
that they are less toxic to normal cells (Huang et al., 2018).
Hence, the CCK-8 assay was used to evaluate the biosafety of
PDA-DOX to normal HK-2 cells, while over 85% cell viability
was observed, after HK-2 cells were exposed to PDA-DOX for
24 h with the increasing PDA concentrations up to 200 µg/mL
(Supplementary Figure 3). Overall, these results revealed that
PDA-DOX NPs have great biocompatibility and could be used to
delivery DOX into renal cancer cells for treatment.

PDA-DOX NPs With Combined
Chemo/PTT/PDT Effect on Killing Cancer
Cells
As mentioned above, PDA gives rise to high cellular uptake of
DOX and exhibit a pH-sensitive drug release property, which
could theoretically increase the chemo-therapeutic effect of DOX.
Therefore, better antitumor effects could be achieved when
PDA NPs were used as the nanocarrier with the same DOX
concentration (Figure 3A). As proven above, the intrinsic NIR-
responsive properties of the PDA NPs make them a potential
PTT/PDT agent. For example, it has been reported that PDA,
functioned with arginine-glycine-aspartic-cysteine acid (RGDC)
peptide and loaded with DOX, could be released and induces
chemo-photothermal effect availably (Li Y. et al., 2017). It
could therefore be hypothesized that PDA-DOX with NIR
irradiation can cause not only a chemical lesion but also thermal
injury and oxidative stress. To further validate the synergistic
chemo/PTT/PDT effect of our as-prepared NPs, OS-RC-2/ADR
cells were incubated with the PDA, DOX, and PDA-DOX
at different concentrations, respectively, with or without the
presence of NIR (0.7 W/cm2, 5min). After being cultured for 24 h,
treated OS-RC-2/ADR cells were analyzed by CCK-8, EdU and
Live/Dead Cell Double Staining Kit. As illustrated in Figure 3B,
cell viabilities decreased with the increasing concentrations of
DOX and PDA-DOX, while PDA-DOX with NIR-irradiation
could achieve the best therapeutic effect compared with PDA-
and-NIR-irradiation-treated cells, PDA-DOX-treated cells, and
the control group. Moreover, EdU assay revealed that PDA-DOX-
and-NIR-irradiation-treated, PDA-and-NIR-irradiation-treated,
and PDA-DOX-treated cells were shown to be less EdU-
positive in comparison with the control and DOX-treated groups
(Figure 3C). A similar tendency was also observed in Live/Dead
Cell Double Staining Kit results (Figure 3D). These results
suggested that PDA-DOX could facilitate the chemo-effectiveness
of DOX, and in combination with NIR would stimulate better
efficiency than mono chemotherapy or phototherapy, implying
a PDA-DOX induced synergetic chemo/PTT/PDT effect against
OS-RC-2/ADR cells.

Immunogenic Cell Death Induced by
Synergetic Chemo/PTT/PDT Effect of
PDA-DOX in vitro
Immunogenic Cell Death is a kind of regulated cell death and is
able to distinguish from other cell death so that it can activate
the immune system against tumor cells (Ahmed and Tait, 2020;
Fumet et al., 2020). It has been reported that DOX has the
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FIGURE 2 | Cell uptake of PDA-DOX analyzed by (A) CLSM and (B) flow cytometry. *** indicates P < 0.001. N.S. means no significance.

immunogenicity to recruit immune cells according to the ICD,
but the efficiency of mono DOX is not strong enough (Casares
et al., 2005). Recent studies found that phototherapy based
on melanin and its derivatives might cause ICD, consecutively
reinforcing immune response and more tumor cell death (Yan
et al., 2019; Li et al., 2020). During this process, ICD plays an
important initial role and DAMPs are provoked into release to
promote the immunostimulatory effect. Three typical DAMPs
have been recognized in virtually all ICD inducers, including
CRT, ATP, and HMGB1 (Kepp et al., 2014). Moreover, it
has been confirmed that the release of DAMPs, especially
CRT’s translocating into membrane, results from endoplasmic

reticulum (ER) stress related to the generation of extra ROS
(Garg et al., 2011; Galluzzi et al., 2012; Gomes-da-Silva et al.,
2018; Deng, 2020). Considering this, we assumed that increasing
ROS might be key in leading to ICD effects of PDA-DOX under
NIR irradiation. Interestingly, it conformed with our hypothesis
that stronger ROS means that fluorescence intensity could be
observed in the PDA-DOX-and-NIR-irradiation-treated group
rather than in other groups (Figures 4A,B). The extra generation
of ROS might be rooted in the combined chemo/PTT/PDT effect
of PDA-DOX due to its high light absorption.

Consequently, we attempted to clarify whether the
combination of PDA-DOX and NIR can stimulate ROS
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FIGURE 3 | The antitumor effect of PDA-DOX in vitro. (A) Viabilities of OS-RC-2/ADR cells after incubation with DOX and PDA-DOX at different concentrations of
DOX. (B) Viabilities of OS-RC-2/ADR cells after incubation with PDA and PDA-DOX, with or without NIR at different concentrations of PDA, while the DMEM with
10% FBS was used as the negative control (blank) group. (C) Live/Dead Cell Double Staining images of OS-RC-2/ADR cells after the incubation with PDA, DOX, and
PDA-DOX, at presence or absence of NIR. (D) EdU images of OS-RC-2/ADR cells after the incubation with PDA, DOX, and PDA-DOX, upon NIR or not. Data are
shown as the mean ± SD, n = 3. *** indicates P < 0.001. *indicates P < 0.05.

production to boost the release of the above DAMPs and
ICD of DOX or PDA with NIR alone. CLSM imaging then
revealed that DOX, PDA-DOX, PDA plus DOX, and PDA-
DOX plus NIR, could induce translocation of CRT into the
cell membrane, while the PDA-DOX plus NIR group led to
more obvious CRT translocation (Figure 4E). In addition,
we observed the downregulated expression level of HMGB1
inside the cell (Figure 4C), and more HMGB1 release and
ATP secretion in the supernatant after treatment with PDA-
DOX plus NIR (Figure 4D,F), indicating that ICD could
be elicited by PDA-DOX plus NIR. Taken together, these
results suggest that PDA-DOX with NIR irradiation do

not only facilitate the release of DOX to attract tumor cell
death, but also results in more ICD effects in contrast to
DOX or PDA with NIR. It is the same as previous research,
where DOX combined with NIR irradiation resulting in
ICD. It is presumed that high-efficient ICD is attributed
not only to a high concentration of local DOX but also
phototherapy (Phung et al., 2019; Wen et al., 2019; Xia
et al., 2019; Zhang et al., 2019). In summary, this shows that
the synergetic chemo/PTT/PDT effect of PDA-DOX and
NIR irradiation could lead to the ICD via the generation
of ROS, providing prospects for the combination with
tumor immunotherapy.
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FIGURE 4 | ICD induced by synergetic chemo/PTT/PDT effect of PDA-DOX in vitro. (A,B) The generation of ROS in OS-RC-2/ADR cells after the incubation with
PDA, DOX, and PDA-DOX with or without NIR. (C) HMGB1 images of OS-RC-2/ADR cells after the incubation with PDA, DOX, and PDA-DOX with or without NIR.
(D) The HMGB1 release of OS-RC-2/ADR cells after incubation with PDA, DOX, and PDA-DOX with or without NIR. (E) CRT images of OS-RC-2/ADR cells after the
incubation with PDA, DOX, and PDA-DOX with or without NIR. (F) The ATP secretion of OS-RC-2/ADR cells after incubation with PDA, DOX, and PDA-DOX with or
without NIR. Data are shown as the mean ± SD, n = 3. *** indicates P < 0.001.

CONCLUSION

In this work, we developed PDA-DOX NPs, the natural product
used for chemotherapy drug loading, to improve the effect
of DOX. It not only inherited great stability and sound
biocompatibility of the natural product, but also exhibited
strong photothermal conversion ability and a simultaneous
ROS generation effect, which is appropriate for phototherapy.
Considering this, PDA-DOX plus proper NIR irradiation in vitro
showed good synergistic chemo/PTT/PDT effects against OS-
RC-2/ADR cells, compared to DOX or PDA with NIR alone.

Furthermore, boosting ROS is a key process to mediating
the release of DAMPs, involving CRT, HMGB1, and ATP. In
conclusion, PDA-DOX might be a dramatic drug for renal
carcinoma chemotherapy and phototherapy, and is promising for
tumor immunotherapy.
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