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Abstract

It has been proposed that neural noise in the cortex arises from chaotic dynamics in the bal-

anced state: in this model of cortical dynamics, the excitatory and inhibitory inputs to each

neuron approximately cancel, and activity is driven by fluctuations of the synaptic inputs

around their mean. It remains unclear whether neural networks in the balanced state can

perform tasks that are highly sensitive to noise, such as storage of continuous parameters

in working memory, while also accounting for the irregular behavior of single neurons. Here

we show that continuous parameter working memory can be maintained in the balanced

state, in a neural circuit with a simple network architecture. We show analytically that in the

limit of an infinite network, the dynamics generated by this architecture are characterized by

a continuous set of steady balanced states, allowing for the indefinite storage of a continu-

ous parameter. In finite networks, we show that the chaotic noise drives diffusive motion

along the approximate attractor, which gradually degrades the stored memory. We analyze

the dynamics and show that the slow diffusive motion induces slowly decaying temporal

cross correlations in the activity, which differ substantially from those previously described

in the balanced state. We calculate the diffusivity, and show that it is inversely proportional

to the system size. For large enough (but realistic) neural population sizes, and with suitable

tuning of the network connections, the proposed balanced network can sustain continuous

parameter values in memory over time scales larger by several orders of magnitude than

the single neuron time scale.

Author summary

This work studies the effects of chaotic dynamics, a prominent feature of the balanced

state model, on storage of continuous parameters in working memory. We propose a sim-

ple model of a balanced network with mutual inhibition, and show that it possesses a con-

tinuum of steady states, a commonly proposed mechanism for maintenance of

continuous parameter working memory in the brain. We use analytical methods, com-

bined with large scale numerical simulations, to analyze the diffusive dynamics and corre-

lation patterns generated by the chaotic nature of the system. We obtain new conclusions

and predictions on irregular activity resulting from the combination of continuous
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attractor dynamics with the balanced state. These include a prediction of measurable,

slowly decaying spike correlations, and a quantification of how persistence depends on

the neural population size.

Introduction

The consequences of irregular activity in the brain, and the mechanisms responsible for its

emergence, are topics of fundamental interest in the study of brain function and dynamics. In

theoretical models of brain activity, the irregular dynamics observed in neuronal activity are

often modeled as arising from noisy inputs or from intrinsic noise in the dynamics of single

neurons. However, theoretical and experimental works have suggested that explanations based

on sources of noise in intrinsic neural dynamics are insufficient to account for the stochastic

nature of activity in the cortex [1–4]. An alternative proposal is that noise in the cortex arises

primarily from chaotic dynamics at the network level [3–6]. A central result in the field is that

simple neural circuits with recurrent random connectivity can settle, under a broad range of

conditions, into a fixed point called the balanced state [3, 7–9]: in this state the mean excitatory

drive to each neuron nearly balances the mean inhibitory drive, and neural activity is driven

by fluctuations in the excitatory and inhibitory inputs. The overall dynamics are chaotic,

resulting in an apparent stochasticity in the activity of single neurons, which can exist even in

the absence of any sources of random noise intrinsic to the dynamics of single neurons and

synapses.

It remains unclear which computational functions in the brain are compatible with the

architecture of the balanced network model, since this model assumes random, unstructured

connectivity in its rudimentary form. The possibility that functional circuits in the brain are in

a balanced state raises another important question: does the apparent stochasticity of single

neurons in this state have similar consequences on brain function as would arise from stochas-

ticity which is truly intrinsic to the neural and synaptic dynamics?

Here we explore the effects of chaotic noise on continuous parameter working memory.

This task is particularly sensitive to noise, yet neurons in cortical areas involved in the mainte-

nance of continuous parameter working memory have been shown to fire irregularly during

task performance [10, 11]. Attractor dynamics are often put forward as a mechanism for the

persistent neural activity underlying this task. Continuous attractor networks are dynamically

characterized by a continuous manifold of semi-stable steady states, which make it possible

to memorize parameters with a continuous range of values, such as an angle or a position

[12–18]. In such networks, noise in neural or synaptic activity can cause diffusion along the

manifold of steady states, leading to gradual degradation of the stored memory [19–21]. How-

ever, irregular activity in the balanced state does not arise from mechanisms intrinsic to neu-

rons or synapses, but rather from chaotic dynamics, and its consequences for continuous

parameter working memory are largely unexplored. For this reason we addressed two ques-

tions. First, we asked whether a neural network can possess a continuum of balanced stable

states. Second, we investigated how, in this scenario, chaotic noise would affect information

maintenance.

Persistence in balanced networks

The question of whether balanced networks can produce persistent activity has attracted con-

siderable interest in recent years. Several works explored architectures which give rise to slow

dynamics in balanced networks, characterized by the coexistence of multiple discrete balanced

Slow diffusive dynamics in a chaotic balanced neural network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005505 May 1, 2017 2 / 26

https://doi.org/10.1371/journal.pcbi.1005505


states [22]. In several recent works multi-stability resulted from the existence of clustered con-

nectivity, and slow transitions were observed between the discrete semi-stable states [23–25].

Other works [8, 26] demonstrated that a discrete set of semi-stable states can be embedded in a

balanced neural network, using a similar construction as employed in the classical Hopfield

model of associative memory [27].

A few works have addressed the possibility that balanced neural networks may generate

slow persistent activity over a continuous manifold. Such dynamics were demonstrated in sim-

ulations of neural networks that included short-term synaptic plasticity [28], or a derivative-

feedback mechanism [29, 30]. Previous works have not demonstrated the existence of a contin-

uum of steady states in a balanced neural network analytically, and it has remained unclear

whether such a continuum can be obtained without evoking additional mechanisms (such as

short-term synaptic plasticity, or derivative-feedback). In addition, the influence of the chaotic

dynamics on the persistence of stored memory has not been analyzed. These questions are

addressed in the present work.

Below, we identify an architecture in which slow dynamics are attainable in a simple

form of a balanced neural network. We prove analytically the existence of a continuous

attractor in our model in the large population limit. In finite networks, we show that the cha-

otic noise drives diffusive motion along the attractor—leading, among other consequences,

to slowly decaying spike cross-correlations. We show that the diffusivity scales inversely with

the system size, as predicted previously for continuous attractor networks with intrinsic

sources of neuronal stochasticity. With a reasonable number of neurons and suitable tuning,

our model network exhibits slow dynamics over a continuous manifold of semi-stable states,

while exhibiting single neural dynamics which appear stochastic, as observed in cortical

circuits.

Results

Reciprocal inhibition between two balanced networks

Our neural network model is based on the classical balanced network model presented in Refs.

[3, 7, 8]. This model consists of two distinct populations of binary neurons, one inhibitory and

the other excitatory. The recurrent connectivity is random and sparse, with a probability K/N
for a connection, where N is the population size (assumed for simplicity to be the same in both

populations), K is the average number of connections per neuron from each population, and

the connection strength is� 1=
ffiffiffiffi
K
p

. For 1� K� N and over a wide range of parameters, the

mean population activity settles to a fixed point (the balanced state) where on average the total

excitation received by each neuron is approximately canceled by the total inhibition (to leading

order in 1=
ffiffiffiffi
K
p

), and the neural dynamics are driven by the fluctuations in the input. The sin-

gle neuron activity appears noisy, neither of the populations is fully activated or deactivated,

and the overall network state is chaotic.

Despite the nonlinearities involved in the dynamics of each neuron, the population aver-

aged activities in the balanced state are linear functions of the external input [3, 7]. We exploit

this linearity to build a simple system of two balanced networks projecting to each other. The

intuition comes from a simple model of a continuous attractor neural network consisting of

linear neurons arranged in two populations that mutually inhibit each other, Fig 1A. The linear

rate dynamics of this system are given by:

t _r ¼ � r þWr þ E ; ð1Þ
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where E = [E0, E0], E0 > 0 is an external input and

W ¼
0 � J

� J 0

 !

: ð2Þ

For J = 1 the system has a vanishing eigenvalue, and the fixed points form a continuous line:

r1+r2 = E0.

The simple neural architecture of Fig 1A was used as a basis for modeling the dynamics of

neural circuits responsible for memory and decision making in the prefrontal cortex [31–35].

In our model, a balanced subnetwork replaces each of the populations of Fig 1A, and the inhib-

itory population in each subnetwork projects to the excitatory population of the other subnet-

work, Fig 1B andMethods. Thus, the model consists of two reciprocally inhibiting balanced

neural populations.

We consider first a scenario in which the inhibitory connectivity between the two sub-net-

works is all-to-all. Therefore, the network includes a combination of strong, random synapses

within each sub-network and highly structured, weak synapses between the two sub-networks.

This scenario lends itself to analytical treatment of finite N effects (see below). Later on, we

present results also for an alternative scenario, in which the connections between the two-

subnetworks are sparse, random, and strong (Additional randomness in connectivity and
inputs).

Continuum of balanced states

We first examine whether the two-subnetwork architecture can give rise to a continuum of

balanced states. The parameters of the network connectivity in our model are summarized in

Fig 1 and inMethods. The mutual inhibition between the subnetworks is assumed to be all to

all, and the interaction strength is scaled such that the total inhibitory input to each neuron,

coming from the opposing subnetwork scales in proportion to
ffiffiffiffi
K
p

.

Fig 1. Network architecture and parameters. A Two neural populations with rates r1, r2 inhibit each other

with synaptic efficacies −J. B Two coupled balanced subnetworks, each consisting of an excitatory and

inhibitory population. Excitatory (inhibitory) connections are represented in blue (red). Mutual inhibition is

generated by all-to-all connections of strength � ~J
ffiffiffiffi
K
p

=N from each inhibitory population to the excitatory

population of the other subnetwork. As in [7], connections within each subnetwork are random with a

connection probability K/N, 1� K� N. Connection strengths are: JEE=
ffiffiffiffi
K
p

; JIE=
ffiffiffiffi
K
p

; JEI=
ffiffiffiffi
K
p

and JII=
ffiffiffiffi
K
p

according to the identity of the participating neurons. Without loss of generality, we chose JEE = JIE = 1 and

define JEI� −JE, JII� −JI. An excitatory input
ffiffiffiffi
K
p
E0 is fed into both excitatory populations.

https://doi.org/10.1371/journal.pcbi.1005505.g001
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Similar to the case of a single balanced network [7], the mean field dynamics of the popula-

tion averaged activities for N!1 and K� 1 are given by:

ti _mi ¼ � mi þHð� ui=
ffiffiffiffi
ai
p
Þ ; ð3Þ

wheremiðtÞ ¼ 1=N
PN

k¼1
sk
i ðtÞ [i = 1 (2) for the excitatory (inhibitory) population of the first

subnetwork, and similarly i = 3, 4 in the second subnetwork], sk
i ðtÞ is the state of neuron k in

population i at time t,H(x) is the complementary error function, and ui (αi) is the mean (vari-

ance) of the input to a neuron in population i, averaged over the population and over the ran-

dom connectivity (Methods). This equation is an approximation which becomes exact in the

limit K!1.

To check whether there exist parameters for which the system has a continuum of balanced

states, it is convenient to write the steady state equations of the above dynamics, while making

use of the assumption that K is large. In the limit K!1 these equations become linear (Meth-

ods):

m1 � JEm2 �
~Jm4 þ E0 ¼ 0 ;

m1 � JIm2 ¼ 0 ;

m3 � JEm4 �
~Jm2 þ E0 ¼ 0 ;

m3 � JIm4 ¼ 0 :

ð4Þ

By choosing the interaction strength between the two subnetworks to be ~J ¼ JE � JI , this sys-

tem becomes singular, and has a continuum of solutions arranged on a line in the mean activi-

ties space, which represent a continuum of stable balanced states.

Finite K. When K is large and finite, but still in the idealized limit of infinite N, the popu-

lation dynamics remain deterministic, and are approximately described by Eq 3, but the null-

clines corresponding to the steady state equations (Eq 13) are now nonlinear. Therefore, a

precise continuum of steady states cannot be established. However, if the nonlinear nullclines

are close to each other, slow dynamics are attainable in a specific direction of the mean activity

space. To make this statement more precise, we first note that the steady state equations always

have a symmetric solution in whichm1 =m3 andm2 =m4. If in addition, at this symmetric

point, the slopes of the nullclines are identical (@m3/@m1 = −1), there is a vanishing eigenvalue

of the linearized mean field dynamics (Eq 3) around this point (Methods).

Under these conditions, the smallest eigenvalue of the linearized dynamics is expected to be

small also in the vicinity of the symmetric point. In fact, even for moderately large values of K
(K = 1000), the two nullclines nearly overlap over a large range ofm1 andm3, Fig 2A and 2B.

Fig 2C demonstrates that in this case there is an eigenvalue close to zero within a wide range of

locations along the approximate attractor, and therefore the dynamics are slow at any position

along this range. Below, we denote by λ the eigenvalue closest to zero of the linearized dynam-

ics, evaluated at the symmetric fixed point.

As observed in other continuous attractor neural network models, the slow dynamics are

sensitive to the tuning of the recurrent connectivity [12, 15, 29, 33] (see also Discussion). This

sensitivity is quantified by the dependence of λ on the coupling strength between the two sub-

networks. Fig 2D (top panel) shows how λ depends on the mutual inhibition strength ~J and on

K: λ is linear in ~J , and proportional to
ffiffiffiffi
K
p

. For K = 1000, ~J must be tuned to a precision of

*0.1% to achieve a time scale λ−1 of several seconds, when the intrinsic time scale τ is 10 ms.
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The real part of the next eigenvalue is negative, proportional to
ffiffiffiffi
K
p

, and is weakly dependent

on ~J (Fig 2D, bottom panel).

We find that the approximate line attractor is stable to small perturbations over a wide

range of parameters. This is verified by observing that when linearizing the population dynam-

ics (Eq 3) around positions along the approximate attractor, the real parts of the four

Fig 2. Dynamics in the N!1 limit. A Projections of the nullclines _m1 ¼ 0 (blue) and _m3 ¼ 0 (red) on the

m1 −m3 plane, based on Eq 13. Here K = 1000, JE = 4, JI = 2.5, ~J ¼ 1:5, τE = 10 ms, τI = 8 ms, and E0 = 0.3.

The same values of JE, JI, E0, τE, and τI are used throughout the manuscript. B Same as A, except that here
~J ’ 1:7, tuned to achieve a singular Jacobian at the symmetric point. C Real part of the four eigenvalues of the

Jacobian evaluated at different points along the approximate attractor (here parametrized by the value of m1).

Note that there are two complex conjugate eigenvalues, and their real parts overlap (red curve). D Top: the

eigenvalue closest to zero as a function of the mutual inhibition strength. Different colors correspond to

different values of K: 5000 (black), 1000 (green), 500 (red) and 100 (blue). All other parameters are as in A.

Bottom: real part of the eigenvalue next to closest to zero as a function of the mutual inhibition strength. E

Integration of Eq 3 with injected uncorrelated Gaussian noise with s ¼ 10� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10msec
p

(Eqs 15 and 16),
~J ¼ 1:5 (black), ~J ’ 1:7 (blue). F Dynamics of the projection along the special direction (parameters and

colors as in E).

https://doi.org/10.1371/journal.pcbi.1005505.g002
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eigenvalues are negative, and one of them is close to zero, reflecting the slow dynamics along

the approximate attractor—as demonstrated in Fig 2C.

As an illustration of the existence of a direction in mean activity space, along which the

dynamics are slow, we numerically solved the mean field differential equations in the limit of

infinite N and K = 1000, with injected white noise. Fig 2(E) and 2(F) shows that the resulting

mean activities trace a line in the mean activities space (E) and the dynamics along the line are

slow (F).

Diffusive dynamics in finite size networks

Next, we consider the realistic situation in which N is finite in the two-subnetwork model,

while still requiring that N� K� 1. Instead of adding noise to the dynamics of each neuron,

we ask whether the chaotic dynamics are sufficient to drive diffusive motion along the approxi-

mate attractor. This question is motivated by the fact that diffusive dynamics are observed in

model neural networks of intrinsically noisy neurons, with a finite number of neurons [19]. In

addition, this question is motivated by evidence of diffusive dynamics underlying continuous

parameter working tasks—as observed both in the behavioral data and in its neural correlates

in the prefrontal cortex [10, 11, 36].

Since the population dynamics are no longer given by Eq 3, we performed large scale

numerical simulations of networks with N ranging between 104 to 15 × 104 (additional details

on the simulations can be found in Methods). To simplify the analysis and the presentation, we

chose the random weights within each subnetwork such that they precisely mirrored each

other, which ensured that the fixed point would be symmetric (m1 =m3 and m2 = m4). If, alter-

natively, the connections in each subnetwork are chosen independently, the fixed point devi-

ates slightly from this symmetry plane (this deviation approaches zero for infinite networks).

However, all the results described below remain qualitatively valid (see below, Additional ran-
domness in connectivity and inputs).

The neural activity observed in our simulations is irregular and individual neurons

approximately exhibit exponential ISI distributions similar to those observed in the two

population case, although their dynamics are deterministic (Fig 3). To test whether the

network can perform short term memory tasks, we initiated the population activities

such that the network state was close to some point along the approximate line attractor.

Fig 4A shows the resulting dynamics of the four populations: the activities persisted for a few

seconds before decaying towards the symmetric fixed point. Fig 4B shows the projection

along the slow direction, X(t) (defined in Eq 17), again revealing the slow decay of the initial

state. Fig 4C shows statistics of trajectories that start from two initial positions along the

approximate attractor, when ~J is tuned to achieve λ−1’ 9 s. The state of the network enables

discrimination between the two conditions over a time scale of several seconds. The ability

to do so with high confidence is influenced both by λ and the stochasticity of the motion,

which we characterize in the following section (see also Discussion). S1 Fig shows the mean

square displacement (MSD) from the starting point for the same dataset, averaged over all

trials.

Long after initialization, the population activities fluctuate around the symmetric fixed

point, along a line corresponding to the approximate attractor: a projection on the m1 −m3

plane is shown in Fig 4D. Fig 4E demonstrates that X(t) exhibits slow diffusive dynamics. To

demonstrate that the dynamics are effectively one dimensional, a projection on a perpendicu-

lar direction is shown as well.

Statistics of the diffusive motion. From here on we focus on the dynamics of X(t), the

projected position along the approximate attractor. The dynamics of X can be characterized by

Slow diffusive dynamics in a chaotic balanced neural network
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the two moments:

FðX;DtÞ � hXðt þ DtÞ � XðtÞjXðtÞ ¼ Xit; ð5Þ

GðX;DtÞ � h½Xðt þ DtÞ � XðtÞ�2jXðtÞ ¼ Xit: ð6Þ

The first moment F characterizes the systematic component of drift along the approximate

attractor, and the second moment G characterizes the random, diffusive component of the

motion. Both moments may depend, in general, on the position X along the approximate

attractor. Fig 5(A) and 5(B) show measurements from simulations of F(X, Δt) and G(X, Δt) in

the limit of small Δt, at various locations X.

Fig 3. Single neuron statistics. Top: Raster plot of 30 neurons from one of the excitatory populations in

resting state. Here a spike is defined as a transition from an ‘off’ state to an ‘on’ state. Bottom: inter-spike

interval distribution of four representative neurons from one of the excitatory populations. A fit to an

exponential function is shown as a solid red line.

https://doi.org/10.1371/journal.pcbi.1005505.g003
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For small Δt and near the fixed point, we expect F(X, Δt)’ − λXΔtwith constant λ, where

in the limit of large N and K, λ becomes equal to the smallest eigenvalue of the deterministic

linearized dynamics at the symmetric fixed point. In fact, this relation holds to a very good

approximation over a wide range of positions along the approximate attractor (Fig 5A).

The moment G(X, Δt) (Eq 6) characterizes the diffusion along the approximate line

attractor, and is the focus of our analysis in the rest of this section, since it quantifies the ran-

dom aspect of the dynamics, driven by the chaotic noise. Fig 5B shows measurements of this

quantity from simulations (for small Δt), over a wide range of positions along the approximate

attractor. Note that for the parameters we use and our choice for the parametrization of X
(Methods), the range of X is approximately [−0.2, 0.2]. Fig 5C shows measurements of G(X,

Δt) for X = 0, over a wide range of time intervals.

Short time scales. Our main interest lies in the diffusive motion over long time scales

compared to τ. However, we consider first the diffusive motion over short time scales, quanti-

fied by G(X, Δt) for Δt≲ τ, since in this case the behavior of G can be expressed exactly

in terms of the averaged autocorrelation function, qjðDtÞ � 1=N
PN

i¼1
hs

j
iðt þ DtÞsj

iðtÞi
(Methods). Using the mean field theory, it is possible to derive a differential equation for q(t)
[7], which can be solved numerically. Using the numerical solution, we obtained a prediction

for G(X, Δt) which is in excellent agreement with measurements from numerical simulations,

Fig 5D. Note that there are no fitting parameters in this calculation.

This analysis leads to two conclusions, which are important for the analysis that follows

below: first, G is proportional to Δt for small Δt. Second, G is inversely proportional to N, the

Fig 4. Dynamics of finite N networks. A Mean activities of the four populations after initialization at a

specific state along the approximate attractor. Blue (red) traces are used for the excitatory (inhibitory)

populations. Dashed and solid lines are used to distinguish between the two subnetworks. B Projection along

the approximate attractor, shown for the same simulation as in A. C Projected dynamics for two initial

conditions: X(0) = 0.05 (blue shaded area) and X(0) = 0.08 (grey shaded area). Black lines are averages over

50 trials. Shaded areas represent the standard deviation measured over 50 independent trials. D Projection of

the mean activities on the m1-m3 plane in resting state activity. E Dynamics of the projection X along the

special direction (black), and a projection on a perpendicular direction (red) in the same simulation as in D. In

A, B and C N = 1.5 × 105, K = 500 and ~J ’ 1:77. In D and E N = 105, K = 1000 and ~J ’ 1:69. Other parameters

are as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1005505.g004
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Fig 5. Statistics of motion along the approximate attractor. A-B Statistics of motion along the attractor

over short time scales: mean rate of drift F(X, Δt! 0)/Δt (A), and random diffusion G(X, Δt! 0)/Δt (B),

measured in numerical simulations as a function of the location X along the approximate attractor. A linear fit is

shown in red in both panels. Here N = 30000, K = 1000, Δt’ 3 ms. C Numerical measurement of G(X = 0, Δt)

(Black trace. The shaded blue area designates the standard deviation of the mean) and a fit to the statistics of

an OU process (red). D Measurement of G(X, Δt! 0) (black rings, error bars are smaller than the rings if not

shown), compared with the analytical expression, Eq 28 (red trace). Here N = 1.2 × 105. E Measurements of

G(X, Δt) from simulations (Black trace. The shaded blue area designates the standard deviation of the mean,

same as in C), compared with the semi-analytical approximation (red), Eq 36 (N = 1.2 × 105). Lower inset:

zoom-in on Δt� τ. Upper inset: measurement of G(X = 0, Δt) from a single balanced network. Here we chose

X = m1(t) − hm1(t)it. F Diffusion coefficient (extracted from a fit to an OU process), shown as a function of N.

Symbols: simulations, red trace: fit to *1/N dependence.

https://doi.org/10.1371/journal.pcbi.1005505.g005

Slow diffusive dynamics in a chaotic balanced neural network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005505 May 1, 2017 10 / 26

https://doi.org/10.1371/journal.pcbi.1005505.g005
https://doi.org/10.1371/journal.pcbi.1005505


size of the neural populations. A similar derivation can be applied also to the single balanced

network discussed in [7], for Δt� τ (upper inset in Fig 5E).

In addition, we note that G(X, Δt! 0)/Δt is approximately constant along the approximate

attractor, as seen in Fig 5B. Therefore, in most of the numerical results below we focus on

G near the symmetric fixed point (X = 0).

Diffusion over arbitrary time scales. On time scales larger than τ, the behavior of the

two coupled balanced subnetworks differs dramatically from that of the single balanced net-

work: in the single balanced network G saturates for Δt≳ τ (Fig 5E, upper inset), whereas in

the two coupled balanced subnetworks G continues to increase as a function of Δt, up to Δt of

order λ−1 (Fig 5E, main plot). Thus, the diffusive motion generates correlated activity over

time scales much longer than τ. Because the chaotic noise itself is uncorrelated on time scales

longer than τ (as shown more precisely below), and since λ is approximately constant along

the approximate attractor, we may expect the motion to approximately follow the statistics of

an Ornstein–Uhlenbeck (OU) process. This approximation provides a good fit to the dynam-

ics, Fig 5C, as expected. This made it possible to extract a diffusion coefficient D from the sim-

ulations which characterizes the random motion on time scales τ≲ Δt≲ λ-1. Furthermore,

since D and λ are approximately constant over a wide range of positions along the approxi-

mate attractor (Fig 5A and 5B), the approximation as an OU process provides a precise and

compact description of the trajectory statistics, from which the performance of the network in

retention of memory can be deduced (see Discussion and Fig 5C, S1, S2D, S3E and S4B and

S4C Figs).

According to Eq 28 (Methods), fluctuations in the mean activity scale as 1/N, but this equa-

tion is valid only for time scales smaller than τ, whereas the diffusion coefficient D character-

izes fluctuations on longer time scales. Fig 5F demonstrates that the 1/N scaling holds also for

the diffusive motion over long time scales: the diffusion coefficient, extracted from a fit to the

statistics of an OU process, is inversely proportional to N. The same scaling with N has been

observed in continuous attractor networks with intrinsic neural stochasticity [19]. Another

important implication of the 1/N scaling is that sufficiently large networks can reliably store a

continuous variable in short-term memory (see Discussion).

To understand this result in more detail, we start by considering the time dependent corre-

lation functions of mi in a single balanced network:

Cm
ij ðDtÞ �

1

N2

XN

k;l¼1

hsk
i ðt þ DtÞsl

jðtÞit � hs
k
i ðt þ DtÞiths

l
jðtÞit

h i
; ð7Þ

where i, j 2 {Ex,Inh}. An analytical expression for these correlation functions is not available

(see [9] for further discussion). Therefore, we measured them numerically in simulations of

activity in the single balanced network architecture. These measurements indicate that the

time-dependent correlation functions decay over time scales of order τ, and that they scale as

1/N, Fig 6.

Next, we show that the statistics of diffusion in the coupled system can be expressed pre-

cisely in terms of the correlation functions of the single, uncoupled balanced networks

(Methods). Thus, the correlation structure of the chaotic noise in the single balanced network

determines the statistics of the slow diffusive motion along the approximate attractor in the

coupled two-population network.

Using the noise cross correlations measured in simulations of a single balanced network, it

is possible to obtain a semi analytical approximation for G in the system of two coupled sub-

networks, which does not involve any fitting parameters. The measurements of G from simula-

tions are in excellent agreement with this analytical prediction, Fig 5E. The above analysis
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indicates that the 1/N scaling of the diffusion coefficient (Fig 5F) is a consequence of the decay

with N of cross correlations in activity of different neurons in the single balanced network. In

this sense, for large N the network behaves as a collection of neurons with independent ran-

dom noise, although the source of this apparent noise is the chaotic activity generated by the

recurrent connectivity.

Spike correlation functions

The diffusion along the approximate attractor implies that the population activities are corre-

lated over long time scales, up to order λ−1: Fig 7A shows examples of the population correla-

tion functions Cm, which differ dramatically from those of the single balanced network, Fig 6

(note the different time scales in the two sets of figures).

Spike trains generated by single neuron pairs are correlated over long time scales as well,

since all neurons in the network are coupled to the collective diffusion along the approximate

attractor. However, a reliable observation of the slowly decaying correlation in a single pair

might require an unrealistically long recording time. This difficulty can be overcome poten-

tially by considering the simultaneous activity of multiple neurons: for example, we find in our

simulations of a network with N = 105 that for 15 minutes of simulated time, a simultaneous

recording from *50 or more neurons from each population would be sufficient to reliably

observe the slow temporal decay of the correlations, Fig 7C, whereas a simultaneous recording

from ten neurons over 15 minutes may be insufficient. As demonstrated in Fig 7(B)–7(D) the

noise falls as one over the number of measured neurons and as one over the total recording

time. Hence, by extrapolating from the results in Fig 7(B)–7(D), *12 hours of recording

would be required to obtain a measurable correlation signal from a single pair of neurons.

Fig 6. Cross correlations in a single balanced network. Population averaged cross-correlations of neural

activity in a single balanced network, Cm(Δt) (Eq 7), shown as a function of the time lag Δt (in units of τ =

10ms). The cross-correlation functions are multiplied by N, to demonstrate that Cij scale as 1/N: with this

choice of scaling, measurements from simulations with different values of N collapse on one curve.

https://doi.org/10.1371/journal.pcbi.1005505.g006
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Chaotic behavior

Next, we briefly address the chaotic nature of the noise that drives diffusive motion. Fig 8A

shows results from multiple simulations in which the initial network state differed solely by a

flip of one neuron in each population (out of *105 neurons). All other parameters, including

the asynchronous update schedule and the network weights were identical across runs. The

time dependence of the variance across different runs is similar to the variance over realiza-

tions of an OU process, Fig 8B, with a similar diffusion coefficient as observed in the fit for

G(X, Δt), Fig 5(C) and 5(E). Thus, the different initial conditions are equivalent to different

realizations of dynamic noise that drives diffusive motion along the approximate line attractor.

Additional randomness in connectivity and inputs

In addition to the results described above, we investigate several scenarios in which we intro-

duce additional randomness, either frozen or dynamic. First, we relax the assumption that

connections in the two sub-networks precisely mirror each other. This assumption was made

above for convenience: the precise identity of the synaptic connections simplifies the numeri-

cal analysis since it ensures a precise symmetry of the dynamics around the hyperplane X = 0.

S2 Fig demonstrates that the main conclusions of our analysis remain valid when the connec-

tivity in each sub-network is drawn independently: dynamics are slow along the approximate

line attractor, and the diffusion coefficient along the line scales as 1/N with a prefactor which is

somewhat larger than the value observed in Fig 5.

Fig 7. Cross correlations in the coupled subnetwork architecture. A Auto-covariance of the mean

activity of one of the excitatory populations (black). Cross covariance between the first excitatory population

and the first inhibitory population (green), the second inhibitory population (red) and the second excitatory

population (blue). B-D Pairwise correlation of neuron activity in one of the excitatory populations. Correlations

are measured in n neurons, selected randomly, and averaged over all pairs (Methods), where n = 10 (B),

50 (C), and 100 (D). The simulated time is 15 minutes. An average over the entire population is shown in grey.

In all panels N = 1.2 × 105, K = 1000, λ−1’ 2 sec.

https://doi.org/10.1371/journal.pcbi.1005505.g007
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The main new feature that arises when the synaptic connections are drawn independently

in the two sub-networks, is that the relaxation point of the dynamics along the approximate

attractor deviates from the hyperplane X = 0. The characteristic magnitude of this deviation

decays monotonically to zero with increase of the system size N. We note that the mean field

description of the dynamics for finite K� 1 and in the limit N!1, is identical to the mean

field dynamics associated with the perfectly symmetric scenario.

Next, we consider a scenario in which the inhibitory connections between the two sub-

networks are random, and follow the same basic architecture as the connections within each

sub-network. Therefore, instead of assuming weak all-to-all connections of order
ffiffiffiffi
K
p

=N, we

include random connections of order 1=
ffiffiffiffi
K
p

, with a probability K/N for a synaptic connection.

In addition, we relax the assumption of mirrored connections in the two sub-networks. In this

case it is straightforward to show that the mean-field equations remain identical to those asso-

ciated with the case of all-to-all connections, in the limit N!1, K!1. Therefore, a contin-

uous set of balanced states can be achieved (Methods).

When K is large and finite, the mean-field equations are slightly different in the two scenar-

ios (Methods). The main outcome of this difference is a shift of the unstable fixed points of the

dynamics from the planesm1 =m2 = 0 andm3 =m4 = 0. Consequently, there is a certain degree

of activity in both sub-networks even in the unstable fixed points of the dynamics. This is

shown in S3 Fig More significantly, S3 Fig demonstrates that in the case of random and sparse

connections between the two sub-networks, the dynamics exhibit the same characteristics as

in the case of all-to-all connectivity, and can be accurately approximated as an OU process

over time scales longer than τ. The coefficient of diffusion D scales linearly with 1/N, with a

prefactor which is close to the one observed in S2 Fig.

Finally, we explore the effects of stochasticity in the input E0 to the network (see Fig 1B).

S4 Fig demonstrates that even when the inputs include a large degree of temporal variability,

and the noise injected to all the neurons in the network is highly correlated, the network exhib-

its slow dynamics along an approximate attractor, with statistics that are qualitatively similar

to what we present above.

Fig 8. Chaotic nature of the noise driving the diffusive motion. A Projection X of the mean activities on

the approximate attractor in 30 trials with the same update schedule and the same initial conditions, except for

one neuron which was flipped in each population (N = 105). B Variance over 1500 trials as a function of time,

with 2σ error bars (gray). Red: fit to the variance of an OU process (D’ 3.4 � 10−61/10s).

https://doi.org/10.1371/journal.pcbi.1005505.g008
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Discussion

In summary, we demonstrated that a simple balanced network can exhibit slow dynamics

along a continuous line in the population mean activity space. In finite networks, the chaotic

dynamics drive diffusive motion along the approximate line attractor. We calculated the diffu-

sivity in the system, based on the correlation structure observed in a single balanced network,

and showed that the diffusion coefficient along the approximate attractor is inversely propor-

tional to the network size. This is similar to the effect of noise that arises from intrinsic neural

or synaptic mechanisms [19].

The slow diffusive motion along a one-dimensional trajectory induces correlations within

the populations, and in single neuron pairs, that persist up to a long time scale set by the decay

time λ−1. This property characterizes the dynamics of the system even when it is at the resting

state (X’ 0), i.e., when the network is not engaged in a memory task. Hence, this observation

generates a prediction for spontaneous activity in brain areas such as the prefrontal cortex, in

which continuous attractor dynamics, based on mutual inhibition between two populations,

have been postulated [33].

A slowly decaying cross-correlation function characterizes the spikes produced by any pair

of neurons in the network, but due to the high irregularity in the single neuron activity it may

be necessary to average over multiple simultaneously recorded neuron pairs in order to obtain

a clear measurement over a realistic time scale for a single experiment (in Fig 7C, 50 neuron

pairs and a *15 minute measurement). Furthermore, it is important to label the neurons

based on their functional properties: averaged over all populations, the cross correlations seen

in Fig 7A cancel. In brain areas involved in short term memory tasks, this labeling can poten-

tially be achieved by first measuring the tuning curves of neurons as a function of the stored

variable.

Linear vs. nonlinear neural response in decision making circuits

Several models of decision making circuits in the prefrontal cortex were based on the simple

neural architecture of Fig 1A [32]. This network architecture can precisely generate a continu-

ous attractor if the activity of single units is a linear function of their input. While the linear

dynamics provide a simple intuition for the principles underlying continuous attractor

dynamics in recurrent neural networks [31], it is more difficult to obtain a continuum of

steady states using the above network architecture when single neural responses are nonlinear.

Therefore, specifically tuned forms of nonlinearity [33, 35], or more elaborate network archi-

tectures—still based on mutual inhibition between two or more neural populations have been

proposed [33, 34]. In this context the linear input-output relationship, characterizing the single

balanced network of Ref. [3], is a useful computational feature that facilitates the construction

of a continuous attractor network based on the simple architecture of Fig 1A. However, the

main motivation for considering the balanced state in this work lies in its ability to account for

the irregular spiking of single neurons in cortical circuits.

Time scales of persistence and retention of information

Continuous attractor networks are an important model for maintenance of short-term mem-

ory in the brain. The memory is represented by the position along the attractor, and therefore

the stochastic motion along the attractor determines the fidelity of memory retention. Since

the dynamics of our proposed network are well characterized as an OU process over time

scales longer than τ and over a large range of positions along the approximate attractor, it is

straightforward to assess how the position along the approximate attractor evolves in time.

All aspects of the trajectory can be easily inferred based on the initial state along the
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approximate attractor, the time interval, and the two parameters which characterize the OU

process: λ and D. Similar considerations can be applied also for noisy continuous attractors

in which the stochasticity arises from mechanisms other than the chaotic dynamics studied

here [19, 20]. We next discuss how the decay time and the diffusivity depend on the parame-

ters of our model.

The decay time λ−1 can be calculated exactly in the limit of N!1, K� 1 (Fig 2). It is

interesting to note that there are competing influences of K on the tuning of the attractor: with

increase of K, λ−1 becomes more sensitive to ~J . However, when K is reduced, the nullclines

(Fig 2) become less linear, causing deviations from the ideal behavior far from the symmetry

point. We showed that for K* 103 and τ = 10ms it is possible to achieve persistence over sev-

eral seconds, while the decay time and diffusion coefficient are approximately constant along a

wide range of positions. This requires to tune ~J to a relative precision of order 0.1%.

Since all times scale linearly with the intrinsic time constant, longer persistence times (or a

weaker tuning requirement) can be achieved if the intrinsic time constants of individual units

is longer that the value of 10 ms assumed in our examples. Intrinsic neural persistence or slow

synapses could potentially contribute to this goal under more realistic biophysical descriptions

of the neural dynamics.

Finally, we note that the requirement for precise tuning of the connectivity is a characteris-

tic feature of all continuous attractor models. Several works have proposed ways to achieve

tuning through plasticity mechanisms [37, 38], or ways to stabilize the dynamics by additional

mechanisms such as synaptic adaptation [28, 39, 40] or negative derivative feedback [29, 30],

in order to increase the persistence time.

Diffusive motion

The diffusive motion along the approximate attractor, which is the main focus of this work,

poses an additional limitation on the persistence of short term memory. While appropriate

readout mechanisms may be able to take into account the systematic drift caused by the decay

towards to the symmetry point, random diffusion inherently degrades the information stored

in the position along the attractor.

With 105 neurons per population, random diffusion over an interval of one second causes a

deflection in X with a standard deviation of *10−2. This quantity should be compared with

the possible range of X, which is approximately [-0.2, 0.2] in our parametrization of the posi-

tion along the approximate attractor (we verified that the dynamics are accurately approxi-

mated as an OU process over the range [-0.1, 0.1]). Therefore, with the tuning chosen in

Fig 4C, where λ−1 * 10s, and with N = 105, the limiting factor for discrimination between

nearby stimuli after a delay period of order 1 s is the diffusive dynamics along the approximate

attractor.

Random diffusion in continuous attractor networks of Poisson neurons is also often very

significant [19, 20]. The diffusivity can be suppressed by increasing the number of neurons,

increasing the intrinsic time constant of individual neurons and synapses, or by assuming that

the firing of individual neurons is sub-Poisson [19, 41]. Our proposed model for a line of per-

sistent balanced states similarly predicts a significant degree of random diffusion, highlighting

the need to better understand how noise influences the retention of continuous parameter

memory in cortical circuits.

There are several ways in which the random, diffusive component of the motion can poten-

tially be reduced: First, by increasing the number of neurons. We presented results for net-

works containing (altogether) up to 6 × 105 neurons, and it is straightforward to extrapolate

our estimates for D to larger networks based on the 1/N dependence of the diffusion
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coefficient. Second, the diffusion coefficient is expected to decrease significantly if slow synap-

ses participate in the dynamics [19], or if the intrinsic time constant of the neurons is

increased. Third, additional mechanisms such as synaptic adaptation [28, 40] or derivative

feedback [29] may perhaps contribute to a reduction in the diffusivity. Finally, an intriguing

possibility is that highly structured and tuned connectivity can yield improved robustness to

noise in a balanced state, as hinted by recent results on predictive coding in spiking neural net-

works [42].

Methods

Model

In our model, two balanced neural subnetworks inhibit each other reciprocally: the inhibitory

population in each subnetwork projects to the excitatory population of the other subnetwork,

Fig 1B.

As in Refs. [3, 7], the neurons are binary and are updated asynchronously, at update times

that follow Poisson statistics. The mean time interval between updates is τE (τI) for neurons in

the excitatory (inhibitory) populations. In each update of a neuron k from population i, the

new state of the neuron sk
i is determined based on the total weighted input to the neuron,

sk
i ¼ Yðuki Þ ; ð8Þ

where Θ is the Heaviside step function, and uki is the total input to the unit at that time,

uki ¼
X4

l¼1

XNl

j¼1

Jijkls
j
lðtÞ þ

ffiffiffiffi
K
p

El
0

" #

� Tk : ð9Þ

Here, Tk is the threshold and E0 is an external input. We chose the external input to be zero for

the inhibitory populations and to be positive (and constant) for the excitatory populations.

Connections within each network are random with a connection probability K/N, where 1�

K� N. Here N is the population size (chosen to be equal in all populations for simplicity) and

K is the average number of inputs a neuron gets from each population. Connection strengths

are: JEE=
ffiffiffiffi
K
p

; JIE=
ffiffiffiffi
K
p

; JEI=
ffiffiffiffi
K
p

and JII=
ffiffiffiffi
K
p

according to the identity of the participating neu-

rons. Without loss of generality, we have chosen JEE = JIE = 1 and defined JEI� −JE, JII� −JI.
Mutual inhibition is generated either by weak all-to-all connections (in all figures except for S3

Fig), or by strong random and sparse connections (S3 Fig). In the former scenario, synapses of

strength � ~J
ffiffiffiffi
K
p

=N connect each inhibitory neuron to all excitatory neurons in the excitatory

population of the other subnetwork. In the latter scenario (S3 Fig), connections from each

inhibitory population to the excitatory population of the other subnetwork are chosen ran-

domly with a connection probability K/N, and with strength � ~J=
ffiffiffiffi
K
p

. An excitatory feed-for-

ward input
ffiffiffiffi
K
p

E0 is fed into both excitatory populations. We denote by ui the mean of uki over

all the neurons k within the population i and over realizations of the connectivity:

u1 ¼
ffiffiffiffi
K
p
ðm1 � JEm2 �

~Jm4 þ E0Þ � T1 ;

u2 ¼
ffiffiffiffi
K
p
ðm1 � JIm2Þ � T2 ;

u3 ¼
ffiffiffiffi
K
p
ðm3 � JEm4 �

~Jm2 þ E0Þ � T3 ;

u4 ¼
ffiffiffiffi
K
p
ðm3 � JIm4Þ � T4 :

ð10Þ
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Here mi are the population averaged activities. The variance of uki over all the neurons k within

the population i and over realizations of the connectivity is given (to leading order in K/N) by:

a1 ¼ m1 þ J2
Em2 ;

a2 ¼ m1 þ J2
I m2 ;

a3 ¼ m3 þ J2
Em4 ;

a4 ¼ m3 þ J2
I m4 :

ð11Þ

These expressions are obtained in similarity to the derivation of the variances in Ref. [7]. Note

that the all-to-all inhibitory connections between the subnetworks contribute only terms of

higher order in K/N. In the scenario where the connections between subnetworks are ran-

domly drawn (S3 Fig), the variance of the input to the excitatory neurons includes an addi-

tional term, due to the variability of inhibitory synapses from the opposing sub-network. In

this scenario

a1 ¼ m1 þ J2
Em2 þ

~J 2m4 ;

a2 ¼ m1 þ J2
I m2 ;

a3 ¼ m3 þ J2
Em4 þ

~J 2m2 ;

a4 ¼ m3 þ J2
I m4 :

ð12Þ

The mean field equations written below are valid both for all-to-all and for random connec-

tions between sub-networks, with the appropriate choice of αi.
Line of balanced states in the limit N� K� 1. To check whether there exist parameters

for which the system has a continuum of balanced states, it is convenient to write the steady

state of Eq (3) as follows:

m1 � JEm2 �
~Jm4 þ E0 ¼

1
ffiffiffiffi
K
p T1 �

ffiffiffiffiffi
a1

p
H � 1ðm1Þ

� �
;

m1 � JIm2 ¼
1
ffiffiffiffi
K
p T2 �

ffiffiffiffiffi
a2

p
H � 1ðm2Þ

� �
;

m3 � JEm4 �
~Jm2 þ E0 ¼

1
ffiffiffiffi
K
p T3 �

ffiffiffiffiffi
a3

p
H � 1ðm3Þ

� �
;

m3 � JIm4 ¼
1
ffiffiffiffi
K
p T4 �

ffiffiffiffiffi
a4

p
H � 1ðm4Þ

� �
:

ð13Þ

Taking the limit K!1 while requiring that none of the populations is fully on or off pro-

duces a linear system of equations for the mean activities, Eq 4. When ~J ¼ JE � JI the system of

linear equations is singular. In this case the steady state equations admit a continuum of solu-

tions which comprise a continuum of stable balanced states. A possible parametrization of the

line of balanced states is given by:

m1 ¼ x ;

m2 ¼ x=JI ;

m3 ¼ � x þ JIE0=ðJE � JIÞ ;

m4 ¼ � x=JI þ E0=ðJE � JIÞ :

ð14Þ
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The conditions JE − JI> 0, JI> 1, and 0< JI E0/(JE − JI)< 1 ensure that for 0< x< JI E0/(JE −
JI) the mean activities are positive and none of them is equal to 0 or 1.

In Fig 2(E) and 2(F), we artificially add to the dynamics (Eq 3) white Gaussian noise as fol-

lows:

ti _mi ¼ � mi þHðui=
ffiffiffiffi
ai
p
Þ þ xi ð15Þ

where hξi(t)i = 0 and

xiðtÞxjðt0Þ
D E

¼ s2dijdðt � t0Þ : ð16Þ

Note that this was done only in Fig 2(E) and 2(F), to illustrate the existence of slow dynamics

along a line in the case of infinite N. There is no injected noise elsewhere, and in particular

there is no injected noise in our simulations of finite N networks.

Simulations and statistics of the diffusive dynamics

Our results for networks with finite N are based on large scale numerical simulations. In each

simulation the connections were chosen randomly as described in the text, and an asynchro-

nous update schedule was generated by a Poisson process. Parameter values are specified in

the legend of Fig 2 in the main text. Averaged population activities were calculated online. The

projection along the approximate attractor was defined at each time point as

XðtÞ � vT
0
� mðtÞ � m0½ � ; ð17Þ

where m(t) is the measured 4 dimensional averaged population activity, m0 is the vector of

mean population activities at the symmetric fixed point, and v0 is the left eigenvector of the lin-

earized dynamics with an eigenvalue close to zero. We chose the following normalization for

the corresponding right eigenvector (see Eq 14):

1

1=JI

� 1

� 1=JI

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð18Þ

and the normalization of v0 was chosen such that the dot product of the left eigenvector and

the right eigenvector equals unity.

Measurements of G(X, Δt) (Eq 6) were done in the following way: for each value of X we

found all the time points for which |X(ti) − X|< δ, using a small δ’ 10−3. Then, for each such

ti we calculated [X(ti + Δt) − X(ti)]2, and averaged all these values to get G(X, Δt). Subsequently,

we averaged over multiple simulations with different quenched noise and update schedules. In

the manuscript we present results for G(0, Δt), but in similarity to F(X, Δt)/X,G(X, Δt) was

fairly uniform along the approximate attractor. A similar calculation was performed to mea-

sure the drift F(X, Δt). In Fig 5(C)–5(F), results are based on (1−2) × 103 simulations with ran-

dom initial conditions, each spanning a simulated time of about 10 seconds. In simulations of

the finite N network, we estimated λ from measurements of F(X, Δt) near the symmetric fixed

point, and tuned ~J to obtain λ−1� τ. In Fig 5, λ−1’ 2 seconds.

Measurement of cross covariance functions. The cross covariance functions shown in

Fig 7 were calculated in the following way: first, we measured the activity of n neurons atM
equally spaced time points, with a time difference Δt = 66ms. Then, for each pair of neurons i, j
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of populations k, l respectively, we calculated the unbiased estimate of the cross covariance:

Ci;j
l;kðtmÞ ¼

1

M � jmj

XM� jmj� 1

a¼0

si
kðtaþmÞs

j
lðtaÞ �

1

M

XM� 1

a¼0

si
kðtaÞ

" #
1

M

XM� 1

a¼0

s
j
lðtaÞ

" #

; ð19Þ

Here ta = aΔt. Now, we averaged over all the measured pairs:

Cl;kðtmÞ ¼
1

0:5nðn � 1Þ

X

i6¼j
Ci;j
l;kðtmÞ : ð20Þ

For the calculation of the entire population averaged cross covariance we used the measured

mean activities:

Cl;kðtmÞ ¼
1

M � jmj

XM� jmj� 1

a¼0

mkðtaþmÞmlðtaÞ �
1

M

XM� 1

a¼0

mkðtaÞ

" #
1

M

XM� 1

a¼0

mlðtaÞ

" #

: ð21Þ

wheremlðtÞ ¼ 1=N
PN

i¼1
si
lðtÞ. Note that the sum in Eq 21 includes the auto-covariances,

while the expression in Eq 20 does not. However, the contribution of the auto-covariances is

negligible in the entire population average, since its contribution, relative to the contribution

of cross-covariances scales as 1/N.

Diffusion over short time scales

To analytically evaluate G(X, Δt) (Eq 6) over short time scales, we start by writing the change

in the state of the k-th neuron in population i in a short time interval Δt as:

sk
i ðt þ DtÞ � sk

i ðtÞ ¼ c
k
i ðtÞ Y

k
i ðtÞ � sk

i ðtÞ
� �

; ð22Þ

where Y
k
i ðtÞ is the outcome of an update if it occurs, and cki ðtÞ is a random variable equal to 1

if the i-th neuron was updated between t and t + Δt and to 0 otherwise. The updates occur each

τms on average, so that

cki ðtÞ

 �

t ¼ cki ðtÞ
2


 �

t ¼
Dt
tk
; ð23Þ

whereas for i 6¼ j and/or k 6¼ l,

cki ðtÞc
l
jðtÞ

D E

t
¼

Dtð Þ2

tktl
: ð24Þ

Now the mean squared displacement, G(X, Δt), can be written as:

Xðt þ DtÞ � XðtÞ½ �
2


 �
¼

1

N2

X4

i;j¼1

XN

k;l¼1

v0

i v
0

j sk
i ðt þ DtÞ � sk

i ðtÞ
� �

sl
jðt þ DtÞ � sl

jðtÞ
h iD E

; ð25Þ

where v0
i is the i’th component of the left eigenvector of the Jacobian with eigenvalue close to

zero. From Eqs 23 and 24 we see that for Δt� τ the contribution of elements with i = j, k = l
dominates the sum. To leading order in Δtwe have

Xðt þ DtÞ � XðtÞ½ �
2


 �
’

1

N2

X4

i¼1

XN

k¼1

v0

i

� �2

� sk
i ðt þ DtÞ � sk

i ðtÞ
� �2
D E

:

ð26Þ
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Defining

qiðDtÞ ¼
1

N

XN

k¼1

sk
i ðt þ DtÞsk

i ðtÞ

 �

; ð27Þ

we obtain:

GðX;DtÞ ’
2Dt
N

X4

j¼1

ðv0

j Þ
2
�
@qjðtÞ
@t

� ��
�
�
�

�
�
�
�
t!0

: ð28Þ

Diffusion over arbitrary time scales

To derive an expression for the diffusive dynamics over arbitrary time scales, we start by repre-

senting the stochastic linearized dynamics of a single balanced network, near the symmetric

fixed point, as a two dimensional stochastic process:

_δm ¼ B1δmþ B2δE þ ξ ; ð29Þ

where δm is the deviation of the mean activities from the fixed point and δE is the deviation of

the input from the constant input E0. Here B1 is a 2 × 2 matrix representing the response to

perturbations in m, and B2 is a 2 × 2 matrix representing the response to perturbations in the

feedforward input. Both are obtained analytically from a linearization of the mean field

dynamics. Finally, ξ is a random process with vanishing mean, whose covariance functions

Cξ(Δt) are stationary and are yet unspecified:

Cx;ijðt � t0Þ � xiðtÞxjðt0Þ
D E

: ð30Þ

Using Eq 29, it is straightforward to relate Cξ(t) to the covariance of the activities (while assum-

ing constant feedforward input, d�E ¼ 0):

CxðtÞ ¼ �
d2

dt2
CmðtÞ þ

d
dt

CmðtÞBT
1
� B1C

mðtÞ
� �

þ B1CmðtÞBT
1
:

ð31Þ

Using the measurements of Cm from simulations, we can thus obtain Cξ numerically, using the

above equation. In similarity to Cm, Cξ decays to zero over a time scale of order τ. Altogether,

Eq 29 describes the stochastic dynamics of a single balanced network close to the balanced

state, in response to small fluctuations δE in the feedforward inputs. In the two-subnetwork

architecture, each subnetwork is coupled only to the mean activity of the other subnetwork,

because of the all-to-all connectivity. More specifically, the mean activity of each subnetwork

linearly modulates the external input to the excitatory population of the other subnetwork.

Therefore, we can approximate the state of the 4-population network as a stochastic process

with the following dynamics:

_δm ¼ Aδmþ ξ ; ð32Þ

where δm is now a 4 dimensional vector, whose first (last) two entries represent the state of the

first (second) subnetwork, and A is the Jacobian of the full 4 dimensional dynamics around the

fixed point (Eq 38), related in a simple manner also to the matrices B1,2 defined above. The
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correlation matrix of the 4 dimensional noise vector ξ is given by

~Cx ¼

Cx 0

0 Cx

0

@

1

A ; ð33Þ

where Cξ is the 2 × 2 noise correlation matrix Eq (30) evalulated for a single balanced network

receiving fixed excitatory input, equal to the mean input to each subnetwork at the symmetric

fixed point. Finally, we use this description of the dynamics to predict the statistics of diffusion

along the line. We multiply Eq 32 from the left by v0, the eigenvector with the eigenvalue close

to zero, which we denote by λ (note below that λ< 0):

_X ¼ lX þ vT
0
� ξ : ð34Þ

Here, X ¼ vT
0
� δm. Thus, we obtain using the Wiener—Khintchine theorem the time depen-

dent correlation function of X,

CXðtÞ ¼ �
1

2l

Z 1

� 1

eljt0 jvT
0
~Cxðt � t

0Þv0dt
0 : ð35Þ

Finally, the diffusion over an arbitrary time interval Δt is given by:

Xðt þ DtÞ � XðtÞ½ �
2


 �
¼ 2 CXð0Þ � CXðDtÞ½ � : ð36Þ

Proof: @m1/@m3 = −1$ vanishing eigenvalue

Here we show that when @m1/@m3 = −1 at the symmetric point (m1 =m3,m2 =m4), the Jaco-

bian matrix has a vanishing eigenvalue, leading to slow dynamics near the fixed point. We

denote:

fi;j �
@H � ui=

ffiffiffiffi
ai
p� �

@mj
: ð37Þ

In terms of these quantities, the Jacobian matrix can be written as

A �

f1;1 � 1 f1;2 0 f1;4

f2;1=t ðf2;2 � 1Þ=t 0 0

0 f3;2 f3;3 � 1 f3;4

0 0 f4;3=t ðf4;4 � 1Þ=t

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð38Þ

At the symmetric fixed point f1,1 = f3,3, f2,2 = f4,4, f1,2 = f3,4, f1,4 = f3,2, and f2,1 = f4,3. The
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Jacobian’s eigenvalues at that point are then:

l
�

�
¼

1

2
ðf1;1 � 1Þ þ

f2;2 � 1

t

� �

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf1;1 � 1Þ �
f2;2 � 1

t

� �2

þ
4

t
f1;2f2;1 �

4

t
f1;4f2;1

s

:

ð39Þ

Next, we approximate the derivative @m1/@m3 at the symmetric point. We use a first order

Taylor expansion of the mean field equations to get:

dm1 ¼ f1;1dm1 þ f1;2dm2 þ f1;4dm4 ;

dm2 ¼ f2;1dm1 þ f2;2dm2 ;

dm3 ¼ f1;4dm2 þ f1;1dm3 þ f1;2dm4 ;

dm4 ¼ f2;2dm4 þ f2;1dm3 :

ð40Þ

Here, δmi are the small deviations from the symmetric fixed point. Using these equations we

can write δm2 and δm4 as functions of δm1 and δm3:

dm2 ¼
f2;1

1 � f2;2
dm1 ; dm4 ¼

f2;1
1 � f2;2

dm3 : ð41Þ

Plugging these expressions into the equation for δm1 yields an expression for δm1 as a function

of δm3. The derivative is:

@m1

@m3

¼
f1;4f2;1

f1;1f2;2 � f1;2f2;1 þ 1 � ðf1;1 þ f2;2Þ
: ð42Þ

Note that @m1/@m3 = @m2/@m4. Equating this derivative to −1 (noting that in this case,

@m1/@m3 = @m3/@m1) yields:

f1;4 ¼
f1;2f2;1 � 1þ f1;1 þ f2;2 � f1;1f2;2

f2;1
: ð43Þ

By inserting f1,4 into Eq 38 we get l
�

�
¼ 0.

Supporting information

S1 Fig. Mean squared displacement of location along the approximate attractor. (Same

dataset as in Fig 4C in the main text.) A-B The mean squared displacement (MSD) of the loca-

tion along the line for initial location X(0) = 0.05 (A) and X(0) = 0.08 (B) as a function of time.

Error bars represent the standard deviation of the mean (black). Red: fit to an OU process. OU

parameters from fit: D = 1.85 × 10−6(10 ms)−1, λ = 10−3(10 ms)−1 in both panels.

(TIF)

S2 Fig. Non-mirrored connectivity. Results for a network in which the internal connectivity

in each sub-network is drawn independently. A Population averaged activity projected onto

them1 −m3 plane. B Mean activities of the four populations: blue for one sub-network and

red for the other. The higher activities are those of the excitatory populations (m1 andm3). C

Projection along the approximate attractor. D G(X = 0, Δt) vs. Δt as measured from simulations

(black). Error bars: standard deviation of the mean (blue). Red: fit to an OU process. Here

N = 1.5 × 105 (compare with Fig 5C in the main text). E Diffusion coefficient as a function of
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N, with fit to/ 1/N dependence in red (compare with Fig 5D in the main text). F Absolute dis-

tance of the activity from the symmetry plane X = 0, averaged over time and over connectivity

instances, plotted vs.N. Red error bars represent the standard deviation of the mean. In all

panels K = 1000 and N = 1.5 × 105. Other parameters are as in Fig 2.

(TIF)

S3 Fig. Network with random and sparse inhibitory connections between the sub-networks.

A Projections of the nullclines _m1 ¼ 0 (blue) and _m3 ¼ 0 (red) on them1 −m3 plane, based on

Eqs 13 and 12. Here K = 1000, ~J ¼ 1:8. Insets show a schematic illustration of the nullclines

near the fixed points, in which the angle between the lines is amplified for clarity. B Population

activities projected onto them1 −m3 plane. C Mean activities of the four populations: blue for

one subnetwork and red for the other. The higher activities are those of the excitatory popula-

tions (m1 andm3). D Projection along the approximate attractor. E G(X = 0, Δt) vs. Δt as mea-

sured from simulations (black, with std of the mean errorbars in blue) and a fit to an OU

process (red). (Compare with Fig 5C in the main text.) F Diffusion coefficient as a function of

N. Red: fit to/ 1/N dependence (compare with Fig 5D in the main text). Here K = 1000,

N = 1.5 × 105, ~J � 1:76, and all other parameters are as in Fig 2.

(TIF)

S4 Fig. Effects of correlated input noise. Results from simulations, for a network in which

dynamical noise is added to the input E0. The noise has a correlation time of 3τ, which ensures

that the correlation across neurons is not averaged out due to the asynchronous updating. The

noise is described by an OU process: tnoise
_x ¼ � xþ snoiseZðtÞ, where τnoise = 30 ms, and η(t) is

a gaussian white noise, and the value of σnoise was varied to control the noise amplitude. A

Mean activities of the four populations for σ = E0/3: blue for one subnetwork and red for the

other. The higher activities are those of the excitatory populations (m1 andm3). B G(X = 0, Δt)
for σnoise = 0 (black), σnoise = E0/30 (green) and σnoise = E0/3 (blue). Error bars represent the

standard deviation of the mean. Red: fits to an OU process. C Mean square displacement

(MSD) of the location along the line for initial location X(0) = 0.05. Colors are the same as in

B. In this figure K = 500, N = 1.5 × 105, ~J ’ 1:77.

(TIF)
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