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Abstract: Amyloid positron emission tomography (PET) scan is clinically essential for the non-
invasive assessment of the presence and spatial distribution of amyloid-beta deposition in subjects
with cognitive impairment suspected to have been a result of Alzheimer’s disease. Quantitative
assessment can enhance the interpretation reliability of PET scan; however, its clinical application has
been limited due to the complexity of preprocessing. This study introduces a novel deep-learning-
based approach for SUVR quantification that simplifies the preprocessing step and significantly
reduces the analysis time. Using two heterogeneous amyloid ligands, our proposed method suc-
cessfully distinguished standardized uptake value ratio (SUVR) between amyloidosis-positive and
negative groups. The proposed method’s intra-class correlation coefficients were 0.97 and 0.99 against
PETSurfer and PMOD, respectively. The difference of global SUVRs between the proposed method
and PETSurfer or PMOD were 0.04 and −0.02, which are clinically acceptable. The AUC-ROC
exceeded 0.95 for three tools in the amyloid positive assessment. Moreover, the proposed method had
the fastest processing time and had a low registration failure rate (1%). In conclusion, our proposed
method calculates SUVR that is consistent with PETSurfer and PMOD, and has advantages of fast
processing time and low registration failure rate. Therefore, PET quantification provided by our
proposed method can be used in clinical practice.

Keywords: deep learning; PET; MRI; SUVR; amyloid-beta

1. Introduction

Positron emission tomography (PET) neuroimaging tools have been used for in vivo
assessment in molecular biology and neuropathology [1]. PET techniques have facilitated
early and differential dementia diagnosis, and several PET ligands are available to assess
dementia biomarkers and, thus, to support key clinical decision-making. Among these,
amyloid PET is widely used to evaluate the spatial distribution of amyloid-beta plaque
in patients with cognitive impairment to rule out Alzheimer’s disease (AD) from other
dementia diagnosis [2]. Consequently, accurate and effective interpretation of amyloid PET
is required, and the demand for automated technology for the interpretation of amyloid
PET has increased. An accurate and reliable tool for amyloid PET analysis can advance the
research and clinical decision process. Currently, interpretations by nuclear medicine physi-
cians or radiologists constitute the gold standard for amyloid PET, which shows substantial
inter-reader agreement of up to 0.8 [3,4]. However, there is room for improvement; one can
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imagine that the disagreement could be observed with less experienced physicians and/or
for equivocal cases. These disagreements could lead to misdiagnosis or delayed clinical
decisions. To minimize the rater’s bias and improve the reliability of the amyloid PET
interpretation, quantitative evaluation of brain PET has been mostly used in research [5].

There are limiting factors, however, of the use of automated PET analysis tools for
clinical purposes. The quantitative measurement of amyloid PET often involves a resource-
consuming process (computing power) for 3D image pre-processing, which has been
pointed out as a limiting factor. In addition, while there are tools widely used in research
(e.g., PMOD and PETSurfer), no study provides a comprehensive analysis of their per-
formance (reliability and validity) in the clinical setting. There are a couple of studies
comparing their in-house tools against PMOD. One study compared their in-house method
using an atlas-based approach with PMOD and reported faster processing time with pos-
sible bias due to the standardization approach [6]. A similar study was also conducted
to compare the developed software and PMOD and report interchangeable results with a
user-friendly interface [7]. Another atlas-based amyloid PET quantification study reported
a high correlation and low average error compared with the magnetic resonance imaging
(MRI)-based method but atlas-based methods have a risk of non-optimal calculation in
case of severe brain atrophy [8]. Meanwhile, a deep learning-based PET-only quantifi-
cation method provided a low mean absolute error compared to a MR-based method
using FreeSurfer, but the variability of the bias seemed dependent on the magnitude of the
amyloid burden [9]. Considering these previous studies, the MR-based method is still most
reliable for amyloid PET quantification. For amyloid PET quantification to be introduced
into clinical practice, it is necessary to develop a reliable SUVR calculation algorithm while
significantly reducing the computing time required for the MR-based method.

In this study, we describe a deep-learning-based approach for automated PET image
processing analysis. The processing pipeline has been carefully designed to extract clinically
relevant outputs from PET. The proposed approach utilized attention-based U-Net to obtain
structural information of MRI for PET images. We hypothesized that the proposed method
effectively identifies PET outcomes that are compatible with other tools used in the field,
which are PMOD and PETSurfer. The performance of the developed pipeline has been
evaluated based on multiple criteria: (1) our in-house dataset was used to compare our
performance with existing technologies; (2) an open-source dataset was further utilized to
assess the performance to distinguish amyloidosis-positive and negative groups using our
proposed approach.

2. Materials and Methods
2.1. Dataset
2.1.1. In-House Dataset

We used our in-house dataset collected from the Yeouido St. Mary’s Hospital, the
Catholic University of Korea. The study involved used 218 subjects with 135 subjects
belonging to the amyloidosis-negative group and 83 subjects belonging to the amyloidosis-
positive group. Amyloidosis was determined by a nuclear medicine physician with more
than 10 years of experience using a visual rating. The dataset was approved by the
institutional review board of Yeouido St. Mary’s Hospital, the Catholic University of Korea
(no. SC18RNDI0070). The paired flutemetamol PET and MRI was used in this study. The
demographic characteristics of the study subject are presented in Table 1.
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Table 1. The demographics of the amyloidosis-positive and negative groups. Mean (standard
deviation) or percentage with the number of the subject N are reported. p-value was calculated
from the t-test between two groups of in-house dataset. Note that the two subjects of YC and one
subjects of AD in Centoloid dataset refused the APOE gene test. In the clinical dementia rating score
of Centoloid dataset, the AD subject was in range of 0.5–1.

Amyloidosis Group Centiloid Dataset
Negative Positive YC AD
(N = 135) (N = 83) p-Value (N = 34) (N = 47)

Age, years 71.9 ± 10.4 77.1 ± 6.9 <0.001 31.5 ± 6.3 67.5 ± 10.5
Female, %(N) 73.3 (99) 67.5 (56) 0.439

APOE ε4 carriers, %(N) 16.3 (22) 47.0 (39) <0.001 25.0 (8) 64.0 (28)
Clinical Dementia Rating sum of Box 1.4 ± 1.9 2.7 ± 3.0 0.001

Clinical Dementia Rating 0.3 ± 0.3 0.6 ± 0.5 <0.001 0.5–1
Education, years 11.0 ± 4.7 10.9 ± 5.1 0.911

ADL 0.5 ± 1.8 0.9 ± 3.3 0.380
IADL 5.5 ± 7.2 9.3 ± 8.8 0.002

Positive and negative, amyloidosis existent and no-existent group. p-value, t-test or χ2 test for positive and negative
groups, where applicable.

A dedicated PET/computed tomography (CT) scanner, Biograph 40 TruePoint (Siemens
Medical Solutions, Erlangen, Germany) was used to obtain the flutemetamol PET/CT scans.
The CT scans were acquired for attenuation correction before the PET scans. Static PET
scans were acquired from 90 to 110 min after 185 MBq of flutemetamol injection. Reconstruc-
tion of a static image with the 2D-ordered subsets maximization expectation method with
two iterations for 21 subsets of reconstruction was applied. The matrix size was 256 × 256,
and the voxel size was 1.3364 × 1.3364 × 3 mm3. The MRI was acquired by a 3.0-T scanner
MAGETOM Skyra machine equipped with an eight-channel Siemens head coil (Siemens
Medical Solutions, Erlangen, Germany). T1-weighted volumetric magnetization-prepared
rapid gradient echo scan sequences were obtained with the following parameters: echo
time (TE), 2.6 ms; recovery time (TR), 1940 ms; inversion time, 979 ms; field of view (FOV),
230 mm; matrix size, 256 × 256; and voxel size, 1.0 × 1.0 × 1.0 mm3.

2.1.2. Public Dataset: Centiloid Project

In addition, we utilized a public dataset from the Centiloid project [10]. This project
aimed to standardize of PET image analysis to reduce issues arising from multiple sites,
ligands, acquisition times, reference regions, etc. To this end, the data of 34 subjects of young
controls (YC) (under 45 ages) and 47 subjects diagnosed with AD (between 50 and 89 years)
from several centers were collected. For the Centiloid projects, the Pittsburgh compound-B
(PiB) was injected into the subject, and the image was acquired after 50–70 min. A summary
of the Centiloid dataset is also observed in Table 1 and the detailed information about the
Centiloid project dataset and demographic information can be found in [10], respectively.

2.2. PET Image Interpretation

For the in-house dataset, the flutemetamol PET interpretation was blinded and inde-
pendent from patient’s clinical information by a nuclear medicine physician. PET images
were visually interpreted using a color scale of the rainbow that adjusts to pons activity of
90% maximum intensity and minimum intensity to zero. A binary interpretation was made
as positive or negative by comparing the intensities of gray matter and adjacent white
matter in five regions of frontal lobes, posterior cingulate and precuneus, lateral temporal
lobes, inferolateral parietal lobes, and striatum. If any of those five regions showed iso- or
higher uptake intensity in the gray matter than the adjacent white matter, the entire scan
was interpreted as a positive scan. A cut-off value for quantitative analysis of SUVR 0.61
was used when the pons as a reference region [11].
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2.3. Processing Pipeline

Our proposed PET processing pipeline comprises four steps: (1) MRI processing,
(2) MRI-PET co-registration, (3) partial volume correction, and (4) quantification. Our
pipeline is illustrated in Figure 1. We segmented the MRI in individual space using a well-
constructed deep learning algorithm. Due to the deep learning segmentation model [12],
our approach showed rapid segmentation. Specifically, there is no registration step for
the MNI space, namely, standard space mapping for applying a pre-defined brain atlas.
Based on this advantage, our pipeline provides an efficient and fast way to fit amyloid
PET images.

T1 Image

PET Image

Preprocessing

Co-registration

Mask GenerationSegmentation ROI Selection

PVC SUVR Calculation

ROI 1 ROI 1 ROI n-1ROI n⋯

⋯

Figure 1. Overview of our proposed PET image processing pipeline. Our proposed pipeline comprises
four steps. Step 1 is MRI processing with preprocessing and deep learning-based segmentation. Step 2
is co-registration with preprocessed MRI and PET. Step 3 is partial volume correction (PVC) of PET
image. Finally, Step 4 is SUVR quantification from PET.

2.3.1. MRI Preprocessing and Segmentation

We leveraged the structural information based on MRI for PET image quantification
and subsequent to analysis. In the previous researches, they analyzed the PET image of the
subject by transforming it to the pre-defined general template in the common space [13];
thus, it was time-consuming. To overcome this issue, we used a deep learning network
for brain segmentation to obtain the region-of-interest (ROI) in individual space. A U-Net-
based model using a split-attention mechanism [12] was employed for brain segmentation
in a subject-specific manner. The authors reported the superior performance with efficient
running time using the U-Net with region-wise attention module. To apply the image to
the network, we performed image to re-sampling and re-orientation with a voxel size of
1 × 1 × 1 mm3 and a right-anterior-superior (RAS) orientation. Using the deep learning
model, we obtained 97 ROIs in the brain of each subject.

2.3.2. Co-Registration

For the quantification of the amyloid burden in ROIs based on the MRI, we performed
co-registration of PET and MRI. Thus, the uptake volume of amyloid was captured more
sensitively by combining the MRI and PET images [14]. For the co-registration, we used
the rigid-body linear transformation for PET-MRI registration by minimizing the mutual
information based on the method of Mattes et al. [15]. To converge the algorithm, we
utilized the gradient descent optimizer with golden-line search methods. In addition, we
used linear interpolation for image estimation. By doing this, both the MRI and PET images
were positioned in subject-specific space with isotropic volume and RAS orientation. All
algorithms were implemented using SimpleITK [16].
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2.3.3. Partial Volume Correction

In the PET image, partial volume effect (PVE) due to the poor resolution in limitation
of the image scanner was observed [17]. Due to the PVE of the PET images, the intensity
of each voxel reflected information for that voxel and neighboring voxels [17,18]. In
consequence, the PVE could lead to bias from inaccurate results. To reduce PVE, we
conducted partial volume correction (PVC) using a geometric transfer matrix (GTM). We
applied GTM to the PET image using the individual ROI mask obtained from the MRI
segmentation. For the implementation of PVC, we used the PETPVC toolbox [19]. The
point spread function of 2 full-width half-maximum was used to apply the PVC to the
in-house dataset. The PVC in our study was not part of the Centiloid dataset.

2.3.4. SUVR Quantification

After PVC, we quantified the PET image based on 97 ROIs from the MRI using the
standardized uptake value ratio (SUVR). SUVR is popular for quantifying PET images to
compare the inter-subject and intra-subject levels [20]. To measure SUVR, we merged 97 re-
gions into five wide regions (frontal lobes, anterior/posterior cingulate, lateral temporal
lobes, lateral parietal lobes, and striatum) according to [21]. Since the number of subregions
was different for each of the five regions, we calculated SUVR based on the weighted mean.
Additionally, the SUVR was required to reference the region showing a stable degree of
PET tracer. In this study, we used the pons as the reference region [11]. Based on these
regions, we calculated the SUVR using following the equation [21]:

SUVRn =
∑N

n MEAN(In) ∗ Vn/ ∑N
n Vn

MEAN(Ipons)
, (1)

where N is the number of ROIs and I denotes the intensity of n-th ROI. Vn is the volume of
n-th ROI.

2.4. Comparative Experiments

To validate our proposed PET processing pipeline, we compared it with the conven-
tional processing tools which are PETSurfer [13,22] and PMOD (PMOD Technologies Ltd.,
Zürich, Switzerland). Each toolbox was applied to the same in-house dataset. Subsequently,
we visually checked the registration and segmentation results for their usability; thus, the
images showing poor results were excluded from our analysis.

2.4.1. PETSurfer

PETSurfer is a widely-used open-source software for the analysis of PET images.
PETSurfer performs PET processing by utilizing segmentation results from FreeSurfer,
involving registration into the MNI space. PETSurfer provides PVC using GTM methods
for PVE. After segmentation and registration, PETSurfer automatically calculates the SUVR
values with pons as a reference region, volume size in the region, voxel variance, etc. Using
the output file of PETSurfer, we calculated the merged five regions with Equation (1).

2.4.2. PMOD

We used the PNEURO tool in PMOD as another comparison method. PMOD’s
PNEURO has the following steps for automated PET analysis. First, the MRI is seg-
mented into grey matter, white matter, and cerebrospinal fluid. After generating a tissue
probability map, the MRI and PET images are co-registered in the same space. Third, the
MRI are spatially normalized to the MNI space to apply them to the pre-defined brain
atlas. Subsequently, the PET image is registered using the transform matrix obtained by
MRI-MNI registration. We obtained the SUVR results of each ROI from the PET image
using the automated anatomical labeling (AAL) atlas. However, the ROI of the AAL atlas
was not matched to our ROIs and the PETSurfer ROIs. Therefore, we re-defined the merged
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five regions to suit the AAL atlas. The defined regions are represented in Table A1. Finally,
as with other tools, PVC was also performed with the GTM method in PMOD.

2.5. Performance Evaluation

We evaluated the performance of the three tools and compared their results for their
reliability and consistency. At first, we compared the SUVR of the positive and negative
groups using both the in-house and open-source datasets with t-test. Second, we compared
the reliabilities across the three tools using intra-class correlation coefficients (ICC) [23,24].
Third, we used the Bland–Altman plot [25] to visualize the degree of agreement between
the three tools. Lastly, we conducted the classification using the in-house dataset to
compare three tools. In the statistical test, a p-value of <0.001 was set to denote statistical
significance. All the analyses were performed using R and the Python library. In addition,
we reported the processing time and the failure rate of the processing for comparison
methods. We calculated the average duration of processing for all subjects to access these
validations. Regarding the failure rate of tools, the images were confirmed to evaluate the
accuracy visually.

3. Results
3.1. Subject Demographic

The demographics characteristics of the subjects are shown in Table 1. A total of
218 PET scans paired with T1 MRIs of the subject were analyzed. The amyloidosis positive
participants accounted for 38.1% (n = 83) of all the participants. As shown in the Table 1, the
APOE ε4 and clinical dementia rating were statistically significant. However, there were no
statistical differences in education, sex, activities of daily living (ADL), and instrumental
activities of daily living (IADL).

3.2. SUVR of Amyloid PET from Positive vs. Negative
3.2.1. In-House Dataset Investigation

The comparison of the results of the SUVRs of the amyloidosis-positive and negative
groups for the five ROIs and the global region are shown in Table 2. In general, the
mean SUVR using our proposed method was between those of PETSurfer and PMOD. For
example, the global SUVRs using the proposed method were 0.82 and 0.50 for positive
and negative groups, respectively, which were higher than PETSurfer (0.78, positive; 0.45,
negative) and lower than those of PMOD (0.84, positive; 0.52, negative). The trend cut
across all the five sub-structures we investigated including frontal, anterior-posterior
cingulate, lateral parietal, lateral temporal, and striatum. We also used t-test to compare
the SUVR measurements by the three for any statistically significant mean difference for
the clinical groups in general population. As shown in the table, we observed that all
three methods successfully identified significant differences across the two clinical groups
(p-value < 0.001).

Table 2. Mean SUVR and standard deviation for the three tools (Proposed, PETSurfer, and PMOD)
are summarized for 218 participants using flutometamol PET scans.

Proposed PETSurfer PMOD

Positive Negative p-Value Positive Negative p-Value Positive Negative p-Value

Frontal 0.84 ± 0.15 0.49 ± 0.04 <0.001 0.81 ± 0.16 0.46 ± 0.05 <0.001 0.85 ± 0.15 0.56 ± 0.04 <0.001
A.P. cingulate 0.87 ± 0.15 0.52 ± 0.05 <0.001 0.84 ± 0.14 0.49 ± 0.05 <0.001 0.90 ± 0.15 0.53 ± 0.05 <0.001

Lateral parietal 0.83 ± 0.18 0.50 ± 0.05 <0.001 0.79 ± 0.17 0.45 ± 0.05 <0.001 0.86 ± 0.17 0.50 ± 0.06 <0.001
Lateral temporal 0.76 ± 0.15 0.47 ± 0.04 <0.001 0.70 ± 0.15 0.42 ± 0.05 <0.001 0.81 ± 0.16 0.51 ± 0.05 <0.001

Striatum 0.75 ± 0.12 0.53 ± 0.04 <0.001 0.72 ± 0.14 0.49 ± 0.04 <0.001 0.79 ± 0.12 0.57 ± 0.04 <0.001
Global 0.82 ± 0.15 0.50 ± 0.04 <0.001 0.78 ± 0.15 0.45 ± 0.05 <0.001 0.84 ± 0.15 0.52 ± 0.04 <0.001

Positive, amyloidosis existent group; Negative, denotes no amyloidosis group; A.P., Anterior/posterior. p-value,
t-test between positive and negative groups of amyloidosis.
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3.2.2. Centiloid Dataset Investigation

To validate the performance of our proposed approach, we additionally compared
SUVR between positive and negative groups using the Centiloid dataset. The results are
shown in Table 3. Similar to the amyloidosis group results above, the SUVR obtained from
our pipeline showed a significant difference (p < 0.001) between the AD and YC groups
for all five subregions and global measures.

Table 3. Averaged SUVR of the Centiloid dataset with p-value.

YC AD p-Value

Frontal 0.66 ± 0.06 1.28 ± 0.14 <0.001
A.P. cingulate 0.74 ± 0.07 1.38 ± 0.12 <0.001
Lateral parietal 0.68 ± 0.06 1.27 ± 0.15 <0.001
Lateral temporal 0.63 ± 0.06 1.19 ± 0.16 <0.001
Striatum 0.74 ± 0.05 1.24 ± 0.14 <0.001
Global 0.67 ± 0.06 1.26 ± 0.14 <0.001

A.P. denotes anterior posterior. AD is Alzheimer’s disease. YC is young control.

3.3. SUVR Correspondence between the Proposed Method, PMOD, and PETSurfer

The correspondence between three technologies was compared using ICC and Bland–
Altman plots for their reliability and agreements. The 218 in-house data reported in the
previous section were utilized, and the results were described as follows:

Intra-class correlations coefficient: The ICC results are reported in Figure 2 and
Table 4. All the comparative results for the three tools showed excellent ICC as shown in
Table 4 and based on criteria suggested in [26] (>0.9, excellent). Specifically, all the regions
showed ICC values greater than 0.9 except for the lateral temporal lobe (ICC = 0.86) the
striatum (ICC = 0.82) between PETSurfer and PMOD.

Table 4. Intra-class correlation coefficient (ICC) for three methods, PETSurfer, PMOD, and our
proposed method. The paired ICC values are shown.

Absolute Consistency
ROI ICC (L, U) ICC (L, U)

PETSurfer vs. PMOD Global 0.94 (0.03, 0.99) 0.99 (0.99, 0.99)
Frontal 0.96 (0.16, 0.99) 0.99 (0.99, 0.99)
Lateral Parietal 0.95 (0.43, 0.98) 0.98 (0.97, 0.98)
Lateral Temporal 0.86 (−0.03, 0.96) 0.98 (0.97, 0.98)
A.P. Cingulate 0.96 (0.47, 0.99) 0.99 (0.98, 0.99)
Striatum 0.83 (−0.04, 0.96) 0.97 (0.96, 0.98)

Proposed vs. PETSurfer Global 0.97 (0.14, 0.99) 1.00 (0.99, 1.00)
Frontal 0.98 (0.50, 1.00) 1.00 (0.99, 1.00)
Lateral Parietal 0.96 (0.17, 0.99) 0.99 (0.99, 0.99)
Lateral Temporal 0.94 (0.01, 0.99) 0.99 (0.99, 0.99)
A.P. Cingulate 0.98 (0.62, 0.99) 0.99 (0.99, 1.00)
Striatum 0.95 (0.42, 0.99) 0.98 (0.98, 0.99)

Proposed vs. PMOD Global 0.99 (0.88, 1.00) 1.00 (0.99, 1.00)
Frontal 0.99 (0.93, 1.00) 1.00 (0.99, 1.00)
Lateral Parietal 0.98 (0.98, 0.99) 0.98 (0.98, 0.99)
Lateral Temporal 0.96 (0.52, 0.99) 0.99 (0.98, 0.99)
A.P. Cingulate 0.99 (0.98, 1.00) 0.99 (0.99, 1.00)
Striatum. 0.94 (0.02, 0.98) 0.99 (0.99, 0.99)

Bland–Altman plot: The Bland–Altman plots are visualized in Figures 3 and 4. As
shown on the left of Figure 3 for negative subjects, the mean difference between the
proposed method and PETSurfer was 0.04 (95% limits of agreement; LOA: −0.01, 0.08).
For the results of the proposed method and PMOD, the mean difference was −0.02 (95%
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LOA: −0.07, 0.03). Regarding the positive subjects in Figure 4, the mean difference between
the proposed method and PETSurfer in the left plot of the figure is 0.04 (95% LOA: 0.01,
0.07). On the other hand, the mean difference between the proposed method and PMOD
is −0.02 (95% LOA: −0.04, 0.00). All regions of the Bland–Altman plot are represented in
Figures A1–A4.

Figure 2. Intraclass correlation for PETSurfer, PMOD, and the proposed method. Dashed line shows
that the ICC value is 0.75.

Figure 3. Bland–Altman plot of the proposed method, PETSurfer, and PMOD for the global region of
amyloidosis-positive subjects.
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Figure 4. Bland–Altman plot of the proposed method, PETSurfer, and PMOD in the global region of
amyloidosis-negative subjects.

3.4. Amyloid Classification with Cut-Off Value

We carried out the classification using the cut-off value (>0.61) based on the pons as
a reference region to evaluate the ability to identify the subject of our proposed pipeline.
To perform the classification, we defined the target and prediction labels using our in-
house dataset. For the prediction label, if the global SUVR was higher than 0.61, we set
the label as 1. By contrast, if the global SUVR was lower than 0.61, we set the label as
0. For the ground truth (target label), we used mentioned earlier binary visual scoring
results by the expert. Based on this, we calculated the AUC, accuracy (ACC), sensitivity
(SEN), and specificity (SPEC). The results are represented in Table 5. As shown in the table,
we observed that the SUVR value for each method was precisely identified between two
groups (positive vs. negative) by achieving the promised performance in four metrics.
Specifically, our proposed pipeline and PMOD showed a higher specificity than sensitivity.
Unlike our results and those of PMOD, PETSurfer showed a the higher sensitivity than
specificity. In addition, the AUCs of the three tools were above 0.95 and similar.

Table 5. Classification results of three tools. ACC, SEN, and SPEC denote accuracy, sensitivity, and
specificity, respectively.

AUC ACC SEN SPEC

Proposed 0.9593 0.9633 0.9412 0.9774
PETSurfer 0.9652 0.9587 0.9868 0.9437

PMOD 0.9553 0.9587 0.9405 0.9701

Processing Time and Failure Rate

The processing time was determined based on the average time subject-by-subject.
The results are summarized in Table 6:

Table 6. Results of processing time and failure rate.

Processing Time Failure Rate (%)

Proposed 14.8 min ± 1.0 min 1.2
PMOD 45.7 min ± 4.3 min 8.7
PETSurfer 23.5 min ± 3.0 min 0.4

PMOD and PETSurfer take approximately 45.7 and 23.5 min to perform registration,
segmentation, and PVC. Of note, the time taken by PETSurfer was used only for PET image
processing. PETSurfer was required Freesurfer before processing. It could take about 12 h.
By contrast, our proposed method process takes approximately 14.8 min. It is faster than
other tools.
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The processing failure rate was calculated based on the visual check. Specifically, we
confirmed how well-paired images co-registered regardless of comparative tools. First, we
counted the completely failed registration pair. Second, we divided the failure case subject
for each tool. Lastly, each tool’s failure rates were calculated for the entire dataset. The
results are represented in Table 6. For our proposed pipeline, the image of a subject was
not registered, thus the failure rate was 1.2% (3/239). For PETSurfer, the failure rate was
0.4% (1/239). For PMOD, the failure rate was higher than those of other comparative tools;
the images of 21 subject were not registered. The failure rate of PMOD was 8.7% (21/239).

4. Discussion

In this study, we described a deep-learning-based approach for PET image analysis and
compared its performance with those of two well-known tools in the field, PETSurfer and
PMOD. Our investigation showed a high correspondence between our proposed method
and the two other methods in computing SUVR values for flutometamol for the general
population and for Pittsburgh compound-B for the Centiloid dataset. The correspondence
of our proposed method to PMOD was higher than that to PETSurfer in general, though
the overall classification accuracies were similar. The Bland–Altman plot showed that
our measurements were in reasonable agreement. Our investigation indicated that our
proposed method can evaluate clinically relevant SUVR values and is compatible with
other widely used tools in the field.

Our ICC investigation showed excellent agreement across the three methods in general.
The ICC greater than 0.75 was a bottom cutoff suggested by Shrout and Fleiss [24] for
two raters are on agreement. Our results indicated that any two methods were in good
agreement as suggested by Shrout and Fleiss [24]. Among those, the striatum and lateral
temporal regions presented a slightly lower agreement and reliability than PETSurfer and
PMOD than other results (still much higher than 0.75). These relatively lower ICC values in
the striatum can be attributed to several factors. One factor is the imperfect segmentation
of the striatum. Since the striatum consists of putamen and caudate, which is a mixture of
white and gray matter, segmentation can be very challenging. In the previous literature,
the study reported that the SUVR for the deep brain structures, e.g., the caudate and
putamen, were easily affected by the quality of the segmentation algorithm than the cortical
regions [27]. The other previously published study evaluated that the PVC results are
dependent on the segmentation results for structure information from MRI [28]. Another
explanation is that it is more difficult for flutemetamol to detect the amyloid burden than
the other ligand [29] in the striatum. This may also be the reason for the lower ICC in the
striatum. Regarding the lateral temporal regions, atrophy could cause the lower ICC in
this region due to the smaller size in the lateral temporal lobe. According to the previous
report [30,31], the atrophy could result in inaccurate SUVR measurement by PVE. Because
part of our dataset includes memory deficit subjects with older age, excessive atrophy
might present in their brain. Additionally, the lateral temporal consisted of a few regions,
i.e., middle temporal and superior temporal. Since we calculated SUVR using the weighted
mean of those sub-regions, regions larger than lateral temporal area, which includes more
than two sub-regions, might be relaxed from the effect of atrophy by merging more regions.
Further studies are required for better understanding.

The Bland–Altman plot showed that the mean biases of our proposed pipeline with
PETSurfer and PMOD are only 0.04 and −0.02, respectively, for both amyloidosis-positive
and negative groups. Accordingly the absolute systematic error of the proposed method
with PETSurfer and PMOD is very small. The variability of bias is not dependent on
the magnitude of the amyloid burden. Therefore, the agreement of our method with
PETSurfer and PMOD is excellent. The SUVR values for the proposed method are almost
interchangeable with SUVR values from PMOD and PETSurfer, considering the very small
bias and similar classification performance with the same cutoffs between our proposed
method and PMOD or PETSurfer.
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Registration has been considered an important factor in having a precise SUVR [32].
To minimize effect of mis-registration for the comparison of SUVR across three tools,
we visually confirmed the registration results. We observed that PMOD had a higher
failure rate in registration than other tools, which were removed from our comparative
study. Please note that, while PMOD provides additional step solutions for re-aligning the
failed registration cases, such as the manual align option, the re-aligning was not tried in
this study.

Our proposed PET pipeline is faster than other toolboxes in the filed. Our study
demonstrates replaceable performance of our proposed method for clinical use. When com-
pared to other approaches, one main difference of our proposed method is the involvement
of the deep network approach for brain segmentation, which performed in one’s original
space. The deep-learning-based segmentation showed enhanced speed and comparable
results. In contrast, two previously developed technologies, i.e., PMOD and PETSurfer, uti-
lized the conventional segmentation method (voxel-based and surface-based). Additional
mapping to common space, which is the MNI space, for matching the pre-defined atlas or
regions is not required in our process. It can be inferred that individual-based segmentation
has fewer spatial deformations than conventional methods and is cost-effective.

Furthermore, our proposed deep-learning-based pipeline does not require additional
3D image processing. We engineered our segmentation pipeline utilizing deep learning
methods without any pre-processing, such as noise reduction and/or probability map
generation. Our pipeline without pre-processing steps reduces the processing time and
required resources and, thus, efficiently applicable to the conventional 3D PET imaging
analysis with less cost.

5. Conclusions

Brain amyloid PET has been widely used to diagnose Alzheimer’s disease. To better
quantify the PET imaging outcomes in clinical settings, several automated processing tool-
boxes were proposed. There is, however, still room for improvement, specifically regarding
the amount of resources needed for PET analysis. Therefore, to efficiently process the PET
images, we proposed a novel deep-learning-based PET analysis pipeline. In particular, we
leveraged the deep learning network for MRI brain segmentation. Then, co-registered PET
image was used to calculate the SUVR. The novel deep-learning-based approach for quanti-
tative analysis of amyloid PET imaging demonstrates reasonable performance comparable
to those of PETSurfer and PMOD. Our proposed pipeline can be used in the clinical setting,
with its reliable SUVR calculation, high classification accuracy, and faster computation
time. Our automated PET quantification method is expected to help the clinical decision by
providing reliable outcomes for PET in the relative field.
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Appendix A. Region Information

Table A1. ROI comparison between Freesurfer and AAL at the lobe level. rh and lh denotes the right
hemisphere and left hemisphere, respectively. A.P. cigulate means anterior posterior cingulate.

Freesurfer AAL

Frontal ctx-lh/rh-caudalmiddlefrontal Superior frontal gyrus, dorsolateral (left/right)
ctx-lh/rh-lateralorbitofrontal Superior frontal gyrus, orbital part (left/right)
ctx-lh/rh-medialorbitofrontal Middle frontal gyrus (left/right)
ctx-lh/rh-parsopercularis Middle frontal gyrus orbital part (left/right)
ctx-lh/rh-parsorbitalis Inferior frontal gyrus, opercular part (left/right)
ctx-lh/rh-parstriangularis Inferior frontal gyrus, orbital part (left/right)
ctx-lh/rh-rostralmiddlefrontal Rolandic operculum (left/right)
ctx-lh/rh-superiorfrontal Supplementary motor area (left/right)
ctx-lh/rh-frontalpole Olfactory cortex (left/right)

Superior frontal gyrus, medial (left/right)
Superior frontal gyrus, medial orbital (left/right)
Gyrus rectus (left/right)

A. P. cingulate ctx-lh/rh-caudalanteriorcingulate Anterior cingulate and paracingulate gyri (left/right)
ctx-lh/rh-isthmuscingulate Median cingulate and paracingulate gyri (left/right)
ctx-lh/rh-posteriorcingulate Posterior cingulate gyrus (left/right)
ctx-lh/rh-rostralanteriorcingulate

Lateral parietal ctx-lh/rh-inferiorparietal Superior parietal gyrus (left/right)
ctx-lh/rh-precuneus Inferior parietal, but supramarginal and angular gyri (left/right)
ctx-lh/rh-superiorparietal Supramarginal gyrus (left/right)
ctx-lh/rh-supramarginal Angular gyrus (left/right)

Precuneus (left/right)

Lateral temporal ctx-lh/rh-middletemporal Superior temporal gyrus (left/right)
ctx-lh/rh-superiortemporal Middle temporal gyrus (left/right)

Striatum subctx_lh/rh_caudate Caudate nucleus (left/right)
subctx_lh/rh_putamen Lenticular nucleus, putamen (left/right)
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Appendix B. Bland–Altman Plot
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Figure A1. Bland–Altman plot for amyloidosis-negative subject for the comparison of our proposed
method and PETSurfer. A.P. cigulate denotes anterior posterior cingulate regions.
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Figure A2. Bland–Altman plot for amyloidosis-positive subject for the comparison of our proposed
method and PETSurfer. A.P. cigulate denotes anterior posterior cingulate regions.
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Figure A3. Bland–Altman plot in amyloidosis-negative subject for the comparison of our proposed
method and PMOD. A.P. cigulate denotes anterior posterior cingulate regions.



Diagnostics 2022, 12, 623 16 of 18

D
iff

er
en

ce
 o

f P
ro

po
se

d 
an

d 
PM

O
D

Mean of Proposed and PMOD

Figure A4. Bland–Altman plot in amyloidosis-positive subject for the comparison of our proposed
method and PMOD. A.P. cigulate denotes anterior posterior cingulate regions.
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