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ABSTRACT
Quantifying the localization of molecules with respect to other
molecules, cell structures and intracellular regions is essential to
understanding their regulation and actions. However, measuring
localization from microscopy images is often difficult with existing
metrics. Here, we evaluate ametric for quantifying localization termed
the threshold overlap score (TOS), and show it is simple to calculate,
easy to interpret, able to be used to systematically characterize
localization patterns, and generally applicable. TOS is calculated by:
(i) measuring the overlap of pixels that are above the intensity
thresholds for two signals; (ii) determining whether the overlap is
more, less, or the same as expected by chance, i.e. colocalization,
anti-colocalization, or non-colocalization; and (iii) rescaling to allow
comparison at different thresholds. The above is repeated at multiple
threshold combinations to generate a TOS matrix to systematically
characterize the relationship between localization and signal
intensities. TOS matrices were used to identify and distinguish
localization patterns of different proteins in various simulations, cell
types and organisms with greater specificity and sensitivity than
common metrics. For all the above reasons, TOS is an excellent first
line metric, particularly for cells with mixed localization patterns.

KEY WORDS: Manders’ colocalization coefficient, Pearson’s
correlation coefficient, Co-occurrence, Colocalization,
Image analysis, Microscopy

INTRODUCTION
Quantifying the localization of proteins, RNAs and complexes
within cells can help determine their regulation and sites of action
(Bolte and Cordelieres, 2006; Dunn et al., 2011; Zinchuk et al.,
2007). Therefore, the development and evaluation of metrics to
quantify localization is an important and shared goal of many
different disciplines. Three common approaches to quantifying
localization are: (i) measuring the overlapping fraction of two
signals (Bolte and Cordelieres, 2006; Cordelieres and Bolte, 2014);
(ii) measuring the correlation or rank order correlation of pixel
intensities for two signals (Bolte and Cordelieres, 2006; French
et al., 2008); and (iii) identifying objects and determining their
fractional overlap or the distance separating them (Cordelieres and
Bolte, 2014; Lagache et al., 2015). These metrics and less common

alternatives (Zinchuk et al., 2007; Cordelieres and Bolte, 2014) have
been successfully used in many applications. However, there are
also many types of images and samples where the above metrics do
not perform well and their results are difficult to interpret
(Cordelieres and Bolte, 2014; Dunn et al., 2011; McDonald and
Dunn, 2013; Wu et al., 2010), inconsistent (Dunn et al., 2011), and/
or susceptible to arbitrariness and bias (Wu et al., 2010).

Metrics often encounter difficulty when images and samples
have: a signal of low intensity compared to background and non-
specific signals (Landmann, 2002; Dunn et al., 2011), a large
proportion of pixels with background or non-specific signals
(Dunn et al., 2011; Barlow et al., 2010), a nonlinear relationship
between two signals (Cordelieres and Bolte, 2014), or mixed
patterns of localization. Other important barriers to the use of some
metrics include: limited testing (and consequently researchers are
uncertain if the metric is suitable for their samples and
application), underlying assumptions that limit their general
application, and the need for customization or simulations that
require specialized knowledge and skills. All these issues are
common, resulting in researchers in many disciplines resorting to
qualitative (and often inaccurate) assessments of localization by
simply superimposing (or ‘merging’) images (Bolte and
Cordelieres, 2006; Dunn et al., 2011). No single metric or
analysis protocol will meet all requirements for all researchers
(Bolte and Cordelieres, 2006; Dunn et al., 2011), but clearly
additional tools to quantify localization are needed.

In this study we evaluated a metric for localization termed the
threshold overlap score (TOS), which measures the overlap in
signals above threshold intensity values. We use ‘localization’ and
‘localization pattern’ to refer to the measurement of overlap. If
the overlap is greater than, less than, or the same as expected by
chance then localization is categorized as ‘colocalization’, ‘anti-
colocalization’ or ‘non-colocalization’, respectively. The first part
of the study derives TOS and then describes a strategy of using it at
many combinations of thresholds to generate a TOS matrix that can
identify and distinguish features in mixed patterns of localization.
The second part of the study applies TOS analysis to simulated data
and experimental data obtained from public image repositories. The
latter showed that values from the TOS matrix can distinguish the
localization patterns of different proteins for a variety of cell types
and organisms, and that they can do so with greater specificity and
sensitivity than common metrics (Pearson’s correlation coefficient,
Manders’ colocalization coefficients, and Spearman’s rank
correlation coefficient).

RESULTS
Calculating the threshold overlap score (TOS)
The first step in calculating TOS is measuring the observed
fraction of pixels that exceed the threshold of one signal that also
exceed the threshold of a second signal (Fig. 1A). That is,
measuring the ‘fractional area of overlap’ (abbreviated to ‘AO’).Received 31 May 2016; Accepted 12 October 2016
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Instead of choosing thresholds by selecting specific values for the
intensities, which in turn specify fractions of pixels for signals 1
and 2 (FT1 and FT2, respectively), we directly chose these fractions
(following rank ordering of the pixels by intensity). This approach
of specifying thresholds in terms of selected fractions rather than
as values allows observed data from individual cells that have
different intensities and total numbers of pixels to be more easily
combined.

Therefore,

observed AO1 ¼ area above signals 1 and 2 thresholds

area above signal 1 threshold

and

observed AO2 ¼ area above signals 1 and 2 thresholds

area above signal 2 threshold
:

ð1Þ

Fig. 1. Calculating the threshold overlap score (TOS) and generating TOSmatrices. (A) Calculation of observed AO, expected AO, and AO ratio. Thresholds
are measured by the fraction of pixels with highest intensity in the cell, i.e. the ‘selected fraction’, which are FT1 and FT2 for signal 1 and 2, as explained in the main
text. (B) Diagram showing maximum, minimum and expected AO ratios as a function of the threshold for signal 1, i.e. FT1 is varied and FT2 is fixed.
Note: expected AO ratio is for the null distribution. (C,D) Threshold overlap score (TOS) is obtained from the AO ratio by rescaling linearly (or logarithmically) so the
maximum, minimum and null values are +1, −1 and 0 for all selected fractions. (E) TOS matrix generated by simulating a uniform distribution for all threshold
combinations (n=500 for each selected fraction). As predicted, the observed AO values for the simulated uniform distribution are close to the expected AO
values therefore the AO ratio is ≈1 and TOS is ≈0 at all threshold combinations. (F) Thresholds can affect quantification and characterization of localization.
Hypothetical cells with mixed intracellular localization patterns for two signals (S1 and S2). Cells have uncorrelated off-target signals and negatively correlated
on-target signal. Note: although the off-target signals appear uniform, the signals have variation as shown in the scatterplots. Scatterplot to the left shows that
the determination of the localization pattern depends on the threshold selected. Thresholds at low signal intensities (FT1a and FT2a) will measure localization of
both off-target and on-target signals and together they have a net positive correlation as shown by the green arrow (i.e. colocalization). Thresholds at high
intensities (FT1b and FT2b) will measure localization of only the on-target signal, which has a negative correlation (i.e. anti-colocalization).
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The second step is normalizing the observed AO1 and AO2 by the
expected AO1 and AO2 (for uniformly distributed random signals),
which are equal to FT2 and FT1 respectively, resulting in the AO ratio
(Fig. 1A). Because it may seem counterintuitive that AO1 and AO2

are normalized by the threshold of the other signal, we consider the
example of a cell with 100 pixels and selected fractions for signal 1
and 2 of 50% (FT1=0.5) and 10% (FT2=0.1), respectively. In this
example, 50 and 10 pixels are selected for signals 1 and 2,
respectively. If the selected pixels for signal 1 are uniformly
distributed throughout the cell then half of them would be expected
to overlay the selected pixels for signal 2 (irrespective of their
distribution), which is 5 pixels. For the selected pixels of signal 1,
this expected 5 pixel overlap represents 0.1 of them (i.e. 5 out of 50),
which is equal to the selected fraction for signal 2 (FT2) as stated
above. This normalization assumes a null distribution with pixel
intensity values uniformly distributed across the cell and
independent. Note: the point spread function with autocorrelation
between pixels does not alter the predicted value but it does affect its
variance (Dunn et al., 2011). From Eqn 1,

AO ratio ¼
area above signal 1 and 2 thresholds

area above signal 1 threshold � area above signal 2 threshold

:

ð2Þ
The AO ratio has the same value when calculated from the observed
AO1 or AO2. The AO ratio ≈1, >1 or <1, when the pixels above the
threshold of each signal overlap by the same, greater than, or less
than the null distribution. The minimum AO ratio depends on
FT1+FT2 (Fig. 1B). If FT1+FT2 ≤1, the minimum AO ratio can be
zero because it is possible for the selected pixels for each signal to
not overlap. Note: the AO ratio is never undefined because both FT1
and FT2 >0. However, if FT1+FT2 >1, the minimum AO ratio cannot
be zero because it is impossible for the selected pixels for each
signal to overlap less than the sum of FT1+FT2–1. The maximumAO
ratio also depends on FT1 and FT2 (Fig. 1B). Specifically, the
maximum occurs when the smaller of the selected fractions
completely overlaps the larger.

Minimum AO ratio ¼
FT1 þ FT2 � 1

FT1 � FT2
;when FT1 þ FT2 . 1

0 ; when FT1 þ FT2 � 1

8<
:

ð3Þ
Maximum AO ratio ¼ minimum fFT1;FT2g

FT1 � FT2
: ð4Þ

The limits are 0 and 1 for the minimum AO ratio and 1 and +∞ for
the maximum AO ratio. When the AO ratio=1, the observed overlap
is the same as expected for the null distribution.
The third step is rescaling AO ratios so they can be compared for

different thresholds (Fig. 1C). This is necessary because the AO
ratio depends on the product of FT1 and FT2 (see Eqns 2-4). For
example, an AO ratio with 100% overlap will be 2 or 10 depending
on whether 50% or 10% of the pixels are selected for both signals.
Another reason for rescaling is the inherent asymmetry of ratios.
Quadrupling the numerator increases the AO ratio from 1 to 4 while
quadrupling the denominator decreases it from 1 to 1/4; the latter is
a much smaller absolute change. One approach to rescaling is to
logarithmically transform the data, which has some advantages (see
Supplementary information) but the rescaled values are not easily
interpreted. We found that a simple linear rescaling also works well
and the results are far easier to interpret.

Linear rescaling generates a metric called the threshold overlap
score (TOS). TOS rescales the AO ratios so they have a range from
-1 to +1 for all thresholds and have a value of 0 when the observed
overlap is exactly the same as expected for the null distribution
(Fig. 1D).

TOS ¼

0, when AO ratio ¼ 1
1� AO ratio

minimumAO ratio� 1
, when AO ratio , 1

AO ratio� 1

maximumAO ratio� 1
, when AO ratio . 1:

8>>><
>>>:

ð5Þ

The magnitude of TOS reflects how much the overlap lies
between the null hypothesis and the maximum or minimum
values; for example an absolute value of TOS=0.9 is nine tenths
from the null distribution to the maximum or minimum possible
overlap.

It is helpful to divide the spectrum of possible TOS values into
categories of ‘colocalization’, ‘anti-colocalization’ and ‘non-
colocalization’. In doing so, it is important to recognize that TOS
values may be too small to be biologically relevant (Martinez-
Abrain, 2008; Lovell, 2013) even if they show statistically
significant differences from the null distribution. It is also not
useful to define non-colocalization as exactly equal to zero because
very few samples would be in this category. For these reasons, we
recommend defining non-colocalization as a range of values, e.g.
TOS between -0.1 and +0.1. A practical advantage of defining
non-colocalization as a range is that a ‘true’ non-colocalized pattern
can be consistently referred to as such, rather than as ‘weak
colocalization’ in one measurement and ‘weak anti-colocalization’
in another due to measurement error and randomness in biological
variation. It must be stressed that these bounds are for the
convenience of interpretation and do not affect the analysis itself,
and that the definition of non-colocalization should be guided by the
design and purpose of the study.

Generating TOS matrices
One of the most difficult aspects of measuring localization is
selecting the thresholds (Bolte and Cordelieres, 2006). Thresholds
can affect the contribution to the analysis of background signals
from the imaging system (if it is not subtracted) and from cells (e.g.
autofluorescence) and low intensity signals from unbound or non-
specifically bound fluorescent, chemiluminescent or colorimetric
probes or stains. These low intensity signals, which we refer to as
non-specific or ‘off-target’ signals, typically have higher intensity
than background signal but lower intensity than ‘on-target’ signals
where the probe or stain has localized to the biological target.
Separating background and off-target signals is often difficult, and it
is typically more important to distinguish both of them from on-
target signals. Even if there is no background and off-target signals,
threshold selection can affect quantification of localization.
Therefore protocols have been developed to make threshold
selection less arbitrary (Bolte and Cordelieres, 2006; Costes et al.,
2004) but they do not always function well, especially when on-
target signals are anticorrelated or the background and off-target
signals are high or correlated (Dunn et al., 2011). Furthermore, cells
often have mixed localization patterns making the evaluation of
localization at a single set of thresholds, no matter how they are
chosen, an inaccurate ensemble description of localization. Based
on all the above, we chose to systematically calculate TOS at many
different thresholds resulting in a TOS matrix, which can be viewed
as a heat map (Fig. 1E). As will be shown below, the TOSmatrix can
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reveal trends between localization and signal intensity, and allow
the identification of multiple localization patterns within cells
and organisms.
ATOSmatrix can in theory be generated by taking any number of

combinations of thresholds for each channel, ranging from a single
set of thresholds to a set of thresholds from every different pixel
intensity value in a cell. The former would create a matrix with one
element and the latter would create a matrix with up to N2 elements,
where N is the total number of pixels in the cell. While having the
maximum number of combinations will give maximum resolution,
creating it for every cell would be problematic for many reasons
including: (i) being too computationally intensive; and (ii) resulting
in different sized TOS matrices for each cell (because they have
different numbers of pixels), whichmakes it harder to combine them
(see below). It must also be kept in mind that if thresholds are taken
at the very highest and lowest selected fractions there may be too few
overlapping or non-overlapping pixels respectively for statistical
significance unless large numbers of cells are measured. Note: a
priori statistical power can be estimated with standard parametric
tests and then increased by up to 15% to account for post hoc non-
parametric tests having less power (Hodges and Lehmann, 1956;
Clifford Blair et al., 1980). While the highest thresholds will select a
lower number of pixels, these pixels will have the highest numbers
of reporter molecules (hence the higher intensity signal) and thus
tend to have a lower coefficient of variation.
We chose an intermediate number of threshold combinations

(specifically 81 combinations) and found that it gave more than
adequate resolution to detect different patterns of localization in
our simulations and the experimental data we analyzed (see
below). These threshold combinations were nine selected fractions
for signals 1 and 2 (FT1 and FT2) from 0.9 to 0.1 in increments of
0.1. Initially, 10% of pixels with the lowest intensity pixels are
removed from both signals (leaving a selected fraction of 90% of
the pixels; i.e. FT1 and FT2=0.9), then 20% of the lowest intensity
pixels in the entire cell are removed for one or both signals
(leaving a selected fraction of 80% for signal 1 or 2), and so on,
until 90% of the lowest intensity pixels in the entire cell are
removed for one or both signals (leaving a selected fraction of
10% for signal 1 and 2). Note: FT1 and FT2=1 were not included
in the analysis because these selected fractions correspond to
100% of the pixels in the cell therefore all selected pixels must
overlap and TOS=0.
It can be necessary and convenient to extract values from TOS

matrices that quantify specific features of mixed localization
patterns, and three values that were found to be especially useful
were (see below): (i) TOS at the highest thresholds (TOSh), which
correspond to the lowest selected fractions (Fig. 1F); (ii) the
maximum TOS in the matrix (TOSmax), which if >0 specifies
thresholds with maximum colocalization; and (iii) the minimum
TOS in the matrix (TOSmin), which if <0 specifies thresholds with
maximum anti-colocalization. TOSh was chosen because many
analyses will want to specifically measure the localization pattern
of the on-target signal, which will usually be most separated from
any background and off-target signals at the highest intensity
values (see data below). If the localization pattern is similar at all
intensities or the localization pattern of the pixels with the highest
signal intensity is not reflective of the biology (including signal
due to noise) then a lower threshold should be selected. Other
criteria could also be used to select values from the TOS matrix
(see Discussion) and their selection should be guided by the
experimental system, biological questions, and the heterogeneity
of the data.

Interpretation of TOS analysis in samples with mixed
localization patterns
We simulated cells to demonstrate how TOSmatrices can appear with
mixed patterns of localization. The simulated cells had two
subpopulations of pixels, which for simplicity had equal counts and
uniformly distributed random noise [range 0 to 1×104 arbitrary units
(a.u.)]. Population 1 was either positively correlated, uncorrelated, or
negatively correlated for signals 1 and 2 (scatterplots, Fig. 2A-C) and
population 2 always had uncorrelated signals 1 and 2 (scatterplots,
Fig. 2A-C). The two populations initially overlay one another
(mean=6.5×104 a.u. for both signals; middle scatterplots in Fig. 2A-C).
The mean of population 1 or 2 was decreased in 40 equal increments
[until the mean=2.5×104 a.u. (left and right scatterplots, Fig. 2A-C)].
The population with the lower intensity signal can be considered to
represent background and off-target signals and the population with
the higher intensity signals can represent the on-target signal. Note:
the absolute values and units of pixel intensity are not important
because the pixels are rank ordered according to intensity and
thresholds are a selected fraction of the pixels rather than values.

For every cell we calculated a TOS matrix. But only those cells
where populations 1 and 2 are at their lowest and highest mean
intensities (lower left and lower right in Fig. 2A-C), and where
populations 1 and 2 maximally overlay each other (lower center in
Fig. 2A-C) are displayed as heat maps. Visual inspection of the TOS
matrices shows the upper right corner accurately reflects whether
pixels with the highest intensities are colocalized (positively
correlated), non-colocalized (uncorrelated) or anti-colocalized
(negatively correlated). Similarly, the lower left corner of the TOS
matrices reflects whether pixels with the lowest intensities are
colocalized, non-colocalized or anti-colocalized, even though the
analysis also includes pixels with high intensities.

We extracted TOSh, TOSmax and TOSmin from the TOS matrices
and plotted them as a function of the distance between populations 1
and 2 (with negative and positive shifts indicating the means
of signals 1 and 2 for population 2 are less and more respectively
than population 1) (Fig. 2D-F). TOSh correctly shows when the
population with the higher means was colocalized, anti-colocalized
or non-colocalized (i.e. TOSh >0.1, ∼0 and <-0.1 respectively)
(Fig. 2D-F). TOSmax identified when the combined population (i.e.
populations 1 and 2 considered together) displayed colocalization
but was insensitive to the localization patterns of each
subpopulation. TOSmin was sensitive to the presence of anti-
colocalization in population 1 irrespective of whether it had the
lower or higher mean of the two populations (scatterplots in Fig. 2C
and black line in Fig. 2F). Values for TOSh, TOSmax and TOSmin

were found to be relatively insensitive to the mean intensity and
distance between the populations; that is, they provide a robust
measure of localization.

In summary, the TOS matrix is helpful in distinguishing
colocalization, anti-colocalization, and non-colocalization within
mixed patterns of localization. TOSh, TOSmax and TOSmin from the
TOS matrices appear to be robust measures of: (i) the localization
pattern of the on-target signal, (ii) colocalization for all signals
together (background, off-target and on-target), and (iii) the
presence of anti-colocalization within a mixed localization pattern.

Comparison of TOS with other metrics of localization
We next compared TOSh, TOSmax and TOSmin to common metrics
for evaluating localization using simulated cells with mixed
localization patterns. It is not feasible to compare all the
alternative metrics to TOS (Bolte and Cordelieres, 2006; Dunn
et al., 2011; Lagache et al., 2015; Zinchuk et al., 2007). Therefore,
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we selected three metrics that are commonly used by
experimentalists, which are Pearson’s correlation coefficient
(PCC), Manders’ colocalization coefficients M1 and M2, and
Spearman’s rank correlation coefficient (SRCC).

PCC calculates the linear correlation in the intensity of two
signals (Dunn et al., 2011). SRCC evaluates whether the rank order
of values for two signals is the same or not and it does not matter
whether this monotonic relationship is linear or nonlinear. M1 and

Fig. 2. Interpretation of TOS analysis in samples with mixed localization patterns. (A-C) Scatterplots and their corresponding TOSmatrices for images with
two populations of pixels (n=300 for each population). Population 1 was positively correlated (A), uncorrelated (B), or negatively correlated (C), and population 2
was always uncorrelated. The means of the two populations were initially the same (center column) and either population 2 was decreased (left column) or
population 1 was decreased (right column). Decreasing population 1 and decreasing population 2 corresponds to the positive and negative distances respectively
in panels D-F. Populations 1 and 2 were decreased in 40 increments. Only scatterplots and TOSmatrices for the initial and final positions are shown. (D-F) Mean
TOSh, TOSmax and TOSmin at each distance of the populations (total=81). Panels D, E and F correspond to distributions where population 1 is positively
correlated, uncorrelated, or negatively correlated. Parameters were calculated from 50 TOSmatrices simulated for each distance. Error bars are the standard error
of the mean (s.e.m.). Note: in panel F, the line for TOSmin is covered by the line for TOSh at distances <0 a.u.
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M2 are calculated from the sum of the intensities of the pixels that
exceed the thresholds for both signals 1 and 2 divided by the sum of
the intensities of the pixels that exceed the threshold for signals 1 or
2, respectively (Manders et al., 1993; Dunn et al., 2011). M1 and
M2 depend on the fraction of overlapping pixels, the intensities of
the pixels, and the thresholds. It has been proposed that the
‘expected’M1 andM2 (which are equivalent to FT2 and FT1) should
be subtracted from the observed M1 and M2 respectively, resulting
in ‘M1diff’ and ‘M2diff’ (McDonald and Dunn, 2013). Thresholds
for M1 and M2 (and consequently for M1diff and M2diff ) are
commonly selected using a method (or a variant of it) described by
Costes and colleagues (Bolte and Cordelieres, 2006; Costes et al.,
2004). Costes’method evaluates the correlation in pixels below each
threshold in the data, and then selects the threshold with the
minimum correlation or highest threshold with a non-positive
correlation. Note: we used the former from JACoP (Bolte and
Cordelieres, 2006).
We examined how all metrics performed at distinguishing

populations of cells with mixed localization patterns for off-target
and on-target signals; this is a challenging, common and important
scenario in localization analysis. The metrics were compared using
receiver operating characteristic (ROC) curves, which are
commonly used to evaluate image analysis tools and diagnostic
tests (Metz, 2006). To create the ROC curves, we first simulated
‘condition positive’ and ‘condition negative’ populations of cells
with mixed localization patterns (Fig. 3A,B). Each condition
positive cell had an equal combination of pixels with positively
correlated off-target signal and positively correlated on-target signal
(means=20,000 and 30,000 a.u. respectively; total pixels per
cell=600). The values were multiplied by a random number from
a Gaussian distribution (mean=1.0 and σ=0.2), which was
independent for each channel and pixel (Fig. 3A). Each cell in the
condition negative population was generated in the same manner
except the on-target signal was anticorrelated (Fig. 3B). In the
condition positive and negative populations the off-target signal had
a slope of θ=eq, where q had one of 141 equal increments in the
range −0.7 to +0.7. Note: the off-target signal was chosen to be
positively correlated (rather than uncorrelated or negatively
correlated) because this is often harder to threshold and
discriminate from on-target signal, and we sought to compare the
metrics under challenging conditions. For each slope, 50 cells were
simulated resulting in 7050 cells for each condition.
We evaluated TOSh, TOSmax, TOSmin, PCC, SRCC, M1, M2,

M1diff and M2diff for each cell. For every metric, P-values were
calculated using the two-tailed Mann–Whitney U test which
showed all metrics had statistically significant differences in their
values for the condition positive and negative populations
(displayed in Fig. 3C). Therefore a simple statistical comparison
is not helpful in comparing the metrics. Histograms of the values for
the condition positive and negative populations were generated and
then the fractions of cells in each population above a threshold that
slides from highest to lowest value were determined. These fractions
for the condition positive and negative populations are the true
positive rates (also known as the sensitivity) and false positive rates
(which is 1−specificity) respectively (Fig. 3D). The true positive
rates were plotted as a function of the false positive rates at each
threshold to produce ROC curves for each metric (Fig. 3E). The
ROC curve nearest the upper left corner of the plot is closest to an
ideal test with perfect classification of localization, i.e. 100%
sensitivity and 100% specificity.
For the simulations, TOSmin was the best classifier followed by

TOSh (Fig. 3E). TOSmax did not perform well because there were

positive correlations at high selected fractions for both the condition
positive and condition negative populations, therefore it could not
distinguish them (Fig. 3A,B). Similarly, PCCwas generally positive
for both populations, which is why it did not perform as well as
TOSh. M1diff and M2diff did not perform well due to Costes’
method for threshold selection (note: also in some cases a threshold
could not be identified resulting in undefined M1diff, and M2diff
that were not included in the analyses). Consistent with the study
mentioned above (McDonald and Dunn, 2013), M1diff and M2diff
performed better than M1 and M2, therefore the former two were
used in subsequent analyses.

Application of TOS to different types of experimental data
We demonstrated the generality of TOS analysis by calculating
matrices and extracting TOSh, TOSmax, and TOSmin for experiments
with different proteins in a variety of cells and organisms, whichwere
obtained from public image repositories (Materials and Methods).

The first dataset examined were Drosophila melanogaster
Kc167 cells (n=366), which had been probed with fluorescein-
conjugated phalloidin to identify F-actin in the cytoskeleton and
stained with Hoechst 33342 to identify DNA (Wheeler et al.,
2004; Carpenter et al., 2006) (Fig. 4A). TOS matrices from
individual cells were combined and the median TOS value for
each threshold combination was presented as a heat map
(Fig. 4B). This analysis shows that at most selected fractions the
F-actin probe and DNA staining are strongly anti-colocalized (i.e.
TOS <<0), which is expected because they label different parts of
the cell, i.e. outside the nucleus and in the nucleus, respectively.
Scatterplots also show anti-colocalization with the intensities of
F-actin labeling and DNA staining being largely independent
(Fig. 4C). TOSh, TOSmax, and TOSmin from individual cell TOS
matrices were compared to PCC, SRCC, M1diff and M2diff from
the same cells. The values of each metric for individual cells were
plotted along with the median and 90th and 10th percentile
values. Note: zero indicates no correlation or non-colocalization
(Fig. 4D). In >90% of cells, TOSh and TOSmin indicate anti-
colocalization and their medians are ≈−1, i.e. maximally anti-
colocalized. In contrast, TOSmax, PCC, SRCC, M1diff and M2diff
have many values between the 90th and 10th percentiles that are
close to or greater than zero, which indicates these metrics classify
many cells as having non-colocalization or colocalization rather
than the expected anti-colocalization (Fig. 4D).

The second dataset examined were Saccharomyces cerevisiae
cells (n=38), which have a single copy of the spindle pole body
component protein (Spc110) fused to both yellow fluorescent
protein (YFP) and cyan fluorescent protein (CFP), i.e. Spc110::
YFP::CFP (Muller et al., 2005). We used eight sets of images (YRC
PIR ID: 191, 3208, 3559, 3702, 3999, 4722, 5160, and 7396) with
YFP, CFP and differential interference contrast (DIC) channels
(Fig. 4E). The analysis was performed as described for D.
melanogaster. Because YFP and CFP are part of the same protein
their signals should colocalize, and this was clearly seen at all
threshold levels in the TOS matrix and scatterplot (Fig. 4F,G).
TOSh, TOSmax, TOSmin, PCC and SRCC correctly identified that
>90% of cells have strong colocalization (Fig. 4H). M1diff and
M2diff incorrectly identified most cells as non-colocalized
(Fig. 4H) due to Costes’ method selecting very low thresholds;
and this in turn results in the subtraction of a large ‘null’ value and
therefore M1diff and M2diff are small. Note: this is one reason the
rescaling for TOS is so helpful.

The third dataset examined were Caenorhabditis elegans
(n=42) which had the production of green fluorescent protein
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(GFP) regulated by the activity of the clec-60 promoter (Fig. 4I).
In the pmk-1 deficient mutant that was imaged, GFP production
is increased in the anterior intestine next to the pharynx which was
identified by the mCherry fluorescent protein transcribed under
the control of the myo-2 gene (Wahlby et al., 2012) (Fig. 4I). The
analysis was performed as for the other datasets, and a matrix of
TOS median values showed anti-colocalization of the GFP and
mCherry fluorescence signals at low selected fractions, i.e. high
threshold (upper right corner, Fig. 4J). Anti-colocalization is both

consistent with the biology (because GFP and mCherry label
different structures) and a scatterplot of a representative C. elegans
(Fig. 4K). Values of TOSh and TOSmin indicated anti-
colocalization in >90% of worms (both green horizontal bars
are below zero in Fig. 4L). Most TOSmax values were >0 therefore
it was possible in most worms to identify a set of thresholds where
there was a colocalization pattern, which was typically when the
selected fraction was high in one channel and low in the other
channel. In contrast to TOSh and TOSmin, values for PCC, SRCC,

Fig. 3. Comparison of TOS with other metrics of localization. (A,B) Representative scatterplots for simulated condition positive (A) and condition
negative (B) cell populations. All cells have positively correlated off-target signal (black symbols) with a slope (θ) that was varied (seemain text). Condition positive
cells have on-target signal (gold symbols) that is positively correlated and condition negative cells have on-target signal that is negatively correlated. Both
conditions have an equal number of off-target and on-target pixels. (C) Histograms of TOSh, TOSmax, TOSmin, PCC, SRCC, M1, M2, M1diff, and M2diff for the
simulated condition positive and negative populations. P-values are calculated using a two-tailed Mann–Whitney U test. Note: M2 values appear to exceed
1 because values that are exactly equal to 1 are in the 1 to 1.1 bin. (D) Diagram explaining the calculation of the true positive and false negative rates for themetrics
in panel C (see main text). The fraction of cells in the condition positive population and condition negative population that are above the threshold are the true
positive rate and true negative rate respectively. (E) Receiver operating characteristic (ROC) curves for each metric (see main text).
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M1diff and M2diff were generally around zero indicating non-
colocalization for most worms (Fig. 4L). The latter group of
metrics performed poorly because it was difficult to identify a
threshold that distinguishes the overlapping off-target and

on-target signals and Costes’ method tended to choose high
selected fractions, i.e. low threshold values.

In summary, TOS analysis successfully identified the expected
localization patterns of different proteins in various cells and

Fig. 4. Application of TOS to different types of experimental data. (A) Microscopy images of representativeD. melanogaster cells with DNA staining (Hoechst
33342) and F-actin labeling (fluorescein-conjugated phalloidin). Images are pseudocolored and white lines indicate cell boundaries. Scale bar: ∼5 µm
(Velichkova et al., 2010; George et al., 2014). (B) TOS matrix analysis in D. melanogaster cells (n=366) with selected fractions for DNA staining and F-actin
labeling intensities. (C) Scatterplot of DNA staining and F-actin labeling in the outlinedD. melanogaster cell in panel A. Note: all intensity values are >0. (D) TOSh,
TOSmax, TOSmin, PCC, SRCC, M1diff, and M2diff values obtained in individual D. melanogaster. Green lines and square indicate the 90th and 10th percentiles
and the medians. Horizontal dash line at zero indicates non-colocalization or no correlation. (E) Microscopy images of representative S. cerevisiae cells with
Spc110::YFP::CFP. Images presented as in panel A are pseudocolored. Scale bar: 5 µm (obtained fromYRCPIR image). (F) TOSmatrix analysis inS. cerevisiae
cells (n=38) with selected fractions for CFPand YFP fluorescence intensity. Heat map scale shown in panel B. (G) Scatterplot of CFPand YFP fluorescence in the
outlinedS. cerevisiae cell in panel E. (H) TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff, andM2diff values obtained in individualS. cerevisiae. Data presented as in
panel D. (I) Microscopy images of representativeC. eleganswithmCherry andGFP fluorescence. Scale bar:≈500 µm (Wahlby et al., 2012). Images presented as
in panel A except the white line is a C. elegans outline. (J) TOS matrix analysis in C. elegans (n=42) with selected fractions for mCherry and GFP fluorescence
intensity. Heat map scale shown in panel B. (K) Scatterplot ofmCherry andGFP fluorescence signal in theC. elegans outlined in panel I. (L) TOSh, TOSmax, TOSmin,
PCC, SRCC, M1diff, and M2diff values obtained in individual C. elegans. Data presented as in panel D.
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organisms. In these images, TOSh, TOSmax, or TOSmin were often
able to identify specific features within mixed localization patterns
better than PCC, SRCC, M1diff and M2diff.

TOS values can distinguish localization patterns in
experimental data with high specificity and high sensitivity
We investigated how well TOS and other metrics can distinguish
similar localization patterns. Two types of Schizosaccharomyces
pombe strains were chosen with fluorescent proteins that were
expected to show colocalization. One strain (n=40) had the

fusion protein Sid4::YFP::CFP (strain KG4608; ID: 192, 776,
1062 and 1233) (Fig. 5A). Because these fluorescent proteins
are fused they should colocalize. A second strain (n=38) had
two fusion proteins: Cdc11::CFP and Cdc13::YFP (strain
KG3544; ID: 292, 360, 414, and 744) (Fig. 5B). Cdc11::CFP
and Cdc13::YFP are known to localize to the spindle pole body
(Krapp et al., 2001; Decottignies et al., 2001) as well as to other
sites.

Cells from each strain were identified and analyzed as described
above. TOS matrices for both strains showed colocalization (TOS

Fig. 5. TOS values can distinguish localization patterns in experimental data with high specificity and high sensitivity. (A) Microscopy images of
representative S. pombe cells with Sid4::YFP::CFP. Images are pseudocolored. White lines indicate cell boundaries. Scale bar: 10 µm (obtained from YRC
PIR images). (B) Microscopy images of representative S. pombe cells with Cdc11::CFP and Cdc13::YFP. Images are presented as in panel A. (C,D) TOS
matrices for the strains in panels A and B, respectively (n=40 and 38). Each matrix shows the median values obtained for TOS matrices of individual cells.
(E,F) Scatterplots of CFP and YFP signal intensities for the outlined cell of each strain in panel A and B, respectively. (G) Histograms of TOSh, TOSmax, TOSmin,
PCC, SRCC, M1diff and M2diff values for individual cells in each strain. *P-value is calculated with the raw data, which has more variation than seen in the binned
data of the histogram. (H) ROC curves for all metrics in panel G.
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>>0) at many threshold combinations (Fig. 5C,D). However, at high
signal intensities, i.e. small FT1 and FT2, there are differences in
localization between the two strains; cells with Sid4::YFP::CFP
have colocalization and cells with Cdc11::CFP and Cdc13::YFP
have anti-colocalization (Fig. 5C,D). The difference in localization
can also be seen in the scatterplot of CFP and YFP signal intensity in
a representative cell from each strain (Fig. 5E,F). That is, pixels with
high intensity CFP and YFP signals tend to occupy the upper right
corner for Sid4::YFP::CFP but tend to be at the right or at the top for
Cdc11::CFP and Cdc13::YFP. Note: there are many possible causes
for why there is more YFP fluorescence for a given amount of CFP
fluorescence at high intensity levels compared to lower intensity
levels for the YFP::CFP fusion (Fig. 5E) including: increased
transcription and translation termination, and decreased CFP
fluorescence and/or increased YFP fluorescence due to altered
protein folding and aggregate formation.
TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff and M2diff were

calculated as for the analysis above (Fig. 3D). All metrics except
TOSmax had statistically significant differences in the distribution of
values for the two strains (displayed in Fig. 5G). To compare metrics
we generated histograms of each value from individual cells
(Fig. 5G) and then ROC curves (Fig. 5H) as described above. Cells
with Sid4::YFP::CFP were designated the condition positive
population and cells with Cdc11::CFP and Cdc13::YFP were the
condition negative population. ROC curves for TOSh and TOSmin

demonstrated that they can discriminate the localization patterns of
the two cell types with greater specificity and sensitivity than
SRCC, PCC, M1diff and M2diff. M1diff and M2diff were not able
to distinguish the localization patterns in the two strains because of
difficulty with thresholding.
In summary, values from TOSmatrices such as TOSh and TOSmin

were able to distinguish the localization patterns of the different
proteins with greater specificity and greater sensitivity than the other
common metrics examined, and they are particularly useful when
there are mixed patterns of localization within each cell and thus
measures of the localization pattern of entire cells are less
meaningful. We stress that this assessment did not evaluate
whether TOSh, TOSmax, TOSmin are better descriptors of an entire
population of pixels or whether they identify a specific feature that is
reflective of the underlying biology.

DISCUSSION
Measuring localization is a basic requirement of cell biology and
imaging and yet it is often a challenging task. This study
demonstrates the TOS metric and its application, and shows that
TOS is a valuable tool to help meet the challenge of quantifying
localization in a wide range of applications.
TOS has many features that make it suitable for general

applications. The first feature is that TOS is simple to interpret
because it only quantifies whether signal overlap is the same, more,
or less than expected by chance. In contrast, some overlap metrics
have a weighting for signal intensities, e.g. Manders’ coefficients
M1 and M2, ‘overlap coefficient’, and ‘k1 and k2 coefficients’
(Cordelieres and Bolte, 2014), which means that any value is an
unknown combination of two factors: overlap and intensities. A
second feature is that TOS can be compared at different thresholds,
which is not the case with some other metrics, e.g. M1 and
M2 coefficients (McDonald and Dunn, 2013). A third feature is
that a single value distinguishes between colocalization, anti-
colocalization and non-colocalization, whereas some metrics
require two values for interpretation, and/or they do not directly
distinguish between anti-colocalization and non-colocalization

(Cordelieres and Bolte, 2014). A fourth feature is the null
hypothesis for TOS has minimal assumptions and requires no
simulations (McDonald and Dunn, 2013; Bolte and Cordelieres,
2006), which makes it easier to implement. A fifth feature is that
TOS is one of the metrics that does not assume a linear correlation in
signal intensities (Bolte and Cordelieres, 2006).

The general applicability of TOS is enhanced by systematically
evaluating it at many different threshold combinations. The
resulting TOS matrix is particularly useful when there are mixed
patterns of localization; and the background and off-target signals
are continuous with the on-target signal. TOS matrices are best
interpreted holistically with TOS at each selected fraction being
evaluated in the context of neighboring TOS (which can detect
trends and provide confidence for a specific value for TOS) and in
relation to other localization patterns found in the matrix. Within
TOS matrices, TOS at the highest thresholds (i.e. TOSh) was
particularly helpful in identifying localization patterns in on-target
signals when the off-target and background signals were at high
levels and/or occupying a large proportion of pixels. We showed
that TOSh, as well as TOSmax and TOSmin, can have greater
specificity and sensitivity than PCC, SRCC, M1diff, and M2diff.
Furthermore, TOS was very easy to use with a wide variety of
proteins, cell types, and organisms. For all the above reasons, TOS
matrices are a good first line of analysis for quantifying intracellular
localization. However, we reiterate that there is no best test for all
situations (Bolte and Cordelieres, 2006; Dunn et al., 2011) and that
the selection of a metric must take into account the purpose of the
analysis, the underlying biology, and the types of images and
samples.

To interpret values of TOS it is important to note that in many
imaging experiments, including those used in this study, the
concentration of reporter is high and single particles cannot be
resolved. Therefore the signal in each pixel (or voxel) is the total of
many reporter molecules within an area (or volume) of the cell. That
is, the signal intensity in each pixel reflects the local concentration
of a molecule. Local concentrations may be higher or lower in some
cell regions depending on: (i) sites of production and degradation;
(ii) diffusion; (iii) kinetics of association and dissociation with
cellular structures, e.g. nucleus, cell membrane or cytoskeleton; and
(iv) attraction to or exclusion from cell regions (Neeli-Venkata et al.,
2016; Mondal et al., 2011). With this in mind, colocalization, anti-
colocalization and non-colocalization should be considered as the
relationship in the local concentrations of two types of molecules,
which may be due to many factors. Therefore colocalization should
not by itself be interpreted as indicating that two types of molecules
are bound to each other (Bolte and Cordelieres, 2006; Dunn et al.,
2011). Note: the above mechanisms could potentially generate
concentration gradients that contribute more to the spatial
autocorrelation of signals in cells than point spread functions
(Dunn et al., 2011; Xu et al., 2016).

Following from the above, colocalization indicates that higher
concentrations of two molecules tend to occur in similar cell
regions. This may be due to common sites of production, action,
binding, or degradation. Anti-colocalization indicates two
molecules have high concentrations in different cell regions and
thus at least one mechanism is causing the molecules to be recruited
to and/or exclude from different regions, one molecule excludes the
other from a region (Bakshi et al., 2015; Neeli-Venkata et al., 2016)
or the molecules eliminate each other in the same location, e.g.
when non-coding RNAs binding to mRNAs both are destroyed
(De Lay et al., 2013). Non-colocalization indicates that molecules
have no preference for avoiding or occurring in the same regions.
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Because the mechanisms responsible for generating anti-
colocalization and non-colocalization are different, the capacity of
metric such as TOS to distinguish these patterns is potentially very
useful.
The TOS metric could be adapted for applications that were not

examined in this study and to measure localization in different ways.
We chose to measure overlap by selecting pixels above thresholds
because that approach was most similar to that of Manders’
colocalization coefficients. However, AO, AO ratio and TOS could
be modified to measure the overlap of pixels below a threshold or
within a range, i.e. the equivalent of a band-pass filter or low-pass
filter instead of a high-pass filter. Another way in which the TOS
metric could be altered is to choose selected fractions of pixels by
features other than signal intensity such as their distances to the cell
poles or membrane. Additionally, TOS analysis could be adapted
to examine localization in three dimensional images, e.g. images
assembled from confocal microscopy, or measure the overlap of
more than two signals.
In conclusion, systematic evaluation of the TOS metric at

multiple threshold combinations is a valuable addition to the
repertoire of tools available for the quantitative analysis of images.
TOS analysis is simple to implement and easy to interpret, and it has
many features that make it suitable for many types of images and
samples. Furthermore, values from TOS matrices can distinguish
patterns of localization with greater sensitivity and greater
specificity than other commonly used metrics. These findings
make a strong case for selecting TOS analysis as a first step to
evaluating localization in images.

MATERIALS AND METHODS
Simulations, calculation of metrics, and statistical analyses
Simulations, calculations and statistical analyses were performed as
described in the Results using Matlab (R2015a, Mathworks) (code
archived at Figshare: https://figshare.com/s/6504f19aef88f1d6cf95). Post-
measurement statistical comparisons were performed using the two-tailed
Mann–Whitney U test. Note: localization in one set of samples could also be
compared to the median of the expected null distribution using the Sign test
or by bootstrapping.

Receiver operating characteristic (ROC) curves
Histograms for simulated data were generated using the histcounts function
in Matlab. This function, which is based on Scott’s rule (Scott, 1979),
determined the bin edges in the range of −1.2 to 1.2. For experimental data,
bin edges had increments of 0.1 for TOSh and TOSmin (defined in Results
section), Pearson’s correlation coefficient, and Spearman’s rank correlation
coefficient, and increments of 0.001 for the other metrics. The bin edges
were used as thresholds and the fraction of counts in each population above
the thresholds were used to create the ROC curves.

Analysis of images
Images of Drosophila melanogaster Kc167 cells [BBBC007_v1 (A9)] and
whole organismCaenorhabditis elegans (BBBC012v1) were obtained from
the Broad Bioimage Benchmark Collection (Ljosa et al., 2012). Hand drawn
boundaries of D. melanogaster cells were downloaded from the same
collection and inverted to select cells (Jones et al., 2005). Saccharomyces
cerevisiae (DHY155) and Schizosaccharomyces pombe (KG4608 and
KG3544) images were obtained from the Yeast Resource Center Public
Image Repository (YRC PIR) (Riffle and Davis, 2010). Boundaries were
traced around C. elegans in four different brightfield images, around S.
cerevisiae cells in eight differential interference contrast (DIC) images, and
around S. pombe in four DIC images for each strain. Traces were performed
in ImageJ (Schneider et al., 2012) and these defined the boundary of a
‘region of interest’ (ROI) (data files at Figshare: https://figshare.com/s/
e414b6b45d53f79f7b1f). A ‘CountMask’was created in ImageJ to fill each
ROI in an imagewith a unique integer. CountMask was used to select pixels

in the fluorescence images withMatlab that correspond to cells orC. elegans.
Pixel intensity values within each cell or C. elegans were stored in an array,
which were used for the analyses.

Some downloaded drawn objects for D. melanogaster cells did not
identify cell boundaries, therefore the Analyze Particle function in ImageJ
was used to eliminate small (<400 pixels) and large objects (>5000 pixels)
from the analysis. In addition, boundaries that identified areas between cells
were eliminated by selecting only ROIs with fluorescence signals greater
than the background in non-cell regions. Occasional S. cerevisiae cells had
binned data so they were removed from the analyses.
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