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ABSTRACT

Here we present the application of  deep neural network (DNN) ensembles trained 
on transcriptomic data to identify the novel markers associated with the mammalian 
embryonic-fetal transition (EFT). Molecular markers of this process could provide 
important insights into regulatory mechanisms of normal development, epimorphic tissue 
regeneration and cancer. Subsequent analysis of the most significant genes behind the 
DNNs classifier on an independent dataset of adult-derived and human embryonic stem 
cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as 
a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-
regulated in post-EFT murine and human cells including adult stem cells, but was not 
expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. 
COX7A1 expression level was observed to be undetectable or low in multiple sarcoma 
and carcinoma cell lines as compared to normal controls. The knockout of the gene in 
mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in 
cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker 
of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used 
as a target for controlling the embryonic-fetal transition. 
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INTRODUCTION

In contrast to embryonic cells, fetal and adult-derived 
(F/A) cells often show reduced potential for organogenesis 
in vitro and epimorphic regeneration following injury in 
vivo [1]. The developmental timing of loss of epimorphosis 
potential cannot be fixed precisely, and likely varies with 
tissue type, however, one specific event - the embryonic-
fetal transition (EFT) which occurs at eight weeks of 
human development (Carnegie Stage 23) [2], marks a 
loss of scarless skin regeneration in placental mammals 
[3]. Marsupial species also show scarring as opposed 
to regeneration beginning at about pouch day 9, which 
corresponds to approximately eight weeks of human 
development [4]. The observation that many species 
show increased regenerative potential in the embryonic 
or larval state [5], suggests that tissue regeneration, 
as opposed to scarring, may reflect the presence of an 
embryonic, as opposed to F/A phenotype. However, there 
are few molecular markers of the EFT to test its role in 
repressing epimorphic regeneration or the re-emergence of 
an embryonic phenotype in cancer [1, 6]. In this research, 
we undertook the first attempt to identify these markers 
utilizing deep learning algorithms and to analyze their 
expression in adult, malignant and embryonic states.To 
identify gene expression markers of the EFT, we analyzed 
large datasets for global patterns distinguishing cells prior 
to and following the transition. While being a daunting 
task due to data size and complexity, pattern recognition 
is a perfect fit for machine learning algorithms which have 
the potential to markedly enhance efficiency and accuracy. 
Deep learning is a type of machine learning in which high-
level representations are constructed from input data via a 
series of hierarchical, multilayer feature extractions in deep 
neural networks (DNNs) [7, 8].

To date, deep learning has been utilized in a 
variety of biological applications [9], from prediction 
of alternate splicing code [10] to the analysis of protein 
secondary structure [11], drug-induced hepatotoxicity 
[12], and long non-coding RNAs [13]. The number of 
potential applications are, however, more diverse, from 
basic classification to prediction [14–16], modeling [14], 
image processing [15], and even text mining.  Moreover, 
the complex, noisy, high-dimensional, multi-platform 
data collated in many biological databases are well suited 
to deep learning.  In a recent example, a deep learning 
algorithm succeeded in integrating otherwise incompatible 
multi-platform genomic data to cluster cancer patients by 
cancer subtype [16].

Transcriptional data has many challenging features, 
including high dimensionality, noise, and multiple, 
often incompatible, platforms. One of the problems 
with deep learning is that high dimensional data, such 
as that associated with gene expression, must have the 
dimensionality reduced prior to training of a deep network. 
We recently developed an algorithm, iPANDA [17], to 

calculate pathway activation strength (PAS) for signaling 
pathways activated or repressed in a given condition. PAS 
calculation reduces dimensionality by reducing thousands 
of changes in gene expression down to a relatively small 
number of biologically meaningful changes in signaling 
pathway activity [18, 19].

In the present study, human gene expression data 
from Affymetrix and Illumina platforms of pluripotent 
stem cells, their derivative embryonic progenitor cell 
lines (as described in [20]), adult stem cells and adult 
derived cell lines are used to train platform-specific DNN 
ensembles (available online at www.Embryonic.AI). We 
demonstrate the accuracy of DNN ensembles in classifying 
embryonic vs. adult cells and use them to generate a list 
of statistically-significant gene expression markers that 
can differentiate between the two states. Here we validate 
these candidate markers using transcriptomic data from an 
independent collection of embryonic progenitor and F/A 
cells, focusing on the salient marker, COX7A1. 

The human COX7A1 gene encodes cytochrome c 
oxidase subunit 7A1 protein [21, 22]. This protein plays 
a role in the super-assembly of the multi-unit heteromeric 
complexes of the mitochondrial respiratory chain such 
as complex IV, which consists of three catalytic subunits 
encoded by mitochondrial genes and multiple structural/
regulatory subunits encoded by nuclear genes [23].

We report here the development of a DNN ensemble 
that reveals COX7A1 as a marker of the embryo-onco 
phenotype. We demonstrate its down-regulation in 
multiple embryonic and cancer cell lines and show 
that its expression in adult cell lines is associated with 
hypomethylation. Our findings also demonstrate that 
COX7A1 repression in embryonic and tumor cell lines 
is associated with a metabolic shift toward glycolysis 
reminiscent of Warburg effect observed in cancer [24].

RESULTS

DNN ensemble classifier demonstrates best 
performance among all machine learning 
techniques

We gathered and preprocessed transcriptomic 
profiles of 12,404 healthy untreated tissue samples from 
Affymetrix (4,822 samples) and Illumina (7,582 samples) 
microarray platforms to train the classifiers. The collected 
samples were assigned to the following five categories:  
embryonic stem cells (ESCs), induced pluripotent stem 
cells (iPSCs), embryonic progenitor cells (EPCs), adult 
stem cells (ASCs) and adult cells (ACs). 

We separately trained six different classifiers on 
each microarray platform as follows: K-nearest neighbors 
(kNN), logistic regression with PCA-based dimensionality 
reduction (LR), support vector machines (SVM), gradient 
boosting machines (GBM), and multiclass deep neural 
network (DNN). We also developed a more computationally 
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demanding but more accurate method, which employs an 
ensemble of 20 two-class deep neural networks (DNN 
ensemble) because usage of single multiclass DNN has 
multiple drawbacks. We performed a hyperparameter 
search for all classifiers except for the DNN ensemble. In 
the case of the DNN ensemble, we used optimal network 
hyperparameters obtained for the single DNN (final 
hyperparameters are shown in Supplementary Table 1). The 
performance of the classifiers is shown in Supplementary 
Figure 1. The DNN achieved a mean 0.99 F1 score 
(probability that the guesses are correct) on the Affymetrix 
microarray training dataset, and 0.75 on the external 
validation dataset, while other methods achieved a 0.50–
0.64 F1 score on the external validation dataset. The DNN 
achieved a mean 0.99 F1 score on the llumina microarray 
training dataset, and 0.83 on the external validation dataset, 
while other methods achieved 0.52–0.58 F1 score on the 
external validation dataset. Classical methods, such as kNN 
and LR performed noticeably worse than SVM, XGB and 
DNN methods. Our DNN ensemble performed substantially 
better with about 12% relative improvement for Affymetrix 
and 36% relative improvement for Illumina (Supplementary 
Figure 1A and 1B).

We reasoned that dimensionality reduction might 
improve the accuracy of our methods. We therefore tried 
a pathway level analysis approach that we had previously 
established called iPanda. This gene aggregation 
method allows preservation of biological function while 
dramatically reducing dimensionality. Using pathway 
level analysis (Supplementary Figure 1C and 1D), we 
demonstrated that despite the lower accuracy on the 
training set, the DNN ensemble performance on the 
validation set is similar to what was achieved at the gene 
level with F1 scores 0.74 and 0.81 for Affymetrix and 
Illumina platforms, respectively. In order to prove that our 
DNN ensemble could successfully distinguish between the 
five classes, we utilized a validation confusion matrix for 
samples from each platform (Figure 1A and 1B). Our DNN 
clearly resolved all class comparisons except for ESC vs. 
iPSC.  The reason is likely because fully reprogrammed 
“high quality” iPSC lines are largely indistinguishable 
from ESC lines at the transcriptional level [25].

Having shown that our DNN ensemble could 
distinguish between the five different classes of samples, we 
next used it to position any sample on a differentiation axis. 
We developed an integrative Embryonic Score (E Score, see 
Materials and Methods) based on the DNN ensemble output 
to determine how close a sample is to the embryonic state.  
We assigned an E Score of 1 to represent an embryonic 
state and E Score of 0 to represent the adult state. Thus, 
any intermediate state has an E Score between 1 and 0. 
The E Score can be computed either with Affymetrix or 
Illumina based DNN ensembles. We tested the performance 
of the E score using  our Affymetrix-based DNN ensemble 
for an RNA-Seq data set  consisting of samples from 
various stages of human photoreceptor development [26].  

We compared undifferentiated H9, ESCs and RNA 
samples taken at days 37, 47, 67 and 90 of photoreceptor 
development. Effective gene counts corrected for bias 
were used as an input. We observed a clear decrease in the 
E score upon photoreceptor differentiation (Figure 1C). 
Considering progenitors as embryonic tissues with E score 
of 0.5 and adult stem cells as fetal tissues with E score of 
0.7, the E score for EFT spans in the 0.5–0.7 range for the 
photoreceptor development dataset. The above example 
shows that even though DNN ensemble was trained on 
samples from microarray platforms it is also suitable for 
RNA-Seq data analysis.

Identification COX7A1 gene as embryonic - fetal 
transition biomarker

We attempted to identify individual genes as 
potential expression markers of the mammalian EFT 
by assessing the most highly ranked genes behind 
the DNN ensemble classifier that was trained on the 
Illumina dataset because Illumina datasets were more 
homogenous than Affymetrix. Our analysis of the 
classifier revealed that COX7A1 was among the genes 
with the highest ranking in the Illumina DNN ensemble 
(Supplementary Table 2). Gene expression analysis of 
an additional panel of transcriptomic profiles (RNA-seq 
proprietary dataset; BioTime, Inc.) from 15 diverse adult-
derived cell types representing derivatives of endoderm, 
mesoderm, ectoderm, and neural crest cell types (adult 
group) compared to 17 diverse clonal embryonic 
progenitor cell lines (embryonic group) independently 
confirmed the DNN results. Our t-test analysis identified 
several genes with statistically significant difference 
in level of expression between the embryonic and adult 
groups (Supplementary Table 3). The most significantly 
(p < 0.0001) dysregulated genes between the adult and 
embryonic groups included COX7A1 which again showed 
increased expression in the adult-derived cell lines. Thus, 
we were able to identify COX7A1 expression as highly 
associated with the F/A state compared to the embryonic 
state using two independent analytical methods on two 
different data sets. We therefore selected COX7A1 for 
further analysis as a novel biomarker of the EFT.

We next examined the expression of COX7A1 
during mouse and human embryonic development to 
directly determine if its temporal expression pattern 
during development was consistent with its role as an EFT 
marker as indicated by our bioinformatic findings. We first 
assessed COX7A1 expression in total mouse embryo RNA 
that was sampled during embryonic time points spanning 
the murine EFT (stage E10 to E18 which correspond to 
Theiler stages TS16–TS26 and represent days 10–18 post 
coitem). We included analysis of Lin28b expression as a 
control for the embryonic state because it is known to be 
associated with pluripotency and embryonic development 
[27–29]. As shown in Figure 2, COX7A1 showed a marked 
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up-regulation at the time point approximating the murine 
EFT (E16) while the expression Lin28b decreased during 
the same period (Figure 2).  The constitutive marker 
RPS10 was used as a control for normalization of RNA 
levels across all samples.

We next assessed COX7A1 expression during 
human development using RNA from early passage 
dermal fibroblasts of the upper arm from developmental 
stages spanning the onset of human fetal development 
(eight weeks of gestation) through adulthood for analysis 

on Illumina gene expression bead arrays. As shown at 
Figure 3A, COX7A1 gene expression was induced at 
eight weeks of gestation and appeared to progressively 
increase throughout fetal and postnatal development, 
reaching its maximum level in adulthood. Interestingly, 
COX7A1 expression was also dramatically decreased in 
iPSC that were reprogrammed from adult fibroblasts. 
In contrast, the expression of LIN28B is markedly 
upregulated in hESC and iPSC compared to F/A cells, and 
expression was inversely correlated COX7A1 (Figure 3C). 

Figure 1: Predicting embryonic state through DNN ensemble. (A) Validation confusion matrix performance for DNN ensemble 
trained on Illumina data. (B) Validation confusion matrix performance for DNN ensemble trained on Affymetrix data. (C) Embryonic 
scores obtained through Affymetrix DNN ensembles for GEO next generation data set GSE62193 consisting of samples representing 
different stages of human photoreceptor development from ES cells.
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RPS10 was used to normalize RNA levels (Figure 3E). 
We estimated methylation levels of the genomic region 
encoding this gene in order to elucidate a potential 
mechanism of COX7A1 silencing in embryonic tissues. 
We found that COX7A1 was significantly methylated 
in human embryonic stem cell-derived progenitor cell 
lines corresponding to mesenchymal and endothelial 
phenotypes (4D20.8 and 30-MV2-6 respectively), as 
compared to human adult cell counterparts (HMSC and 
HAEC (Figure 3B)). The same assay applied to LIN28B 
and RPS10 did not reveal noticeable changes in their 
methylation pattern (Figure 3D, 3F).

Further evidence of the utility of COX7A1 as 
a marker of the F/A state and LIN28B as a marker of 
the embryonic state, expression of this pair of genes 
was consistently inversely correlated in human cell 
lines (BioTime proprietary data). The correlation plot 
(Supplementary Figure 4) demonstrated an inverse 
correlation between LIN28B and COX7A1 of 83.3% (95% 
CI: 66.4–92.7). 

COX7A1 is downregulated in cancer and 
embryonic-derived cell lines

Since pre-EFT cell lines and cancer cell lines share 
many of morphological, proliferative and metabolic 
features, we reasoned that COX7A1 repression might 
also be a marker of this hallmark of cancer.  We therefore 
examined the expression of human COX7A1 in three 
types of sarcomas (osteosarcoma, liposarcoma, and 
rhabdomyosarcoma) and compared them to corresponding 
normal embryonic progenitors (osteochondral (4D20.8), 
adipocyte (E3) and myogenic (SK5)), as well as 

corresponding adult-derived cells (normal bone marrow 
derived MSCs (hMSC-BM), subcutaneous adipose tissue 
(SAT)-derived preadipocytes, and myoblasts). Embryonic 
progenitors capable of osteochondral differentiation 
(4D20.8) showed no evidence of COX7A1 expression 
in either the progenitor state or in the differentiated state 
despite expressing high levels of osteochondral markers 
(Figure 4A). In contrast, adult-derived MSCs expressed 
COX7A1 before and after differentiation. All four 
osteosarcoma lines showed evidence of an embryonic 
pattern of low or absent expression of COX7A1, including 
the epithelioid sarcoma cell line (CRL21380). Similarly, 
an embryonic progenitor cell line capable of lipogenic 
differentiation (E3) did not express COX7A1 despite 
expressing robust markers of adipocyte differentiation 
(data not shown), while adult-derived subcutaneous adipose 
tissue (SAT) preadipocytes expressed COX7A1 both as 
relatively undifferentiated cells and as fully differentiated 
adipocytes. As in the case of the osteosarcomas, the two 
liposarcoma cell lines studied, also displayed an embryonic 
pattern of undetectable COX7A1 gene expression. Lastly, 
five rhabdomyosarcoma cell lines were similarly studied in 
comparison to an embryonic myoblast progenitor cell line 
SK5, and adult-derived myoblasts. COX7A1, previously 
described as being highly expressed in skeletal and cardiac 
myocytes [30], was expressed at high levels in the adult-
derived myoblasts, but was not expressed in the embryonic 
myoblast progenitor line, SK5, nor was it expressed in 4 out 
of 5 of the rhabdomyosarcoma cell lines (Figure 4A). 

Extending our analysis of COX7A1 expression 
to other forms of cancer, we examined cancer cell 
lines obtained from lung, liver, kidney, breast and skin 
(Figure 4D). Collectively in all cancer cell lines examined 

Figure 2: Expression analysis of COX7A1, Lin28b and Rps10 transcripts in mouse development measured by RNA-
seq. (A, B) Analysis of expression of key embryonic-fetal makers had been conducted in mouse to demonstrate gradient upregulation 
of COX7A1 along with gradient downregulation of Lin28b during mouse embryonal development as measured by NGS, where FPKM 
is relative RNA expression units and DPC (days post coitum) reflects embryonic stage. (C) Rps10 expression was used to ensure equal 
amount of RNA was used across all samples.
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we observed downregulation of COX7A1 expression 
compared to matching control normal counterparts. Blood 
cell cancers were excluded from our analysis due to 
the observation that COX7A1 was not expressed in any 
differentiated blood cell types tested (data not shown).

To elucidate the possible mechanism behind COX7A1 
suppression in cancer, we analyzed the methylation 
landscape of the several different cancer cell types that 
demonstrated downregulation of COX7A1 compared to 
normal tissues (Figure 4D). We observed a statistically 
significant increase in methylation of the COX7A1 gene in 
adenocarcinoma, hepatocellular carcinoma and squamous 
cell carcinoma using publicly available lung methylation 
data (Figure 4C, 4F, 4G) supporting a potential role for 
DNA methylation in regulating COX7A1 expression in 

cancer. RPS10 was used to normalize RNA and methylation 
levels (Figure 4B, 4C, 4E–4G). However, since these 
findings cannot resolve whether methylation is the cause 
or effect of repressed gene expression, we investigated the 
possible effect of demethylation treatment on COX7A1 
expression. The methylation level of the COX7A1 gene 
decreased upon 5-aza treatment but the gene expression 
level remained the same implying that methylation may not 
be the sole point of regulation of COX7A1 gene repression 
(Supplementary Figure 5).

Lastly, we performed an investigation of COX7A1 
expression in sarcoma cancer lines utilizing all available 
transcriptomic data collected from the public domain 
combined with internal (BioTime, Inc.) data.  We used 
datasets from the following four independent sources 

Figure 3: Expression analysis of COX7A1, LIN28B and RPS10 transcripts in human tissues at different stages of 
development along with methylation analysis of COX7A1, LIN28B and RPS10 genes in human cell lines. (A, C) Dermal 
fibroblasts of the upper arm from developmental stages spanning the onset of fetal development (eight weeks of gestation) through 
adulthood were synchronized in quiescence in vitro and RNA subjected to analysis on Illumina gene expression bead arrays. COX7A1 had 
been upregulated in adult stages while LIN28B displayed the opposite pattern. It should be noted that in iPSCs generated from matching 
adult tissues the level of expression of these genes demonstrated the reverse pattern compared to adult tissues. (B, D) Four human cell lines 
were used for methylation analysis by bisulfite sequencing. In two embryonic derived cell lines, 4D20.8 and 30-MV2-6, genomic DNA 
appears to be methylated at COX7A1 region, while in two adult derived cell lines where COX7A1 expression had been detected its genomic 
region appears to be relatively unmethylated. LIN28B methylation pattern seems to be unchanged in embryonic and adult derived cell 
lines. Blue bars represent levels of methylation, one bar for every methylated C. The height of the bar corresponds to the fraction of reads 
covering that C that are methylated (the highest bars = 1–meaning Cs in all reads are methylated). (E, F) RPS10 was used as a housekeeping 
control for methylation and expression analysis.
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(Figure 5): Sarcoma Project (https://sarcoma.cancer.
gov/sarcoma/), BioTime, Inc. (proprietary data), 
FANTOM5 Project (http://fantom.gsc.riken.jp/5/) and 
pooled cross platform normalized data from multiple 
GEO repository datasets (https://www.ncbi.nlm.nih.gov/
gds/?term=sarcoma).  In all four groups, we observed 
a statistically significant downregulation of COX7A1 
expression in sarcoma cell lines compared to normal adult 
mesenchymal cells (Figure 5). Finally, we extended our 
analysis to all available cancer cell lines from the highly 
representative FANTOM5 dataset (over 500 samples) 

to further test the hypothesis that COX7A1 is generally 
under-expressed in cancer. As shown in Supplementary 
Figure 6, the level of COX7A1 gene expression was 
reduced in cancer lines compared to normal cell lines.

COX7A1 control of energy production mode in 
mouse knock-out model

Many cancer cell lines demonstrate a metabolic 
shift from oxidative phosphorylation to aerobic glycolysis 
[24, 31, 32] called the Warburg Effect as well as a 

Figure 4: Expression analysis of COX7A1 and RPS10 transcripts in cancer, embryonic and adult cell lines along 
methylation analysis of COX7A1 and RPS10 genes in cancer and healthy samples. (A) Embryonic progenitors capable of 
osteochondral differentiation such as the line 4D20.8 showed no evidence of COX7A1 expression either in the progenitor state or in the 
differentiated state despite expressing high levels of osteochondral markers. Similarly, embryonic progenitor adipocytes E3 and myoblasts 
SK5 did not express COX7A1. In contrast, adult-derived MSCs expressed COX7A1 before and after differentiation. The same situation 
was observed with adult-derived preadipocytes and myoblasts. When expression levels of COX7A1 were measured in osteosarcomas, 
liposarcomas and rhabdomyosarcoma all lines except one showed an embryonic pattern of COX7A1 expression. (D) Several cancer cell 
lines demonstrated decreased level of COX7A1 expression compared to healthy tissue controls; ESCs and adult MSCs were used as 
internal controls for COX7A1 expression. (C, F, G) Methylation analysis of cancer samples obtained from lung, liver and oral carcinomas 
demonstrated statistically significant increase of methylation of COX7A1 compare to healthy controls. (B, C, E–G) RPS10 gene used as a 
housekeeping control for methylation and expression analysis.
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heterogeneity corresponding to clinical outcomes. This 
effect is also observed in some embryonic pluripotent 
cell lines [33] but not in normal adult cells [24]. We first 
compared extracellular acidification rates (ECAR) in a 
lipogenic series of cell lines consisting of two liposarcoma 
cancer lines (CRL3034 and CRL3044), an embryonic 
adipocyte progenitor line (E3) and adult-derived 
subcutaneous preadipocytes (primary culture). Cancer 
and embryonic cell lines showed an increased ECAR 
while the adult-derived preadipocyte cell line showed a 
statistically significant decreased ECAR (Figure 6A, 6B) 
that is typical of adult cell lines with upregulated COX7A1 
expression. We reasoned that COX7A1 expression may 
provide increased capacity for OXPHOS, and therefore 
decided to test the influence of COX7A1 expression on 
energy production mode using a mouse COX7A1 knock-
out model (Supplementary Figure 7) to determine whether 

the absence of COX7A1 would result in a glycolytic 
shift. Primary cultures of cardiomyocytes obtained from 
COX7A1 –/– mouse displayed elevated ECAR levels 
compared to the equivalent control cell culture derived 
from COX7A1 +/+ littermate mouse (Figure 6C, 6D).  We 
therefore conclude that the down-regulation of COX7A1 
gene expression may be sufficient to decrease OXPHOS 
capacity relative to glycolysis correlating with the long-
noted trend toward anaerobic glycolysis in embryonic 
development re-emerging in cancer.

DISCUSSION

To date, it has been a daunting task to identify 
markers of EFT [34].  For example, a comparison of mouse 
embryonic stem cells with committed adult stem cells led 
to identification over 200 differentially expressed genes 

Figure 5: Comparative analysis of COX7A1 expression in sarcoma cell lines vs. normal mesenchymal cell lines.  Analysis by 
t-test demonstrated statistically significant decrease of COX7A1 expression in cancer cell lines comparing to matching controls. Normalized 
expression or relative expression values of COX7A1 were calculated using transcriptomic data from (A) Sarcoma Project–67 samples, (B) 
BioTime internal data–103 samples, (C) Fantom5 Project–71 samples, (D) GEO pooled sarcoma and mesenchymal cell lines–over 1000 
samples.
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[35, 36]. Moreover, although similar experiments with 
human embryonic stem cells pointed to the importance of 
signaling-based regulation in determining the embryonic 
state, including an increased expression of genes in the 
Wnt, Hh, and Notch signaling pathways [37], they were 
unable to identify definitive EFT markers. 

In the present study, we have developed an ensemble 
of deep neural networks that is able to recognize different 
developmental stages using transcriptomic data. To 
the best of our knowledge, this is the first DNN-based 
tool designed to identify cell phenotypes spanning the 
EFT. The constructed DNN ensemble convincingly 
outperformed other powerful classification algorithms on 
both Affymetrix and Illumina platforms (Supplementary 
Figure 1). When the nested cross validation is organized 
in such a way that the test set is comprised of the samples 
coming from datasets that weren’t used during the 
training, all standard classifiers fall short compared to 
DNNs. We observed that cross validation was important, 
especially in cases where samples from the same dataset 
are present in both training and validation sets. In that 
case, the classifier performance is greatly overestimated 

(validation performance above 0.9 for all methods; data 
not shown). This emphasizes the degree to which batch 
effects [38, 39] affect transcriptomic data and the need 
for careful selection of the cross-validation procedure to 
obtain unbiased estimation of classifier behavior on new 
data sets. Looking at the confusion matrices coming from 
both DNN ensembles, one can clearly see that iPSCs are 
often confused with ESCs (Figure 1A, 1B). This supports 
the fact that properly reprogrammed iPSCs are almost 
identical to ESCs on the transcriptome level [40, 41].

In contrast to the CellNet approach [42], our 
system does not distinguish between different types of 
differentiated cells (liver, muscle, kidney, etc.) but instead 
is aimed at recognizing different states of early embryonic 
development and identifying whether cells have traversed 
the EFT. Accordingly, we introduced an Embryonic 
Score (E Score) which acts as an integrative measure 
of development stage (Figure 1C). We created a public 
website www.Embryonic.AI (online implementation of 
trained DNN ensemble) to enable an E Score calculation 
for the broad scientific community with user provided 

Figure 6: Warburg effect in cells with COX7A1 deletion. (A, B) The figure shows that a glycolytic shift, normally observed 
in cancer cell lines (CRL3042, CRL3044) and E3 (hESC derived) progenitor cell line, but not adult primary preadipocyte cells, (C, D) 
Glycolytic shift is also observed in cells, lacking COX7A1 gene: heart cells derived from COX7A1 –/– mouse; heart cells from a COX7A1 
+/+ littermate mouse, age 2 months. Just as in cancer and E3 progenitor cells, glycolysis level was higher in cells with COX7A1 deletion.
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transcriptomic data and to collect data to facilitate precise 
EFT identification based on additional transcriptomic data.

Identification of COX7A1 as a marker of cells 
that have traversed EFT demonstrates the utility of our 
DNN ensemble. COX7A1 was originally reported as 
a marker of cardiac and skeletal muscle suggesting a 
potential role in increased ATP production in these tissues. 
Indeed, the gene is expressed at relatively high levels 
in muscle cells, consistent with increased demand for 
OXPHOS, and COX7A1 knockout mice develop a dilated 
cardiomyopathy [30]. However, paradoxically ATP levels 
in the knockout model were reported to be higher than 
normal [30] reflecting the complex role of OXPHOS in 
multiple metabolic pathways. COX7A1 is also expressed 
in skeletal muscle and its expression is reported to be 
reduced during inflammation potentially consistent with 
a reversion to a regenerative state [43]. In another report, 
COX7A1 was identified as an indirect target of HIF1A via 
Activin/Nodal signaling providing intriguing indications 
of potential COX7A1 involvement in key phenotypic and 
metabolic differences between embryonic and adult cells 
[44]. Consistent with its role in metabolism, COX7A1 
regulation has been implicated in diabetes [45] and is 
induced during browning of white adipose [46, 47]. 

In the present study, we have demonstrated that 
COX7A1 is downregulated in embryonic compared to adult 
cell lines using two independent cohorts of embryonic and 
adult cell lines. This result led us to investigate COX7A1 
expression in whole mouse embryos collected at different 
time points spanning the EFT event (Figure 2). The up-
regulation of the gene following EFT coincided with the 
downregulation of Lin28b (a biomarker of pre-EFT cells) 
in the same embryo samples. Cancer cell lines which 
share many properties with embryonic cells showed a 
significant reduction in COX7A1 compared to normal cells 
(Figures 4, 5). Interestingly, cytochrome C oxidase (COX) 
subunits are shown to be involved in prostate cancer [48] 
and in tumor cell survival under hypoxic conditions [49]. 
Whether changes in COX7A1 expression play a causal role 
in regulating cellular metabolism or are the downstream 
result of changes in cellular metabolism remains to be 
determined. In addition, further studies are warranted to 
define potential linkage between COX7A1 expression 
and various manifestations of the metabolic state such as 
the propensity for apoptosis. Although the exact role of 
COX7A1 in the diverse metabolic pathways regulating 
malignancy is not yet clear, recent research reported by 
Mishra demonstrating that COX7A1 overexpression 
in the cancer cell line, A549, can induce apoptosis via 
an intrinsic mechanism (Caspase 9, 3 activation) [50] 
supports its potential role as a tumor suppressor. 

We hypothesize that variation of COX7A1 
expression level in different cancer lines could correlate 
with the magnitude of glycolytic shift or OXPHOS 
capacity in these lines and consequently with the 

varying degrees of tumor aggression, invasiveness, and 
sensitivity to chemotherapeutic regimens. Accordingly, 
lack of COX7A1 expression may be responsible for the 
embryonic-like glycolytic phenotype of tumors and a 
sensitivity to anoikis, whereas malignant cells expressing 
the gene may correlate with a more oxidative and anoikis-
resistant phenotype. In addition, unravelling the role of 
COX7A1 and the mechanisms regulating its expression 
could provide an in vitro model of the EFT that could 
allow, for the first time, a robust system for the analysis 
of the down-regulation of a regenerative phenotype in 
many tissues at the EFT. The most intriguing question 
remaining to be determined that could benefit from such 
model systems is whether maintaining cells in a pre-EFT 
pattern of gene expression facilitates an embryonic-like 
regenerative ability without malignant transformation.
One explanation for the evolutionary selection for the 
repression of scarless regenerative potential after EFT 
is that for most vertebrates, repression of regenerative 
potential once organogenesis is complete functions as 
a tumor suppression mechanism. Consistent with this 
hypothesis is the well-known observation that many 
cancers show markers of embryonic reversion including 
the reactivation of telomerase activity [51], oncofetal 
protein expression, and the Warburg effect [52]. As a 
result, the repression of epimorphic potential at the EFT, 
evidenced by the onset of COX7A1 expression, may 
provide an important role in tumor suppression. Thus, 
the loss of epimorphic potential may allow for a limited 
degree of fibrotic tissue repair while simultaneously 
reducing the risk of malignant transformation much in 
the same way that repression of the telomerase catalytic 
component (TERT) early in development may decrease 
malignancy risk. Our work provides a novel in vitro tool 
for characterization of embryonic cellular states. We 
demonstrate the potential of the DNNs to deconvolute 
complex data and therefore facilitate the discovery of new 
cellular markers, such as COX7A1, which are connected 
to the transition between embryonic and adult/fetal 
states. Expression and metabolic profiling of embryonic 
and adult states clearly demonstrates that COX7A1 
discriminates between two distinct phenotypes: 1.) the 
embryo-onco phenotype comprising of highly glycolytic/
OXPHOS impaired COX7A1 negative cancer cells, iPSCs, 
embryonic and partially differentiated embryonic derived 
cell lines and 2.) the F/A phenotype comprising of all other 
COX7A1 positive cells including adult stem cells. These 
insights provide at least one robust marker for the switch 
between these states. Further research is warranted to 
determine the extent to which highly glycolytic/OXPHOS-
compromised COX7A1 deficient cells have increased 
regenerative ability, and the role of the phenotype in 
diverse aspects of tumor cell biology. The use of robust 
markers such as COX7A1 may facilitate these studies as 
well as a detailed examination of the epigenetic regulation 
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of the EFT, thereby advancing our understanding of 
induced tissue regeneration (iTR) and oncogenesis.

METHODS

Human cell lines and samples microarray 
analysis

BioTime’s clonal embryonic progenitor cell (EPC) 
lines 4D20.8, E3, and SK5 were generated by partial 
differentiation of hESCs (PTA8172, ATCC) followed by 
clonal expansion. Osteochondral lines 4D20.8 and MSC 
were differentiated by exposure to serum free medium 
containing TGFb3 10 ng/ml, lipogenic lines E3 and SAT 
were differentiated in serum free medium containing 
rosiglitazone 1 uM and T3 2 nM.  The MSCs (hMSC-BM) 
were obtained from PromoCell, Heidelberg Germany. The 
subcutaneous preadipocytes and adult myoblasts were 
obtained from Zenbio, Triangle Park, NC and the sarcoma 
lines were obtained from ATCC.  Cells were lysed with RLT 
buffer (Qiagen) containing b-mercaptoethanol and RNA was 
prepared using Qiagen mini kits following manufacturer’s 
instructions, RNA concentrations were measured using 
a Nanodrop spectrophotometer and RNA integrity was 
determined by denaturing agarose gel electrophoresis or by 
an Agilent 2100 bioanalyzer. RNA expression was obtained 
using Illumina Human HT-12 v4 BeadArrays, and RNA 
expression magnitudes for certain genes were verified by 
qRT-PCR. In preparation for Illumina BeadArrays, total 
RNA was linearly amplified and biotin-labeled using 
Illumina TotalPrep kits (Life Technologies, Temecula, CA, 
USA). The cRNA quality was measured using an Agilent 
2100 Bioanalyzer before being hybridized to Illumina 
BeadChips, processed, and read by an iScan microarray 
scanner according to the manufacturer’s instructions 
(Illumina, San Diego, CA, USA). Values under 130 relative 
fluorescence units (RFUs) were considered as nonspecific 
background signal.  Raw microarray data were normalized 
with the R BeadArray library. Analysis of microarray data 
was performed using the R lumi library.

Data collection and integration for machine 
learning

 We used data from public databases Gene 
Expression Omnibus (GEO) [53, 54] and ArrayExpress 
[55]. Each sample belongs to one of the following 
classes: embryonic stem cell (ESC), induced pluripotent 
stem cell (iPSC), embryonic progenitor cell (EPC), 
adult stem cell (ASC) and adult cell (AC). Samples in 
this study were obtained from the following microarray 
platforms: Illumina HumanHT-12 V4.0 (GPL10558), 
Illumina HumanHT-12 V3.0 (GPL6947), Affymetrix HT 
Human Genome U133A Array (GPL3921), Affymetrix 
GeneChip Human Genome U133 Array Set HG-U133A 
(GPL4557), Affymetrix Human Exon 1.0 ST Array 

(GPL5188), Affymetrix Human Genome U133 Plus 2.0 
Array (GPL570), Affymetrix Human Genome U133A 2.0 
Array (GPL571), Affymetrix Human Gene 1.0 ST Array 
(GPL6244), Affymetrix Human Genome U133A Array 
(GPL96), Affymetrix Human Genome U133 Plus 2.0 
Array (GPL11670). The final number of samples used for 
training and validation were grouped by platform vendor 
and cell type and shown in Supplementary Table 4.

Data processing for machine learning

We employed separate processing pipelines for 
Affymetrix and Illumina data. For the processing of 
Affymetrix data sets we utilized Frozen RMA (fRMA)
[56] method, which allows the analysis of microarrays 
individually or in small batches and then combined the 
data for analysis. After obtaining probe expression data, 
we converted it to gene expression using annotation 
tables, available from GEO for Illumina platforms 
and ‘AnnotationDbi’ package from Bioconductor for 
Affymetrix platforms. Such tables contain probe-gene 
mapping for particular microarray platform. If multiple 
probes were mapped to the same gene, we used geometric 
mean to average their signals. After converting to genes, 
non-normalized datasets (separately for Affymetrix 
and Illumina platforms) were processed with quantile 
normalization algorithm. The samples to be classified were 
normalized using same set of quantiles as were determined 
for training dataset. We used gene expression values as 
input features for each Affymetrix and Illumina classifiers.

Pathway analysis

For pathway activation analysis, we used iPANDA 
algorithm [17]. For each investigated sample group, we 
performed a case-reference comparison using Student’s 
t-test and generate the list of significantly differentially 
expressed genes and calculate the Pathway Activation 
Strength (PAS) score for 367 pathways currently 
annotated, a value which serves as a qualitative measure 
of pathway activation. Positive and negative PAS values 
indicate pathway up and downregulation, respectively. 
In this study, we used 50 randomly chosen ESC samples 
as a reference group and the genes with FDR-adjusted 
p-value < 0.05 were considered significantly differentially 
expressed. After PAS values had been calculated for each 
sample they were used as an input for machine learning 
algorithm training and validation.

K-nearest neighbors algorithm (kNN)

K-nearest neighbors algorithm is a simple non-
parametric method, that can be applied to regression. The 
underlying idea of the method is to predict a value of a given 
object as an average of the values of its k nearest neighbors. 
The choice of optimal k is defined by the properties of 
the data. In the current study, we used the scikit-learn 
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implementation of the method [57]. Hyperparameters tuned 
were the number of neighbors to use (5–20), the neighbor 
weighting (uniform of inversely proportional to their 
distance), and metric (Manhattan, Euclidean, or Minkowski 
with p = 3).

Logistic regression (LR)

 Logistic regression is a widely used straightforward 
approach to model the dependence of a given variable Y 
on a set of independent variables Xi. In the current study 
we used scikit-learn implementation [57]. First, we 
reduced data dimensionality using Principal Component 
Analysis with whitening, and then trained multiclass 
classifier with L2-regularization. Hyperparameters tuned 
were the number of principal components (100–500), and 
regularization strength (0.1–100).

Support vector machines (SVM)

SVM is another classical machine learning algorithm, 
which, in its basic form, constructs a set of hyperplanes 
separating multidimensional data into classes. The use 
of non-linear kernels allows SVM to perform non-linear 
classification. In the current study we used the scikit-learn 
implementation of the method [57]. Hyperparameters 
tuned were the type of kernel (linear, sigmoid, 3rd-degree 
polynomial, and radial basis function [Gaussian] kernels), 
and regularization strength (0.1–100).

Gradient boosting machines (GBM)

Gradient boosting is a machine learning method used 
for classification and regression problems. This method 
uses an ensemble of weak models, like classification trees 
in this case, to generate predictions. We used XGBoost 
library [53] to implement gradient boosting classifier.  
Hyperparameters tuned were the number of trees grows 
(10–100), maximal depth of each tree (3–8), subsampling 
ratio (0.5–1.0), regularization parameters gamma (further 
partitioning threshold, 0.5–1) and minimal child weight 
(1–5), and step size shrinkage (0.005–0.05).

Multiclass deep neural network (DNN)

The number of input layer neurons was equal to the 
number of genes used. Hyperparameters tuned were the 
number of hidden layers (2–4), the number of neurons 
in each hidden layer (100–500), activation function for 
all layers except output one (ReLU, sigmoid, or tanh), 
L2 weight-regularization strength (0.01 to 0.05), and 
dropout value (0.0 to 0.5). The output layer used softmax 
activation. The neural network was trained for 200 epochs 
using Adam optimizer51.

Ensemble of deep neural networks (DNN ens)

The design of each network was similar to multiclass 
network, except the output layer had only one neuron 
with sigmoid activation. Since running hyperparameter 
optimization for DNN ensemble is very computationally 
expensive, each network used the set of hyperparameters 
identified as optimal for multiclass network: 2 layers of 200 
neurons, ReLU activation, 0.2 dropout, and 0.03 L2 weight 
regularization strength. We trained 20 binary networks 
for each target platform set (Affymetrix and Illumina) to 
perform pairwise (one-vs-one) classification. Then we 
evaluated the overall ensemble vote for each class as the 
sum of four one-vs-one networks, which perform pairwise 
distinction of this class from four other classes.

Training classifiers

The majority of the deep learning experiments 
presented in this research paper were performed in 2015 
and utilized the state of the deep learning techniques 
available at that time. To train the deep neural networks on 
the chosen datasets, we employed the following scheme 
(Supplementary Figures 1 and 2). First, we preprocessed 
the datasets (gathered from public data repositories, as 
well as the one provided by BioTime, Inc.) to convert the 
probe data into genes, and apply quantile normalization. 
Afterwards, we employed a nested cross validation 
approach to tune hyperparameters and obtain an unbiased 
estimation of classifier performance. Both outer and inner 
loops used stratified labeled 3-fold cross validation, with 
samples from same dataset belonging to either training 
or validation set, but not both. In outer loop, we held 
out a part of the data, and used the remaining samples to 
optimize the classifier hyperparameters. We then verified 
that hyperparameters were not overfit by the training 
classifier with found optimal hyperparameters, and tested 
it on the held out data. The hyperparameter tuning was 
repeated for each fold. This result was designated “Ext. 
validation”. We used Tree of Parzen Estimators (TPE) 
algorithm (as implemented in hyperopt package [55]) 
to optimize hyperparameters. For each parameter set 
attempted, we ran 3-fold cross validation, and used 
mean validation score as optimization target. For best 
hyperparameter set, we presented its mean performance 
on training (“Training”) and validation (“Int. validation”) 
sets in internal cross validation loop. We only presented 
training and validation scores for the DNN ensemble, 
since we did not run hyperparameter estimation for it due 
to the high computational cost.

Determining sample’s embryonic score

To determine how close the sample is to the embryonic 
state we used an ensemble of deep neural network predictors, 
built upon one of the proposed approaches (Supplementary 
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Figure 3). The sample to be classified was subjected to same 
preprocessing protocol as training samples from appropriate 
platform. The genes were supplied to trained deep neural 
network predictors’ input. Our DNN ensemble produced 
five ensemble votes - one for each class - which we used to 
calculate the Embryonic Score (ES) as follows: 
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i i

i
i

=

=

∑

∑
1

5

1

5

where Class1–5 is the ensemble vote for each class, 
and w1–5 - are arbitrary degrees of embryonic development 
for chosen classes (we assign wESC = 1.0, wiPSC = 0.9, wEPC 

= 0.7, wASC = 0.5, wAC = 0.0). As a result, the system 
outputs calculated embryonic score for each sample. In 
order to find out what genes were good markers of each 
stage of cell development, we used a previously developed 
method  [58] that allows estimation of the importance of 
each feature directly from DNN’s weight matrices. This 
method measures the magnitude by which every input 
feature was propagated all the way to the output layer. For 
verification, we measured gene importance from trained 
multiclass GBM classifier by measuring how many times 
a particular feature is used to split a tree (f-score).

Human cell line RNA-seq analysis

All human embryonic cell lines were derived from 
Human embryonic stem cell lines H9 (WA09; WiCell 
Research Institute, Inc.), ESI-017 (ESI BIO, Singapore) and 
MA03 (International Stem Cell Registry, UMASS Medical 
School). RNA extraction performed using Qiagen’s RNeasy 
Mini Kit. RNA sequencing performed by on Illumina Hiseq 
2500 machines, 100 bp paired end sequencing, and the 
resulting data analyzed by TUXEDO suite [59].

Mouse embryo RNA-seq analysis

Total mouse embryo RNA was procured from 
Zyagen, Inc., San Diego, CA. RNA sequencing performed 
by on Illumina Hiseq 2500 machines, 100 bp paired end 
sequencing, and the resulting data analyzed by TUXEDO 
suite [59]. All samples were sequenced to the depth of  
25 million 100 bp, paired end reads).

COX7A1 methylation analysis of EPCs and ACs

DNA extraction, bisulfite library construction and 
90G (150 bp paired end) per sample sequencing on Illumina 
Hyseq 2500 machines performed by Beijing Genome 
Institute (BGI). Analysis performed using Bismark suite [60].

Gene expression analysis of human tissues and 
cell lines

Human samples were obtained from Advanced 
Bioscence Resources, Alameda, CA (fetal samples) and 
Coriell Institute for Medical Research, Camden, NJ (adult 
samples). RNA extraction performed using Qiagen’s 
RNeasy Mini Kit. All microarray expression profiling 
analyses performed on Illumina’s HumanHT-12_V4_0_
R2 microarray chips. Primary analysis performed using 
Illumina’s GenomeStudio version 1.9.0. Data normalized 
and expression profiles determined using lumi package in 
R [61].

Gene expression analysis of normal and cancer 
cell lines

Normal controls and the cancer cell tissues were 
purchased from Asterand Biosciences, Detroit, MI. RNA 
extraction performed using Qiagen’s RNeasy Mini Kit. 
All microarray expression profiling analyses performed 
on Illumina’s HumanHT-12_V4_0_R2 microarray chips. 
Primary analysis performed using Illumina’s GenomeStudio 
version 1.9.0. Data normalized and expression profiles 
determined using lumi package in R [61].

COX7A1 methylation analysis using publicly 
available data

We utilized the following datasets found at GEO 
database: GSE49996 Lung adenocarcinoma, GSE58272 
Squamous cell carcinoma, GSE73003 Hepatocellular 
carcinoma, and GSE35242 Prostate cancer cells. All 
datasets were obtained on Illumina HumanMethylation27 
BeadChip platform. COX7A1 and RSP10 (housekeeping 
control) average beta values were calculated using Genome 
Studio software v2010.3 and plotted using Prizm 6 software.

COX7A1 expression analysis using publicly 
available data

The following large data sources had been used to 
evaluate COX7A1 expression in cancer cell lines: Sarcoma 
project https://sarcoma.cancer.gov/sarcoma, FANTOM5 
project http://fantom.gsc.riken.jp/5, GEO database https://
www.ncbi.nlm.nih.gov/geo, referred as “Pooled GEO data”. 
Relative expression level of COX7A1 for each data source 
was downloaded and plotted using Prizm 6 software.

COX7A1 expression analysis using BioTime 
proprietary sarcoma data

 All sarcoma lines were obtained from ATCC. RNA 
extraction performed using Qiagen’s RNeasy Mini Kit. 
All microarray expression profiling analyses performed 
on Illumina’s HumanHT-12_V4_0_R2 microarray chips. 
Primary analysis performed using Illumina’s GenomeStudio 
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version 1.9.0. Data normalized and expression profiles 
determined using lumi package in R  [61].

Energy process: OCR and ECAR

OCR and ECAR of the various cell lines were 
obtained using a Seahorse XFp bioanalyzer (Agilent).  
Seahorse XF glycolysis stress test kits and mito stress test 
kits and reagents were used according to manufacturer’s 
instructions. Data from cell lines were normalized by 
cell number which was obtained for each well of the  
8 well XFp plates. Wave desktop 2.3 software (Agilent 
Technologies) was used to analyze the normalized results.
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