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The use of liquid biopsies in the detection, diagnosis and treat-1

ment monitoring of different types of cancers and other diseases2

often requires identifying and enumerating instances of analytes3

that are rare. Most current techniques that aim to computa-4

tionally isolate these rare instances or events first learn the sig-5

nature of the event, and then scan the appropriate biological6

assay for this signature. While such techniques have proven to7

be very useful, they are limited because they must first establish8

what signature to look for, and only then identify events that9

are consistent with this signature. In contrast to this, in this10

study, we present an automated approach that does not require11

the knowledge of the signature of the rare event. It works by12

breaking the assay into a sequence of components, learning the13

probability distribution of these components, and then isolating14

those that are rare. This is done with the help of deep gener-15

ative algorithms in an unsupervised manner, meaning without16

a-priori knowledge of the rare event associated with an analyte.17

In this study, this approach is applied to immunofluorescence18

microscopy images of peripheral blood, where it is shown that it19

successfully isolates biologically relevant events in blood from20

normal donors spiked with cancer-related cells and in blood21

from patients with late-stage breast cancer.22

Correspondence: aoberai@usc.edu23

1. Introduction24

Liquid biopsy (LBx) has demonstrated the feasibility and25

clinical utility of blood-based cancer detection through appli-26

cations in early detection, disease monitoring, and treatment27

management (1–7). Studies have shown that even asymp-28

tomatic patients can exhibit detectable levels of cancer-29

associated analytes in the blood (8–12). These analytes in-30

clude acellular components such as cell-free DNA, RNA,31

proteins, extracellular vesicles, and cellular components like32

circulating cancer cells and tumor microenvironment cells.33

While cell-based detection approaches have been shown to34

identify a wide spectrum of cancer-related cells, they may35

struggle to scale into clinical practice due to the high degree36

of human involvement required for evaluating each assay in37

order to identify these rare events.38

Circulating tumor cell (CTC) counts have been demonstrated39

to have prognostic value (1–3) and predictive utility (4, 13–40

15), while CTC characterization has shown substantial het-41

erogeneity in both phenotype (16–19) and genotype (20–23).42

Specific biological features, such as protein marker expres-43

sion, have been found to be critical for therapeutic decision-44

making(4, 7). However, the field has been limited to either45

enumeration approaches of CTCs in clinical trials or limited46

biological characterization in clinical studies. While enumer-47

ation approaches have demonstrated clinical utility, biolog-48

ical characterization connects primary tumors to metastatic49

disease in ways that could offer deeper clinical insights.50

Several sample preparation methods have been developed51

(1, 2, 24), each of which produces image datasets of target52

cells (cancer-related cells) mixed with non-target immune53

cells, often at ratios as extreme as 1 in 1 million. These54

imaging results require extensive human interpretation, typi-55

cally performed by a pathology-trained technician supported56

by computational algorithms, which require significant prior57

knowledge about features that are biologically relevant. This58

restricts the scalability across multiple disease systems and59

laboratories.60

Beyond scalability limitations, the heterogeneity of biomark-61

ers emerging from LBx highlights the need for more gen-62

eralizable analyte classification and discovery tools. Within63

the cancer cell population, various phenotypes—including64

platelet-coated CTCs (7) (CTCs that have platelets at-65

tached), epithelial-to-mesenchymal transition (EMT) CTCs66

(25) (cells transitioning from an epithelial to a mes-67

enchymal state), and CTC clusters (26–30) (aggregates of68

CTCs)—have emerged as powerful predictive biomarkers in69

prostate, breast, lung, colorectal, and other cancers. Addi-70

tionally, increasing evidence has demonstrated the presence71

of various tumor microenvironment cells in the blood of can-72

cer patients at clinically relevant levels, including circulat-73

ing endothelial cells (31) and cancer-associated fibroblasts74

(32), which can serve as companion biomarkers to traditional75

CTCs. Methods that enrich for a specific cellular population76

limit the ability to detect the heterogeneity of known circulat-77

ing cancer-associated cells and to discover novel biomarkers78

in the LBx. Further, if multiple classes of events are deemed79

important, methods that can detect each class must be devel-80

oped, which can be a difficult task as it requires large amounts81

of labeled data. These factors necessitate approaches that can82

accommodate biomarker diversity without relying on signifi-83

cant prior knowledge. With this as motivation, we present an84
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automated, unsupervised approach that does not require the85

prior specification or knowledge of a relevant or interesting86

event. Instead, the approach operates under the principle that87

these events tend to be rare, and then develops a method for88

identifying a small cohort of the most rare events without any89

supervision regarding what these rare events are.90

In machine learning, the task of identifying rare events is of-91

ten referred to as anomaly detection. Unsupervised anomaly92

detection is carried out without any prior knowledge regard-93

ing which events are rare and is accomplished by two broad94

categories of techniques. The first includes methods that ex-95

plicitly evaluate the probability density (or log-density) of a96

given sample. This is done by transforming the sample of97

interest from its native probability measure to a known, ref-98

erence measure, and computing the Jacobian of this trans-99

formation. The transformation may be achieved by energy-100

based models (EBMs) (33), normalizing flows (NFs) (34),101

and score-based diffusion models (35). For an applica-102

tion of these models to anomaly detection the reader is re-103

ferred to (36, 37). The evaluation of the probability (or log-104

probability) typically requires computing the Jacobian of the105

transformation, which makes these techniques computation-106

ally expensive.107

The second category of anomaly detection methods includes108

those that train an autoencoder (AE) to reproduce events from109

the distribution of interest, and then use the reconstruction er-110

ror as a metric of rarity (38–40). AEs are a class of genera-111

tive, unsupervised learning models with two components: an112

encoder and a decoder. The encoder network reduces the di-113

mensionality of the input data to an n-dimensional vector (la-114

tent vector), and the decoder network reconstructs the input115

data from the latent vector. The models are trained to max-116

imize the ability to reconstruct the input data with minimal117

information loss in the latent vector encoding. The logic be-118

hind using these for anomaly detection is that the AE learns119

to reconstruct common events more accurately, as they are120

the supermajority of the training set, and produces a larger121

reconstruction error for rare events. When compared with122

techniques that directly compute the probability, these tech-123

niques are computationally efficient but lack the underlying124

rigorous justification.125

This issue can be addressed by training a special type of AE126

called the denoising autoencoder (DAE) and using its recon-127

struction error as a metric for rarity. DAEs are designed to128

reconstruct the original data from a noisy version of the data;129

it can be shown that the reconstruction error for a DAE ap-130

proximates the magnitude of the score function (the gradient131

of the logarithm, ∇ log(p)) of the probability density function132

(41) for the data distribution. For most density functions, the133

magnitude of the score function is small in regions where the134

probability mass is concentrated (high-density regions) and135

large in the low-density regions. The score function, there-136

fore, is a good measure of the rarity of an event (see Figure137

1 for example). Motivated by these arguments, in this study138

we employ a DAE for detecting rare events.139

Our approach begins by dividing a single four-channel im-140

munofluorescence (IF) image of a slide into approximately141

a b

Fig. 1. (a) Iso-contours of the probability density function (pdf) of a Gausian mixture
model in two dimensions. (b) Iso-contours of the magnitude of the score function
for the same pdf. Note that the score function is large in regions where the density
is small.

2.5 million tiles (see Figure 2). The size of the tile is selected142

so that each tile contains, on average, up to 4 events, where143

an event may be a cell, a vesicle or some other blood-based144

analyte. For applications considered in this study, this yields145

tiles with 32 × 32 pixels. Thereafter, uncorrelated Gaussian146

noise is added to each tile and pairs of clean and noisy tiles147

are used to train a DAE. When the training is complete, each148

tile is used as input to the DAE and the magnitude of the dif-149

ference between the output of the DAE and the tile itself is150

evaluated for each IF channel. This scalar is multiplied with151

user-supplied channel weights, such that markers with impor-152

tant variance in the assay are emphasized, and the resulting153

products are summed to yield a single reconstruction error154

value for each tile. This error is used as a rarity metric to155

rank the tiles from most rare (largest reconstruction error) to156

least rare and a cohort N̄ ≪ N rare tiles is identified. In the157

final step, an algorithm to remove imaging artifacts from the158

rare tile cohort is applied and tiles with artifacts are replaced159

with tiles with slightly lower rarity metric. The approach is160

described in detail in the Methods section. We refer to this161

algorithm as the Rare Event Detection algorithm, or the RED162

algorithm in short.163

2. Results164

In this section we describe the results obtained from apply-165

ing the RED algorithm to two sets of IF images. The first set166

corresponds to blood from normal donors that is spiked with167

two different cell types, while the second set corresponds to168

blood from late stage breast cancer patients. Both sets com-169

prise IF images with four channels representing DAPI (for170

DNA), a cocktail of cytokeratins (for epithelial cells) labeled171

with Alexa Fluor 555, vimentin (for mesenchymal cells) la-172

beled with Alexa Fluor 488, and CD45/CD31 (for immune173

and endothelial cells, respectively) multiplexed in the same174

channel, labeled with Alexa Fluor 647. In order to keep the175

notation succinct, we refer to these channels as D, CK, V and176

CD, respectively. The collection and preparation of the sam-177

ples, the construction of the assay, and the image acquisition178

are described in Section 4.1. The subsequent steps that begin179

with an IF image for a given subject and end with the rank180

ordering of each tile (defined as a 32 × 32 × 4 sub-region of181

an image) as per its rarity metric are described in Section 4.2.182
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2.1 Rare event detection in spiked cell samples
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Fig. 2. Schematic diagram of the rare event detection (RED) pipeline. In Step 1, on IF image is split into ≈ 2.5 million non-overlapping tiles. In Step 2, pairs of synthetically
generated noisy tiles and their clean counterparts are used to train a denoising autoencoder (DAE). In Step 3, noisy tiles are used as input to the trained DAE and the
difference between the de-noised and the original clean version of the tiles is used in combination with user-specified IF channel weights to evaluate the reconstruction error
for each tile. Tiles with large values of the reconstruction error are identified and are deemed as being rare. In Step 4, an approach that assumes that true rare events are
unlikely to be localized to a region within an IF image is used to eliminate artifacts from the rare tile cohort.

In order to assess the utility of the RED algorithm, we adopt183

the following perspective. We note that a typical IF image184

contains around N ≈ 2.5 million tiles, and most of these185

contain immune cells that are not biologically interesting.186

Our hypothesis is that the RED algorithm is able to reduce187

this number down to a cohort that is about a thousand-fold188

smaller, N̄ = 2,500, without eliminating a significant propor-189

tion of biologically interesting cells. We note that the utility190

of the much smaller rarity-ranked cohort is that it enables191

manual and automated downstream tasks, including single192

cell genomics and proteomics, that would not be feasible193

when working with the original cohort of 2.5 million tiles.194

Further, it is likely that there is utility in the ranking itself -195

that is, the fact a tile appears higher in the ranking is likely196

to be significant - though this remains to be verified in later197

studies.198

For a given value of N̄ , the rare tile cohort identified by199

RED represents tiles that have been classified as containing200

an interesting event. In order to quantify the performance of201

this classification, we compare this set with an independent202

set that is determined through an alternate, human-assisted203

pipeline described in our earlier work (7, 25, 42) and summa-204

rized in Section 4.2. We refer to this approach as the Outlier205

Clustering Unsupervised Learning Automated Report (OC-206

ULAR ) pipeline. In this pipeline, several machine learning207

algorithms are first used to identify an average of approxi-208

mately 3,000 (1,172 to 10,617, M = 3,162, SD = 2,676)209

potentially interesting events in an IF image. This is followed210

by a step where two human-trained analysts select the biolog-211

ically interesting events from this reduced set. We treat the212

set identified by the OCULAR pipeline as the reference, and213

report our true positive rate (TPR) relative to this set. We214

also vary N̄ and construct the receiver operator characteristic215

(ROC) curve for our approach. We plot the ROC curve and216

report the area under the curve (AUROC), noting that only217

the initial part of the curve, where N̄ is small, is useful in an218

application of the RED algorithm.219

For the late stage breast cancer patients, we also quantify the220

performance of the RED algorithm using a human-assisted221

pipeline. Within this pipeline, the N̄ = 2,500 rare tiles iden-222

tified by the RED algorithm for every subject are examined223

by two human experts, who extract the biologically interest-224

ing events from this cohort. We do this to identify events that225

were detected by the RED algorithm but not the OCULAR226

pipeline. There are two important metrics to assess the per-227

formance of the RED algorithm: the percentage of events de-228

tected by the OCULAR pipeline that are also detected by the229

RED algorithm and the number of the additional events that230

are detected by the RED algorithm. We find that the RED al-231

gorithm finds 66 out of the 79 events detected by OCULAR232

; additionally it finds 91 events that are not detected by the233

OCULAR pipeline. This, along with the fact that it requires234

minimal manual optimization, clearly illustrates the utility of235

this approach.236

2.1. Rare event detection in spiked cell samples. The237

ND samples with cell lines (SK-BR-3 and HPAEC cell lines)238

spiked in comprise nine IF slides. Of these nine slides, three239

are spiked with only SK-BR-3 cells, three are spiked with240

only HPAEC cells, and three are spiked with both. The SK-241

BR-3 cells are a model system for rare epithelial cells or242

CTCs, while the HPAEC cells are a model system for rare en-243

dothelial cells. On average, each IF slide contains 342 (min.244

= 19, max. = 1030) spiked-in cells as identified by the OCU-245

LAR pipeline.246

For each IF image we apply the RED algorithm, vary N̄ from247

zero to N and compute the ROC curves consisting of the FPR248

and TPR values for each N̄ . We do this for each spiked cell249

type separately and also for both cell types combined. This250

results in six ROC curves for SK-BR-3, six ROC curves for251

HPAECs, and nine ROC curves both cell types combined.252

For each set (SK-BR-3, HPAEC cells, and combined) we253

evaluate the lower quartile, median, and upper quartile ROC254

curve values. In Fig. 3 we plot the initial part of these curves255
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a b

Fig. 3. Initial part of the ROC (FPR range from 0 to 0.001) curve for the rare event detection algorithm applied to the spiked cell slides. Subfigure (a) shows the ROC curve
for SK-BR-3 and HPAEC cell lines separately, while subfigure (b) shows the ROC curve for both cell lines. The solid curves represent the median ROC across all subjects,
and the dashed curves represent the lower and upper quartiles.
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Fig. 4. Representative gallery of rare events in samples from normal donors spiked with SK-BR-3 and HPAEC cell lines. For each rare event the composite image is shown
followed by the biomarker fluorescent channels (specified by the headers). The top three rows show SK-BR-3 events and the bottom three rows show HPAEC events. The
left column shows the events detected by RED and the right column rows shows the events not detected by RED.

(until FPR = 0.001). The solid curve represents the median,256

and the dashed lines represent the lower and upper quartiles.257

We observe that in every case the new algorithm yields a258

mean TPR close to unity (0.993, 0.965, and 0.985) for a very259

small FPR = 0.001. We do not plot the entire ROC curve260

since the values of the area under the ROC curve (AUROC),261

which is reported in Table 1, are very close to 1 and these262

curves do not reveal any information beyond this.263

In Table 1, we report the statistics for TPR across the nine264

subjects for N̄ = 2,500 noting that this value of N̄ corre-265

sponds to a 1,000-fold reduction in data. For both cell types,266

the value of TPR with this 1,000-fold reduction in data is high267

(mean = 0.993 for SK-BR-3 and mean = 0.965 for HPAEC).268

Overall, with 1,000- fold data reduction using the RED algo-269

rithm we miss around 1.5% of biologically relevant events.270

In this table we also report the area under the ROC curve271

(AUROC) for the two cell types and all spiked cells taken to-272

gether. The AUROC values obtained are very close to unity.273

In Fig. 4 we plot some of the tiles from the two spiked cell274

lines (SK-BR-3 and HPAEC) that were detected by the RED275

algorithm within a cohort of N̄ = 2,500 tiles. We also plot276

some that were missed. We observe that the tiles that were de-277

tected tended to contain large, bright pieces of relevant cells,278

whereas those that were missed contained smaller pieces.279

2.2. Detection of rare cells in breast cancer patients.280

The late-stage breast cancer set comprises eleven IF labeled281

slides with each slide representing a sample from a unique282

late-stage breast cancer patient. On average each IF slide283

contains 8 (min. = 2, max. = 14) biologically relevant events284

as identified by the OCULAR pipeline. These biologically285

relevant events can be grouped into seven categories based286

on signal in the following channels: D-|CK, D|CK, D|CK|V,287
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2.2 Detection of rare cells in breast cancer patients

Table 1. Application of the rare event detection algorithm to the spiked cell dataset. Columns 2-5: statistics for the true positive rate for a cohort of 2,500 rare tiles identified
by the algorithm. Columns 6-9: statistics for the AUROC obtained by varying N̄ from 0 to N . Values are reported for CTCs (Row 1), endothelial cells (Row 2) and their
combination (Row 3).

TPR (N̄ = 2,500) AUROC

Cell type Mean St. dev. Min. Max. Mean St. dev. Min. Max.

SK-BR-3 0.993 0.014 0.962 1.00 1.00 0.0 1.00 1.00
HPAEC 0.965 0.031 0.927 1.00 0.999 2.00×10−3 0.993 1.00

All 0.985 0.020 0.943 1.00 0.999 1.00×10−3 0.997 1.00

D|CK|V|CD, D|V, D|V|CD, and D|CK|CD, where D- de-288

notes a DAPI negative signal, indicating acellularity.289

We apply the RED algorithm to these images, and in Figure290

5, plot the lower quartile, median and upper quartile ROC291

curves obtained by varying N̄ across all subjects and for the292

seven event categories, as well as all categories combined.293

The solid curve represents the median ROC curve while the294

dashed curves represent the upper and lower quartile varia-295

tions about the median. In Figure 6, we focus on the ear-296

lier part of the ROC curves (FPR = 0.001). We observe that297

the performance of the RED algorithm for this set is not as298

good as for the spiked cell set (AUROC = 0.982 across all299

cell types). Further, there is significant variability in the per-300

formance across different event categories. From Figure 6 we301

observe that the algorithm performs well for some event cate-302

gories (e.g., D|CK, D|CK|V, and D-|CK positive events) and303

is challenged in detecting others (e.g., D|V positive events).304

In Table 2, we have reported the TPR for the RED algorithm305

with a thousand fold reduction in data (N̄ = 2,500). We ob-306

serve that for a thousandfold data reduction, the median TPR307

across all event categories is 0.746, which is lower than the308

corresponding value for the spiked cell set. This can be at-309

tributed to the uncertainty in defining what constitutes a bi-310

ologically relevant event in cases where these events occur311

naturally (as in the late-stage breast cancer set) and are not312

introduced artificially (as in the spiked cell set). This makes313

the detection of these events difficult for the RED algorithm314

as well as OCULAR pipeline, which is the approach used as315

the reference.316

Fig. 7 shows a sample of the tiles from the late-stage breast317

cancer slides that were detected by the RED algorithm within318

a cohort of N̄ = 2,500 tiles and some tiles that were not de-319

tected within that cohort. In three out of the seven categories320

we report no missed tiles.321

A manual examination of the set of 2,500 events identified322

by the RED algorithm revealed that this set included several323

events that were biologically relevant but were not identified324

by the OCULAR pipeline. In hindsight, we should have an-325

ticipated this since the OCULAR pipeline also has its own326

false negative errors. This realization led us to consider the327

approach described below for quantifying the performance of328

the RED algorithm.329

As described in Section 4.2, the OCULAR pipeline consists330

of two distinct stages. In the first stage, all events in a given331

IF slide are segmented and a short-list comprising approx-332

imately 3,000 interesting events is identified by the OCU-333

LAR algorithm. Events in this short-list are then examined334

by multiple human experts and those deemed to be biologi-335

cally interesting by both experts are included in the final list336

of biologically relevant events. Analogous to this, we develop337

and implement the RED pipeline where the 2,500 events per338

IF slide identified by the RED algorithm were examined by339

two human experts, and those deemed to be biologically in-340

teresting by both experts are included in the final list of bi-341

ologically relevant events binned into one of the seven event342

categories defined above.343

Once the OCULAR and RED pipelines have identified the344

set of biologically relevant events, we computed the number345

of events detected by both pipelines and each pipeline alone.346

These numbers are reported in Figure 8. We observe that the347

RED pipeline identifies around twice as many events when348

compared with the OCULAR pipeline (157 versus 79). An-349

other way to measure the efficacy of the two pipelines is to350

consider the number of events identified by only one pipeline.351

In this respect the RED pipeline identifies seven times as352

many events as the OCULAR pipeline (91 versus 13). We353

note that the performance of the RED pipeline is dependent354

on the event category. In particular, for the D-|CK category355

the RED pipeline identifies around 8 times as many events as356

the OCULAR pipeline(73 vs. 9), while for D|V events the357

OCULAR pipeline performs slightly better (11 vs. 12).358

3. Discussion359

The RED algorithm represents a paradigm shift in detecting360

biologically relevant events in LBx. Most current methods361

seek specific analytes in LBx assays through physical enrich-362

ment. This can be challenging when there is not a single an-363

alyte of interest but rather a heterogeneous population. Fur-364

ther, in exploratory studies where the analyte of interest is365

not known, it is impossible to use these types of methods. In366

contrast, the RED algorithm works on the simple premise that367

biologically relevant information is rare relative to the com-368

mon immune population. This obviates the need to specify369

the characteristics of what constitutes a biologically relevant370

event and makes the detection task simpler and easier to au-371

tomate.372

When compared with the baseline approach (OCULAR al-373

gorithm), the RED algorithm comprises fewer steps that are374

easier to automate and require minimal expert guidance. In375

particular, in the RED algorithm, the steps required to get to376

the cohort of 2,500 rare events are: training the DAE, using377

the DAE to rank tiles, and removing artifacts through an au-378

tomated approach. The expert input required for these steps379

is limited to specifying the channel weights (four scalar val-380
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Fig. 5. ROC curves for the rare event detection algorithm applied to late stage breast cancer subjects. Separate ROC curves are shown for each event type as well as all
event types combined (bottom right). The solid curves represent the median ROC across all subjects, and the dashed curves represent the lower and upper quartiles.

Fig. 6. Initial part of the ROC curves for the rare event detection algorithm applied to late stage breast cancer subjects. Separate ROC curves are shown for each event type
as well as the composite ROC curve for all event types combined (bottom right). The solid curves represent the median ROC across all subjects, and the dashed curves
represent the lower and upper quartiles.

Table 2. Application of the rare event detection algorithm to images from late-stage breast cancer subjects. Columns 2-5: statistics for the true positive rate for a cohort of
2,500 rare tiles identified by the algorithm. Columns 6-9: statistics for the AUROC obtained by varying N̄ from 0 to N . Values are reported for different event types (Rows
1-7) and all types together (Row 8).

TPR (N̄ = 2,500) AUROC

Cell type Mean St. dev. Min. Max. Mean St. dev. Min. Max.

D|CK 1.00 0.0 1.00 1.00 1.00 0.0 1.00 1.00
D|CK|V 1.00 0.0 1.00 1.00 1.00 1.00×10−4 1.00 1.00

D|CK|V|CD 0.750 0.382 0.0 1.00 0.914 0.185 0.500 1.00
D|V 0.389 0.448 0.0 1.00 0.978 0.0427 0.883 1.00

D|V|CD 0.798 0.339 0.0 1.00 0.991 0.0210 0.940 1.00
D|CK|CD 0.917 0.144 0.667 1.00 0.998 3.20×10−3 0.993 1.00

D-|CK 1.00 0.0 1.00 1.00 1.00 1.00×10−4 1.00 1.00
All 0.746 0.265 0.0 1.00 0.982 0.0280 0.915 1.00
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2.2 Detection of rare cells in breast cancer patients
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Fig. 7. Representative gallery of rare events in samples collected from patients diagnosed with late-stage breast cancer. For each rare event the composite image is shown
followed by the biomarker fluorescent channels (specified by the headers). The left column shows rare events detected by RED and the right column shows rare events not
detected by RED. No event is shown for the cell types for which no event was missed.
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Fig. 8. Enumeration of biologically relevant events identified by the RED pipeline
alone (in red), the OCULAR pipeline alone (in yellow) and both pipelines (in blue).
Rows 1-7 depict results for 7 different event types, while row 8 depicts composite
results for all event types.

ues), and the threshold (a single scalar value) used in remov-381

ing tiles that contain artifacts. In contrast, the steps in OC-382

ULAR include threshold segmentation of around 2.5 million383

events, evaluation of 761 parameters for each event, reduc-384

tion of these to 350 PCA components, and cascading clus-385

tering stages which result in a wide range of events retained386

for final analysis. These steps require the specification of:387

(a) hyperparameters for segmentation, (b) each of the 761388

features to be computed for each event, (c) number of PCA389

components to be retained, (d) majority cluster elimination390

from the cascading cluster stages to help with negative deple-391

tion of majority class and (e) distances that constitute an ad-392

equately rare event compared to median references. Overall,393

this requires significantly more information to be specified394

by a computational expert, which makes this approach harder395

to automate. Further, the RED algorithm retains only 2,500396

rare events per IF slide, whereas the OCULAR algorithm re-397

tains roughly 3,000 events per IF slide, both of which require398

some level of human data curation. As such, the RED algo-399

rithm leads to more significant data reduction, which makes400

downstream analysis easier and more efficient.401

In the spiked cell cohort considered in this study, most of402

the epithelial and endothelial cells were captured in the set403

of 2,500 rare tiles identified by the RED algorithm. On av-404

erage it missed 0.7% of the epithelial cells and 3.5% of the405

endothelial cells. This served to validate the performance of406

RED in a case where the biologically relevant events were407

well known and could be easily characterized.408

The late stage breast cancer cohort comprised naturally oc-409

curring biologically relevant events that were not contrived.410

In this case, the rare tiles identified by the RED algorithm411

were examined by two experts in order to select biologically412

interesting events. The performance of this pipeline, which413

was dubbed the RED pipeline, was compared with that of414

a similar analysis which used OCULAR to identify the rare415

events. It was found that the RED pipeline yielded twice as416

many biologically relevant events, which points to its utility417

in real-world applications. It was also found that the RED418

algorithm was able to detect most of the events detected by419

the OCULAR pipeline (84%, Figure 8).420
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Additionally, it is clear that the performance of the RED421

pipeline relative to the OCULAR pipeline varies depending422

on the event category in question. For the samples consid-423

ered in this study, RED performed significantly better than424

OCULAR for D|CK events, and slightly worse than for D|V425

events. This may be attributed to the fact that CK positive426

events, whether they are biologically relevant or not, are rare427

in the peripheral blood context, and can therefore be easily428

identified by a rarity detection algorithm like RED. In con-429

trast to this, V-positive events are common, with a population430

of leukocytes expressing vimentin, and a very small fraction431

of these cells (V-positive with variable expression in the other432

channels) are biologically relevant. In this case a rarity de-433

tection algorithm has to work “harder” relying on factors like434

cell morphology and relative intensity across multiple chan-435

nels in order to detect biologically relevant rare events. Over-436

all, the analysis shows that the RED pipeline performs better437

than the baseline method OCULAR for every event category438

except D|V where its performance is marginally worse (11439

versus 12 events identified).440

The RED methodology offers improved sensitivity over the441

baseline OCULAR method. RED identifies a greater number442

of rare events, which is critical for enhancing detection ca-443

pabilities in a rarity-focused framework. This methodology444

is particularly advantageous because it is largely automated,445

reducing human involvement and thereby minimizing poten-446

tial sources of error and the time required for analysis. De-447

spite these improvements, molecular characterization of the448

detected events is essential to elucidate their biological and449

clinical relevance. For instance, D|CK cells are consistent450

with canonical epithelial CTCs, and D|V|CD cells are mor-451

phologically and phenotypically consistent with circulating452

endothelial cells. Additionally, the D-|CK events identified453

by RED are hypothesized to be oncosomes or large extra-454

cellular vesicles potentially associated with the disease state455

(43). Further validation studies will confirm these biologi-456

cal phenotypes and provide deeper insights into their role in457

cancer biology and the potential clinical implications.458

When compared to the CellSearch platform, which is a459

widely used enrichment-based approach clinically utilized460

in breast cancer patient care, RED demonstrates distinct ad-461

vantages. CellSearch is tailored to detect known cell types,462

specifically circulating tumor cells that are EpCAM+, CK+,463

and CD45-, and relies on a predefined set of markers. While464

effective for certain applications, this targeted approach in-465

troduces bias and limits the detection of rare and unconven-466

tional events, such as oncosomes or tumor microenvironment467

components like endothelial cells or fibroblasts. In contrast,468

RED’s unbiased framework allows for the identification of a469

broader range of rare events, enabling novel discoveries and470

expanding the potential applications of liquid biopsy. These471

attributes position RED as a transformative tool in rare event472

detection, with the capacity to uncover previously undetected473

facets of disease biology.474

Single-channel biophysical enrichment approaches, while475

streamlined, often result in the loss of multidimensional en-476

richment capabilities, which are crucial for capturing the477

complex heterogeneity of rare events. This limitation un-478

derscores the importance of a methodology like RED, which479

preserves sensitivity to rare populations without compromis-480

ing the breadth of detection. Given the rare event framework481

(employed by the HDSCA platform) has demonstrated more482

sensitivity than CellSearch in detecting cellular heterogene-483

ity and plasticity (44–46), and RED shows improved sensi-484

tivity and detection capabilities beyond the OCULAR work-485

flow used by HDSCA, then it represents a clear step forward486

in the evolution of rare event detection technologies. More-487

over, RED offers a distinct advantage from a development488

perspective. Its algorithmic design simplifies the process of489

enriching rare event populations, making it "lightweight" and490

user-friendly for developers. This reduced dependency on491

deep biological understanding allows researchers to focus on492

refining detection and analysis pipelines rather than grappling493

with complex enrichment processes. As a result, RED pro-494

vides a robust, scalable framework that maximizes detection495

sensitivity and operational efficiency, facilitating both inno-496

vative discoveries and ease of adoption in research and clini-497

cal settings.498

4. Methods499

4.1. Blood collection, sample preparation and imag-500

ing. Peripheral blood (PB) samples were collected in cell-501

free DNA blood collection tubes (Streck, La Vista, NE USA)502

and processed as previously described (44, 45, 47). Briefly,503

after complete blood cell count (Medonic M-series Hematol-504

ogy Analyzer, Clinical Diagnostic Solutions Inc., Fort Laud-505

erdale FL USA) the red blood cells were lysed with am-506

monium chloride and all nucleated cells were plated as a507

monolayer on custom cell adhesion glass slides (Marienfeld,508

Lauda, Germany) at approximately 3 million cells per slide,509

followed by blocking with 7% bovine serum albumin (BSA)510

before drying and cryopreservation at -80 ° C.511

Samples were stained automatically (IntelliPATH FLX au-512

tostainer, Biocare Medical LLC) with the Landscape im-513

munofluorescence (IF) assay as previously published(5, 9,514

25, 42, 48–50). Briefly, slides were thawed and fixed515

with 2% paraformaldehyde prior to 1) incubation with anti-516

human CD31 Alexa Fluor 647 direct conjugate (mouse517

IgG1 monoclonal antibody; 2.5 µg/mL; clone: WM59;518

Cat# MCA1738A647; BioRad; RRID:AB 322463) and519

anti-mouse Fab fragments (IgG goat monoclonal; 100520

µg/mL; Cat# 115–007–003; Jackson ImmunoResearch),521

2) permeabilization with cold methanol, 3) incubation522

with a mixture of anti-human pan cytokeratin (CK) (CKs523

1,4,5,6,8,10,13,18,19 mouse IgG1/IgG2a monoclonal anti-524

body cocktail; 210 µg/mL; Cat# C2562; clone: C-11, PCK-525

26, CY-90, KS-1A3, M20, A53-B/A2; Sigma; RRID:AB526

476839), anti-human CK 19 (mouse IgG1 monoclonal anti-527

body; 0.2 µg/mL; Cat# GA61561–2; clone: RCK108; Dako),528

anti-human CD45 Alexa Fluor 647 direct conjugate (mouse529

IgG2a monoclonal antibody; 1.2 µg/mL; Cat# MCA87A647;530

clone: F10–89–4; AbD Serotec; RRID:AB 324730), and531

anti-human vimentin (VIM) Alexa Fluor 488 direct conju-532

gate (rabbit IgG monoclonal antibody; 3.5 µg/mL; Cat# 9854533
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4.3 OCULAR rare event algorithm

BC; clone: D21H; Cell Signaling Technology; RRID:AB534

10829352), and 4) incubated with anti-mouse IgG1 Alexa535

Fluor 555 (goat IgG polyclonal antibody; 2 µg/mL; Cat#536

A21127; Invitrogen; RRID:AB 141596) and 4’,6-diamidino-537

2-phenylindole (DAPI; dilution: 1: 50,000; Cat# D1306;538

Thermo Fisher Scientific; RRID:AB 2629482). Slides were539

mounted with a glycerol-based media, coverslipped, and540

sealed.541

Automated scanning was done at 100X magnification using542

a custom high-throughput fluorescence scanning microscope543

across 2304 frames per slide in each channel (DAPI, Alexa544

Fluor 488, Alexa Fluor 555, Alexa Fluor 647). The exposure545

time and gain per channel were automatically set to ensure546

consistent background intensity across all slides for normal-547

ization purposes.548

Normal donor (ND) samples were procured from the Scripps549

Normal Blood Donor Service and processed according to the550

above. Cell line cells with known expression profiles were551

spiked into the sample at various concentrations after red552

blood cell lysis (SK-BR-3 ATCC HTB-30 and HPAEC ATCC553

PCS-100-022). Standard protocols were followed for con-554

trived sample analysis.555

A total of 11 samples collected from patients with metastatic556

breast cancer were included in this study. Patient recruit-557

ment took place according to an institutional review board-558

approved protocol approved by the University of Southern559

California (FWA 00007099, USC UPIRB #UP-14-00523)560

and all study participants provided written informed consent561

(44, 51).562

4.2. Rare event detection (RED) algorithm. In order to563

detect rare events within the IF assay, we employ a deep564

learning method for anomaly detection. In the first step of565

our approach we split the IF image for a subject into a set of566

non-overlapping sub-images that we refer to as tiles (see Fig-567

ure 2). The size of a tile is selected so that each tile includes568

1-4 cells on average. In our case, this corresponds to a size 32569

by 32 pixels, or 18.9 by 18.9 µm, which yields approximately570

2.5 million tiles per IF image.571

The collection of tiles generated is used to train a denoising572

autoencoder (DAE). The architecture, training-related hyper-573

parameters, and the loss function used for training the DAE574

are reported in Appendix A. During training, the input to the575

DAE is a noisy version of each tile and its output is the cor-576

responding de-noised version. The noisy version of a tile is577

generated by artificially adding uncorrelated homoscedastic578

Gaussian noise (with variance = 0.32) to every pixel of the579

tile. The DAE learns how to reconstruct tiles that contain580

common events well, but not tiles that contain rare events.581

Consequently, when tiles with common events are passed582

through the fully trained DAE it produces images that are583

close to the original tile, whereas for tiles with rare events584

this is not the case. The magnitude of the difference between585

the reconstructed tile and the original tile is computed on a586

per-channel basis. This magnitude is then multiplied with587

a channel-dependent weight and all the weighted values are588

added to arrive at a single real-valued reconstruction error,589

which is used as the rarity metric. The values of weights590

used in this study are 1/3 for the DAPI, CK and V channels,591

and 0 for the CD channel. Note that the DAE does not use592

any labeled data during training the DAE or when computing593

the rarity metric for each tile. Thus, our approach is unsuper-594

vised and works without any apriori information regarding595

biologically relevant events, such as location in the IF assays596

or phenotype, specific to the disease.597

Tiles with large values of the reconstruction error are deemed598

as rare, where those with small values are deemed as being599

common. There is a theoretical justification of this obser-600

vation. It can be shown that for a given input sample, the601

reconstruction error is an approximation to the magnitude of602

the score function of the underlying probability density for603

that sample (41). Further, since for most probability densities604

the magnitude of the score function is much larger in regions605

where the probability mass is small, the reconstruction error606

may be used as a metric for rarity.607

During the application of the proposed approach we observed608

that some tiles that contain imaging artifacts were selected in609

the rare tile cohort. This is not surprising given the under-610

standing that certain types of imaging artifacts can also be611

rare. In the examples considered in this manuscript the ar-612

tifacts include speck-like regions with a strong signal in CK613

channel, and blurs and streaks across all channels. Both these614

artifacts tended to occur in clusters at a specific location of615

the image, and this characteristic was used to remove the tiles616

with these artifacts. For the specklike artifacts, the number617

of artifacts occurring within a sub-domain of an image was618

counted, and if this number exceeded a specified threshold,619

all tiles in the rare event cohort from that subdomain were620

removed. This subdomain was set to 1362 by 1004 pixels,621

the original size of the images taken by the scanning micro-622

scope, and the threshold used was 500 specks per subdomain.623

To eliminate other regionally concentrated artifacts present in624

the rare tile cohort, the number of tiles from the top 10,000625

rare tiles per subdomain was calculated. If this number ex-626

ceeded 25, all tiles from that subdomain were removed. This627

approach is based on the observation that artifacts tend to628

be regionally concentrated, whereas biologically significant629

events are dispersed throughout the IF image. Hence, remov-630

ing a few subdomains (typically less than 2% of the image)631

has negligible effect on the biological signal while effectively632

removing artifacts from the top of the ranking. Note that the633

subdomains used for artifact removal are predefined and are634

non-overlapping.635

4.3. OCULAR rare event algorithm. In this study OCU-636

LAR was used as a reference to quantify the performance of637

the RED algorithm. OCULAR is a custom algorithm for rare638

event detection used in the high-definition single cell assay639

(HDSCA) workflow that uses image processing for feature640

extraction, dimensionality reduction, and unsupervised clus-641

tering (7, 25, 42). Namely, the “EBImage” package (EBIm-642

age 4.12.2) is used to segment the fluorescent images for ev-643

ery event across the slide, separating cells (expressing DAPI)644

from acellular components (not expressing DAPI). This is645

followed by feature extraction for each cell, generating 761646

quantitative parameters across the 4 IF channels and paired647
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combinations of each. A principal component analysis (PCA)648

transform is calculated and each cell’s morphometric data is649

projected onto the top 350 principal components. This re-650

duction was shown to retain 99.95% of the original variance.651

Next, event-to-event distances for all cells in a given frame652

are calculated and ≈ 30 hierarchical clusters are generated.653

Thereafter, a cell is defined as rare if it belongs to the small-654

est clusters until the number of cells added by including a655

cluster exceeds 1.5% of all events on a frame or if it is far656

away from the median event in a frame. After this frame-657

based identification, frames are clustered into 10 bins based658

on their aggregated feature values. Events in each group are659

first compared internally, where rare events are filtered based660

on distance to common event clusters, and then further fil-661

tered with the same method when aggregated with the whole662

slide. Around 3,000 cellular events are initially identified as663

rare and potentially interesting.664

In the OCULAR pipeline, the events identified by the OCU-665

LAR algorithm described above are examined by two experts666

and those deemed as being biologically relevant by both ex-667

perts are retained.668

To compare the algorithms, we sought to identify biologically669

interesting events found through each method. First, two hu-670

man experts evaluated composite RGB images and single-671

channel grayscale images for the OCULAR results, deter-672

mining whether the events were biologically relevant. Events673

that both experts agreed were relevant were retained for a674

total of 113 OCULAR events. Next, the 2,500 rarest tiles675

as identified by RED were examined by one human expert676

as both composite RGB images and single-channel grayscale677

images to determine an initial subset of 609 potentially inter-678

esting tiles. A further 29 tiles that corresponded to OCULAR679

events but were missed in this evaluation were added to the680

potentially interesting tiles. Both experts independently eval-681

uated each tile for biological relevance and tiles rated as irrel-682

evant by either or both experts were removed. Tiles that cap-683

tured components of the same event were also deduplicated,684

leaving 166 events. Both experts then categorized all events,685

where disagreements were resolved by deference to one ex-686

pert or selection of the majority class in cases of events found687

in both pipelines. Finally, events categorized as D and D|CD,688

which are often biologically semi-interesting, as well as one689

event categorized as D-|CK|V|CD, were removed from both690

pipelines, leaving 157 RED tiles and 79 OCULAR events.691

Figure 8 illustrates the events identified by both algorithms,692

as well as the overlap in identified events, separated by chan-693

nel classification.694

We evaluated the reliability of expert classifications using695

Cohen’s kappa, a measure for interrater reliability that ac-696

counts for chance agreement. This metric ranges from 0 to697

1, with 0 indicating no agreement and 1 indicating perfect698

agreement. Based on all classified events, including D and699

D|CD events, we found κ = 0.775±0.058 (95% CI), or mod-700

erate agreement (52). This level of agreement illustrates the701

level of difficulty even for expert human curators to identify702

cell phenotypes and events of interest.703
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A. Denoising autoencoder training details920

The autoencoder model consists of an encoder and a decoder,921

with each composed of convolutional, dense, pooling, and922

upsampling layers. The details of the encoder and decoder923

architectures are described in Table 3. Note, the dimension-924

ality of the autoencoder’s latent vector was chosen to be 100.925

The layers in the architecture shown in Table 3 are described926

as follows. Linear(in, out) represents a fully connected927

layer with in input dimensions and out output dimensions.928

Conv2D(in, out) are 2D convolutional layers with a kernel929

size of 3, where in is the number of input filters and out is the930

number of output filters. AveragePool2D(pool_size, stride)931
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Table 3. Autoencoder architecture: encoder and decoder layers.

Encoder Decoder
Conv2D(4, 32) - ReLU Linear(100, 300) - ReLU - BN
Dense-block(32, 3) Linear(300, 2048) - ReLU
Conv2D(32, 64) - AvgPool2D(2, 2) - ReLU Reshape(2, 2, 512)
Dense-block(64, 3) Conv2D(512, 256) - ReLU - Upsample(2, 2)
Conv2D(64, 128) - AvgPool2D(2, 2) - ReLU Dense-block(256, 3)
Dense-block(128, 3) Conv2D(256, 128) - ReLU - Upsample(2, 2)
Conv2D(128, 256) - AvgPool2D(2, 2) - ReLU Dense-block(128, 3)
Dense-block(256, 3) Conv2D(128, 64) - ReLU - Upsample(2, 2)
Conv2D(256, 512) - AvgPool2D(2, 2) - ReLU Dense-block(64, 3)
Flatten Conv2D(64, 32) - ReLU - Upsample(2, 2)
Linear(2048, 300) - ReLU - BN Dense-block(32, 3)
Linear(300, 100) Conv2D(32, 4) - Sigmoid

is a downsampling layer with the specified pooling size and932

stride. Dense-block(k, n) refers to the block architecture in933

(53), with k input filters and n layers. Upsample(size, size)934

represents an upsampling layer with a scaling factor of size.935

BN denotes batch normalization.936

The denoising autoencoder was trained using the mean937

squared error (MSE) loss function in Eq. S (1), as described938

in (54)939

L(r) = 1
N

N∑
i=1

∥xi − r(xi +ϵ)∥2
2. (1)

In this equation, {xi}N
i=1 represents the set of input tiles,940

and r(xi + ϵ) denotes the autoencoder’s reconstruction of941

each input tile after adding noise. The noise, ϵ, is sam-942

pled independently for each tile from a Gaussian distribution943

N (0,0.32I), where I is the identity matrix. For each slide,944

an autoencoder is trained for 50 epochs using the Adam op-945

timizer with learning rate equal to 10−5 and batch size equal946

to 500.947

The DAE was trained on a NVIDIA V100 GPU, with each948

slide taking approximately 30 minutes to train.949
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