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ABSTRACT
The enteroinvasive bacterium Shigella flexneri is known as a highly host-adapted human pathogen. There had been no
known other reservoirs reported until recently. Here 34 isolates obtained from animals (yaks, dairy cows and beef cattle)
from 2016 to 2017 and 268 human S. flexneri isolates from China were sequenced to determine the relationships
between animal and human isolates and infer the evolutionary history of animal-associated S. flexneri. The 18 animal
isolates (15 yak and 3 beef cattle isolates) in PG1 were separated into 4 lineages, and the 16 animal isolates (1 yak, 5
beef cattle and 10 dairy cow isolates) in PG3 were clustered in 8 lineages. The most recent human isolates from China
belonged to PG3 whereas Chinese isolates from the 1950s–1960s belonged to PG1. PG1 S. flexneri may has been
transmitted to the yaks during PG1 circulation in the human population in China and has remained in the yak
population since, while PG3 S. flexneri in animals were likely recent transmissions from the human population. Increased
stability of the large virulence plasmid and acquisition of abundant antimicrobial resistance determinants may have
enabled PG3 to expand globally and replaced PG1 in China. Our study confirms that animals may act as a reservoir for
S. flexneri. Genomic analysis revealed the evolutionary history of multiple S. flexneri lineages in animals and humans in
China. However, further studies are required to determine the public health threat of S. flexneri from animals.

ARTICLE HISTORY Received 12 April 2022; Revised 18 July 2022; Accepted 31 July 2022

KEYWORDS Shigella flexneri; phylogenetic analysis; SNP typing; animal reservoir; evolution

Introduction

Shigella is a member of the family Enterobacteriaceae,
and is the primary agent of shigellosis, or bacterial dys-
entery, which mostly affects children under the age of
five years [1,2]. This bacteriumhas evolved fromEscher-
ichia colimultiple times, through parallel acquisition of
key virulence factors including the invasion plasmid
pINV to become pathogenic [3]. Shigella currently
stands as a genus with 4 species [4]. Shigella flexneri is
predominant in low and lower middle-income

countries, accounting for more than 50% of all cases of
shigellosis in these countries, whereas S. sonnei mainly
occurs in high-income countries [5–7]. Complex factors
contribute to the successful spread of Shigella, including
unreliable sanitation systems, unavailability of clean
drinking water, the ability of the organism to invade
and subvert host defences, and the acquisition of antimi-
crobial resistance (AMR) [2,5]. Shigella pathogenesis-
associated genomic regions are chromosome pathogen-
icity islands (PAIs) and the large virulence plasmid
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(pINV) [8–10]. pINV carries a 37 kb “entry region” that
encodes the Type III secretion system (T3SS) and the
T3SS effectors which are essential for Shigella the bac-
teria to infect host cells [11,12]. Chromosome-encoded
pathogenicity islands SHI-1 and SHI-2 also play an
important role in virulence [9,13,14].

S. flexneri shows considerable diversity with more
than 17 recognized serotypes [15], and serotype 2a
predominates in endemic countries [16]. The most
S. flexneri circulating in China belonged to sequence
type (ST) 91 with serotypes 2a and Xv prevalent
[17,18]. A global genomic study divided the
S. flexneri population into 7 phylogenetic groups
(PGs) [19]. These different PGs were found in all geo-
graphic regions with some geographic restrictions.
Although Shigella is known as a highly host-adapted
human pathogens [5], a recent study reported the iso-
lation of S. flexneri from animals [20,21]. In this study,
we isolated and performed genome sequencing of 34
S. flexneri isolates obtained from animals (yaks, dairy
cows and beef cattle) from 2016 to 2017 and 268
human S. flexneri isolates from China. We further dis-
cussed the relationships between the animal- and
human -associated S. flexneri and inferred their evol-
utionary history. Our work contributes to the develop-
ment of appropriate measures for the surveillance and
control of S. flexneri infections.

Materials and methods

Sampling from animals and isolation of
S. flexneri

Samples from dairy cows and beef cattle were collected
from the Gansu, and Shanxi provinces during 2016–
2017. Domestic yaks were sampled from Qinghai and
Gansu provinces of the Qinghai–Tibet Plateau. Rectal
swab were the preferred sampling choice, followed by
the faecal samples. An improvedmethod for traditional
isolation and culture was developed. Anaerobic culture
enrichment was performed using Shigella broth (SB)
with 0.5 μg/ mL novobiocin at 37°C for 8–10 h
(0.2 ml of each sample was inoculated into 10 mL of
SB). All the enriched samples were screened for Shigella
using a PCR assay targeting the ipaH gene [22]. The
ipaH PCR positive samples were inoculated onto 2
different types of selective agar medium media (Hek-
toen enteric agar (HEA) medium and xylose lysine
deoxycholate (XLD) agarmedium,Oxoid, Basingstoke,
UK) to detect Shigella spp. [23]. Typical colonies were
selected and recultured on brain heart infusion (BHI)
agar plates (Oxoid, UK) at 37 °C for 24 h.

Shigella flexneri human-associated isolates

In total of 268 human isolates from China were
selected including 7 human isolates from the 1950s

to 1960s and 261 human isolates from 1997 to 2017,
59 of which were sequenced in a previous study
[17]. These isolates with different serotypes were col-
lected from 17 provinces of China. As it was the
major cause of shigellosis in China since 2000, more
isolates of serotype Xv were selected. We also included
346 genome sequences of human isolates from public
databases from Africa, Asia, Latin America, Europe,
and North America (Publicly available at the NCBI
BioProject (PRJEB2846, PRJEB2460 and PRJEB2542))
[19]. The isolates used in this study are listed in sup-
plementary Table S1.

Whole genome sequencing and detection of
single nucleotide polymorphisms (SNPs)

DNA was extracted using the Wizard® Genomic DNA
Purification Kit (Promega, USA) according to the
manufacturer’s instructions. Library preparation was
performed using the Nextera XT Library Prep Kit
(Illumina, USA) according to the manufacturer’s
instructions. The libraries were sequenced on an Illu-
mina/Solexa platform with a minimum 100-fold cov-
erage at the Tianjin Biochip Corporation (Tianjin,
China).

After quality control and read trimming using
FastQC [24], the high-quality reads were assembled
using Spades 3.13.0 [25]. Sequencing reads were
mapped to the reference genome (S. flexneri serotype
xv strain 2002017: accession number: CP001383.1)
using BWA v0.7.17 with the default settings. Snippy
v4.4.5 was used to call SNPs between the reads and
reference genome with the default parameters: snippy
-cpus 16 -outdir mysnps -ref 2002017.gbk -R1
R1.fastq.gz -R2 R2.fastq.gz (https://github.com/
tseemann/snippy) [26].

Construction of phylogenetic relationships

To mitigate the effect of recombination on phyloge-
netic analyses, we identified the recombinant regions
with high SNP densities using Gubbins v3.0.0 [27],
and removed them for phylogenetic analysis of the
648 S. flexneri isolates (34 animal isolates, 268 Chinese
isolates sequenced by us and 346 publicly available
genomes including 4 from mainland China). To
infer a maximum likelihood tree based on the non-
recombinant genome region SNPs, we ran FastTree
v2.1.11 with the generalized time-reversible model
and a gamma distribution for modelling the site rate
variation[28]. We estimated the phylogenetic patterns
with 100 bootstrap replicates. To further determine
the shared patterns of sequence variation, we used fas-
tbaps v1.0.6, which is based on hierarchical Bayesian
clustering, to partition the phylogeny into phyloge-
netic groups (PGs) [29].
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Temporal analysis

To assess the timing of divergence among S. flexneri
isolates, we performed molecular clock analysis
using BEAST2 v2.6.3 [30,31]. All the strains were
used to capture the complete temporal and geographi-
cal range. BEAST2 was run independently across at
least 2 chains of 100 million generations, each of
which was sampled at every 1000 iterations to ensure
agreement. Maximum likelihood trees constructed
using PhyML v.3.0 [32] or Iqtree v.1.6.9 [33] were
used for the initial evaluations of the presence of tem-
poral signals in the dataset by regressing the root-to-
tip distances versus sampling years in TempEst [34].
All Bayesian phylogenetic inferences were performed
using BEAST 1.10 [35] and BEAGLE v.3 [36]. We
used a GTR + Gamma substitution model [37], and
the skygrid model [38] was specified as a flexible-
tree prior. In the exploratory analyses, branch lengths
were rescaled into time units using a strict or relaxed
[39] clock model. A host-specific local clock model
[40,41] was used to test for a host effect on the evol-
utionary rate. As it was unclear to which host category
(human or animal) the branches basal to animal clades
should be assigned, we integrated over both alterna-
tives using a model averaging procedure to evaluate
support for the hypotheses [42].

Convergence and mixing properties were evaluated
in Tracer v1.7 [43], which was also used to determine
the appropriate number of samples to be discarded as
burn-in. Maximum clade credibility (MCC) summary
trees were obtained using TreeAnnotator distributed
in BEAST v1.10. The trees were visualized either
using FigTree v.1.4.4 (https://github.com/rambaut/
figtree) or iTol [44].

Virulence factors and antimicrobial resistance
determinants

The presence of virulence genes located in pINVs and
PAIs and the AMR genes were identified using BLAST
against the reference loci described in the VFDB [45],
PAIDB v2.0 [46] and CARD databases [47] (CARD;
https://card.mcmaster.ca). The virulence plasmid
pCP301 of S. flexneri 2a str. 301 was used as the refer-
ence (accession number: AF386526.1).

Analysis of host-associated accessory genes

The assembled contigs of each isolate were annotated
using the Prokaryotic Genome Annotation System
(Prokka) pipeline v1.14.5 [48]. The resulting annota-
tions of all the isolates in GFF3 format were fed into
the Roary v3.13.0 pangenome pipeline to identify the
core and accessory genes [49]. We chose a percentage
identity of 95% to distinguish the core genes from the
accessory genes. Scoary v1.6.16 was used to determine

the accessory genes that were associated with humans
and animals [50]. We further confirmed the presence
of putative animal-associated accessory genes in both
animal and human isolates using BLASTN v2.11.0
[51].

Results

The serotype distribution of S. flexneri in China

The 34 S. flexneri isolates were obtained from 2,102
samples screened, with 16 from yaks, 10 from dairy
cattle, and 8 from beef cattle. The detection rate was
1.22% (16/1311) in yaks, 2.11% (10/474) in dairy
cows, and 2.52% (8/317) in beef cattle. Most isolates
(61.76%, 21/34) were collected from calves with diar-
rhoea, with 6 from yak calves and 15 from other calves.
Five different serotypes (2b, 2a, 1b, 1a and Xv) were
identified among these animal-associated isolates,
with serotype 2b being the most common, followed
by serotype Xv (Figure 1(A)). The 268 human isolates
from China belonged to 17 serotypes, with serotype Xv
being the most predominant (32.09%) (Figure 1(A)).

Phylogenetic structure of S. flexneri

Phylogenomic analysis revealed that the 648 S. flexneri
isolates were divided into the previously defined 7 PGs
reported by Connor et al. [19] (Figure 1(B), 2A). The
272 human isolates from China (268 sequenced by us
and 4 from public database) were clustered into 5 PGs.
Most isolates fell into PG3 (91.54%, 249/272), as the
majority of the isolates were from 2001 to 2012.
Only 8.46% of the isolates were clustered into other
PGs (6.62% in PG1, 1.10% in PG4, 0.37% in PG2,
and 0.37% in PG6). No Chinese isolates were found
in PG5 and PG7 (Figure 1(B)).

Isolates from animal hosts were found in 2 PGs,
with 52.94% (18/34) in PG1 and 47.06% (16/34) in
PG3 (Figure 1(B)). The 18 animal isolates (15 yak
and 3 beef cattle isolates) in PG1 were separated into
4 lineages (Figure 1(C)) with each containing one (ser-
otype 1a), two (both serotype 1b), four (all serotype
2b), and 11 (all serotype 2b) isolates respectively and
were not identical to any human isolates (Figure S1).
The only serotype 1a animal isolate was closest to a
1978 France serotype 1a isolate; the 2 serotype 1b iso-
lates were grouped together with three Chinese sero-
type 1b isolated isolated between 1997 and 2003 and
one Chinese serotype 3a isolate from 2001; the four
serotype 2b isolates grouped together with a 1965 ser-
otype 2b human isolate from China and the 11 sero-
type 2b isolates were grouped with two 1950s
serotype 2b human isolates from China (Figure S1).
The 16 animal isolates (1 yak, 5 beef cattle and 10
dairy cow isolates) in PG3 were clustered in 8 lineages
(Figure 1(D)). Five lineages contained two to four
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isolates wheras three lineages contained a single iso-
late. The animal lineages were grouped with different
Chinese isolates sequenced in this study. Most PG3
animal isolates were obtained from Gansu province.
Interestingly they were not grouped with human iso-
lates from the Gansu province. There are 4 animal iso-
lates from 2 different province grouped together (one
from Gansu and three from Shanxi), and were closer
to each other than to human isolates from Gansu
(Figure S2).

Temporal signals and evolutionary rates in the
different host populations

Using BEAST [30], we performed molecular clock
analysis to estimate the time to the most recent com-
mon ancestor (tMRCA) of isolates from different ani-
mal lineages within PG1 and PG3 as all animal isolates
and the most humane isolates in China fell within
these 2 two clades (Figure 2(B,C)). Using the date of
isolate collection to calibrate the respective phyloge-
nies, the temporal signal varied among clades (Figure

2(B)). We computed the root to tip divergence using
TempEST [34] and obtained a strong correlation
between the time of sampling and the root-to-tip dis-
tances (Figure 2(B)), indicating a strong temporal signal
for molecular clock analysis. The correlations were
highly significant following 10,000 date randomizations
(PG1: R2 = 0.4; PG3: R2 = 0.86). The residuals does not
varymuchwithout animal strains (without animal R2 =
0.93, with animal and human R2 = 0.86) in PG3 than in
PG1 (without R2= 0.93, with R2= 0.4) (Figure 3).How-
ever, there was no correlation of root to tip divergence
and sampling time for animal only isolates (data not
shown). The evolutionary rates for PG1 and PG3 total
isolates (human and animal isolates) were 6.0×10−7,
(95% HPD: 5.8×10−7−7.3×10−7) and 6.1×10−7 (95%
HPD: 5.9×10−7−6.3×10−7) substitutions per nucleotide
site per year, respectively. For PG1andPG3humanonly
isolates were 5.7×10−7 (95% HPD: 5.3×10−7–6.2×10−7)
and 7.3×10−7 (95% HPD: 7.1×10−7–7.6×10−7). There
was marginal difference in the rates with and without
animal isolates (Figure 3).We also calculated evolution-
ary rates for PG1 and PG3 animal isolates only which

Figure 1. Characteristics and phylogenetic groups distribution, and maximum clade credibility (MCC) trees of PG1 and PG3
clades. A. Serotype distribution of the isolates used in this study. The inner, middle, and outer circles depict the proportion of
human isolates from China, animal isolates, and human isolates from other countries by serotype. Serotypes were based on gen-
ome sequence predictions. Y-gtrI, Y-gtrIII and Yv-gtrII denotes the gtrI, gtrIII and gtrII genes detected in these
isolates. B. Phylogenetic group (PG) distribution of the isolates used in this study. The inner, middle and outer circles depict
the proportion of human isolates from China, animal isolates, and human isolates from other countries by the PGs. C: Maximum
clade credibility (MCC) tree of PG1 isolates. The branches of animal isolates lineages are coloured in blue. For details of the phy-
logenetic relationships among the isolates, see supplementary figure S1. D: Maximum clade credibility tree of PG3 isolates. The
branches of animal isolate lineages are coloured in blue. For details of the phylogenetic relationships of the isolates, see sup-
plementary Figure S2.
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were PG1: 9.7×10−9 (95% HPD: 5.7×10−9–1.4×10−8)
and 3.4×10−8 (95% HPD: 1.5×10−8–5.5×10−8). The
rates of animal only isolates were significantly slower
than those of the human only isolates. Based on the
evolutionary rate for the total human and animal iso-
lates, the age (year) of themost recent commonancestor
(tMRCA) for each of the 4 animal lineages within PG1
ranged from 1948 to 1966 (Figure 1(C), S1) and that for
the 8 animal lineages within PG3 ranged from 1997 to
2016 (Figure 1(D), S2).

Virulence factors and antimicrobial resistance
determinants in different PGs and animal-
associated isolates

The virulence plasmid pINV which carries a 37 kb
entry region encoding the Ipa-Mxi-Spa type III
secretion system (T3SS) is essential for Shigella viru-
lence. It enable the bacterium to invade intestinal epi-
thelial cells, escape into the host cell to move in the
cytosol of infected cells, undergo cell-to-cell spread,
and result in pyroptosis in macrophages [11,12]. The

Figure 2. Population structure of the 648 S. flexneri isolates. A: PGs of the 648 S. flexneri isolates. The PGs were identified from the
maximum likelihood tree of the 648 isolates and nodes within the PGs are collapsed. B: Exploration of the temporal signal in the
data by regressing root-to-tip genetic distances against sampling times with residuals coloured by PG. Correspondence between
the colours of the residuals and PGs is as indicated in the legend. The numbers between brackets indicate the strains obtained for
this study in China from human and animal hosts, respectively for which information regarding sampling time was available. C:
Maximum-likelihood tree of S. flexneri inferred from 61,581 single nucleotide polymorphisms (SNPs). All SNPs were recorded by
their position in reference to the 2002017 genome. Potential genome-wide SNPs outside the recombinant regions were used.
Coloured rings from the inside to outside indicate the study origin, geographical regions, and PG groups and hosts.
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presence of pINV in the 648 isolates across different
PGs was markedly different (Figure 4). Within PG 1
and PG3, the distribution of virulence factors between
animal isolates and human isolates was similar (Figure
S3). pINV was absent in 90.91%, 82.61% and 64.71%
of the PG5, PG1 and PG4 isolates respectively, while
pINV was not detected in 0%, 0%, 1.69% and
18.06% of the PG7, PG6, PG2 and PG3 isolates
respectively. All PG1 isolates from animal sources har-
boured the 37 kb T3SS “entry region” deleted from the
pINV. For other virulence factors, SHI-1 was mainly
carried by PG3 isolates, and there was no difference
in the presence of SHI-1 between human and animal
PG3 isolates. The enterobactin iron acquisition system
genes were widely present in PG3, but absent in
64.95% of PG1 isolates. The sit gene was occasionally
absent in some human isolates, but was present in
all animal isolates (Figure 4).

We also screened for all AMR genes using BLAST
against the CARD databases. PG3 isolates carried sig-
nificantly more AMR genes on average than those in
PG1 isolates (Figure 4, S3), with the inter-quartile
range (IQR) of 53.53% for PG3 compared to an IQR
of 25.50% for PG1. However, the carriage rate of
resistance genes for tetracycline (tet (A)), trimetho-
prim (dfrA1, dfrA5, dfrA14, and dfrA17), β-lactam
antibiotics (blaOXA-1), ammonium compounds
(catA1) and aminoglycosides (strA, strB) by animal
PG1 isolates was considerably lower than that in
PG3 (Figure 4, S3), with the rates being 2.62%,
29.76%, 33.75%, 35.63%, 32.39%, 0%, 5.56%, 0% and
0% in PG1 and 50.93%, 99.32%, 74.52%, 71.17%,
70.70%, 100%, 100%, 49.95% and 49.95% in PG3.
The carriage rate of AMR genes by animal PG3 iso-
lates was similar to that in the Chinese human PG3
isolates (Figure 4, S3).

Figure 3. Clade-wise exploration of the temporal signals of PG1 and PG3 Root to tip divergence was computed using TempEST,
with and without the animal isolates for PG1 and PG3 considered separately. The animal and human isolates are coloured as
shown.
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Host-associated accessory genes

We assessed whether there were any accessory genes
were associated with animal associated S. flexneri,
which may contribute to adaptation using Scoary
[50]. A 90% sensitivity and 90% specificity were used
as the cut off and association analysis was performed
for PG1 and PG3, separately. We identified 33 and
12 accessory genes that were significantly associated
with animal isolates in PG3 and PG1 respectively
(Table S2). However, BLASTn searches indicated
that most of these genes were present in human iso-
lates. One gene, ospE2 was confirmed to be present
at very different frequencies of 82.35% and 13.36%
in animal and human PG3 isolates, respectively. Mul-
tiple insertion sequences (ISs) were found to be genu-
inely associated with animal isolates in PG1 and PG3.
A unique contig detected in 11 animal S. flexneri gen-
omes (F9, F39, F38, F34, F28, F27, F26, F24, F21, F20,
F14) in PG1 was found to be 100% identical to that in
E. coli plasmid pLF82 [52].

Discussion

Shigella spp., emerged from within E. coli multiple
times [3] is a human host-specific pathogen, which
pose a significant health threat and with no known
animal reservoir until recently [5,7]. In this study,
we confirmed that animals were colonized by
S. flexneri as a reservoir. A comparative phylogenetic
analysis of the S. flexneri genome isolated from

humans and animals showed a clear picture of the
population structure of genomic diversity, as well as
the relationships between geography, temporal signals,
and hosts.

After PG3 was introduced into China, the domi-
nant population of S. flexneri changed, and PG3 is
nearly the only clade currently circulating in the
human population in China. The animal S. flexneri
population contained a mix of the PG1 and PG3 clades
in different proportions to those in the current human
S. flexneri population in China, suggesting that it is
most likely that human S. flexneri was transmitted to
the animal population at different times and then
maintained in the animal population. Molecular dat-
ing suggested that the PG1 animal lineages date back
to the 1940s to 1960s. Thus, it is likely that PG1
entered the animal population when they were predo-
minantly circulating back and then remained in the
animal population. The fact that two animal lineages
shared a close relationship with human isolates from
China from 1950s to 1960s supports this hypothesis.
However, one animal lineage shared a close relation-
ship with recent human PG1 isolates. Therefore, it is
also possible that the transmission can be recent in
either direction, but cannot be differentiated without
more data. The PG3 animal isolates were similar to
the isolates circulating in humans in recent years,
and all of them belonged to ST91 which carried multi-
drug resistance and some belonged to the recently
emerged novel Xv serotype [17], providing more evi-
dence that S. flexneri from humans was transmitted

Figure 4. Comparison of the distribution of virulence factors and antimicrobial resistance determinants of S. flexneri isolates from
animals and Chinese human isolates within and between PG1 and PG3. The compositions of virulence factors and AMR determi-
nants in each isolate are represented as the percentage identity of the best BLAST hit. The virulence factors/genes (in order) are
SHI-1 (pic, set1A, set1B, and sigA), SHI-2 (iucA, iucB, iucC, iucD, and iutA), enterobactin genes (entA, entB, entD, entE,entF, fepA,
fepB, fepC, fepD, and fepG), sit (sitA, sitB, sitC, and sitD), ics (icsA/virG, icsB, and icsP), ipa (ipaA, ipaB, ipaC, and ipaD), ipg (ipgA,
ipgB1, ipgB2, ipgC, ipgD, ipgE, and ipgF), msbB2, mxi (mxiA, mxiC, mxiD, mxiE, mxiG, mxiH, mxiI, mxiJ, mxiK, mxiL, mxiM, and
mxiN), osp (ospB, ospC1, ospC2, ospC3, ospC4, ospD1, ospD2, ospD3, ospE1, ospE2, ospF, and ospG), sepA, spa (spa13, spa15,
spa24, spa29, spa32, spa33, spa40, spa47, and spa9), and vir (virA, virB, virF, and virK). The AMR genes are aac(3)-II, aadA1,
aadA2, aadA5, strA, strB, and sat1 (aminoglycosides); blaCTX-M-24, blaOXA-1, and blaTEM-1 (β-lactams); catA1 and catB1 (phenicols);
dfrA17, dfrA3b, dfrA1, dfrA5, dfrA14 and dfrA8 (trimethoprims); ermB, msrE, mphA,and mphE (macrolides); qacEΔ1 and qnrS1(qui-
nolones); qepA, sul1, and sul2 (sulphonamides), and tetA(A), tetA(D), and tetA(B) (tetracyclines).
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to the animal population. However, we could not
identify any direct regional transmission events as
none of the animal isolates was close to human isolates
from the same region. Interestingly some animal
lineages contained animal isolates from different pro-
vinces. One animal isolate (F15) from Gansu and three
animal isolates (F11, F12 and F17) from Shanxi in PG3
grouped together and were closer to each other than to
human isolates from Gansu. Overall, our results
showed that animals are a reservoir of diverse
S. flexneri isolates and that animal domestication is a
key factor in the spread and host adaptation of patho-
gens. It seems that there was no animal to human
transmission event in the studied population and/or
time period. However, it is possible that animals are
an important reservoir and many transmit S. flexneri
to the human population as the number of analyzed
samples were small.

The S. flexneri isolates from yaks were obtained
from Qinghai and Gansu, which are important yak
farming provinces in China, where the earliest domes-
tications of yaks occurred [53]. PG1 S. flexneri may
have entered the yak population a long time ago, likely
when PG1 was predominantly circulating in China.
Yaks have a restricted distribution in China, mostly
in the Qinghai-Tibet Plateau (QTP) and in the adja-
cent alpine and subalpine areas where human popu-
lation density is relatively low and yaks have little
contact with humans [53,54]. The yak S. flexneri
may have been well separated from human population
for direct transmission in recent years since the
S. flexneri isolated from humans from these provinces
was similar to human isolates from other parts of
China than to yak S. flexneri. It would be interesting
to conduct sampling of yaks in the less populated
regions to further understand the S. flexneri evolution
in the yaks. Further studies are also needed to deter-
mine any transmissions between yak and human
populations.

We attempted to determine the genes involved in
S. flexneri adaptation to the animal population. By
analyzing PG1 and PG3 isolates separately, we found
that 12 genes in PG1 and 33 genes on PG3 were sig-
nificantly associated with animal isolates. However,
further analysis of the genes revealed that most of
these genes were present in human isolates and
some were at lower proportions. The initial difference
detected was likely because that these genes were not
annotated as functional genes. These genes may have
continued their degradation as Shigella genomes are
known to contain many pseudogenes. IS expansion
and the associated genome decay is a typical feature
of host adapted pathogens [55]. Whether any of the
functional genes found to be differentially present in
animal isolates are necessary for S. flexneri to live in
animals remains to be determined. Very few genes
that were common to PG1 and PG3 animal isolates

were found, suggesting that even if these genes play
an adaptive role, they are not essential for surviving
in animals. Interestingly, 11 yak isolates belonging to
the same lineage in PG1 carried an E. coli plasmid
LF82, suggesting that this plasmid may have been
acquired by their MRCA.

The ability of Shigella to cause bacillary dysentery
has been attributed to its virulence factors, which are
encoded on chromosomal pathogenicity islands and
the 210 kb plasmid pINV [13]. Virulence plasmids
can provide S. flexneri with a competitive advantage
to adapt to specific econiches and enhance their survi-
val [56]. The Shigella T3SS delivers effectors into the
host cells and mediates entry of the bacterium. How-
ever, pINV or the invasion region on the plasmid is
known to be unstable [57]. During in vitro growth,
an increased growth rate of S. flexneri happens after
lose the PAIs or the entire plasmid, which highlighting
the fitness cost of pINV to S. flexneri [58]. The pres-
ence of the invasion region or the entire plasmid
markedly differed between different PGs, suggesting
the differences in the stability of the plasmid or inva-
sion region in different PGs. Over 80% of PG1 isolates
lost the plasmid or the invasion region but only 18% of
the PG3 isolates lost these. The animal PG1 strain has
lost the key virulence determinants similar to human
PG1 isolates, meaning there is less of a threat of it
spreading back to the human population. PG1 is an
older lineage than PG3. It is thus possible that the
inherent instability of the plasmid may have led to
the disappearance of PG1. On the other hand, the
increased stability and acquisition of other virulence
factors such as SHI-1 may have enabled PG3 to
expand globally. Nearly all recent isolates in China
belonged to PG3 of ST91 which carried two drug
resistance islands and an O antigen modifying plasmid
[17]. Acquisition of new drug resistance and the the
more stable pINV plasmid may have given PG3 a
competitive advantage to replace other PGs in China
and can facilitate successful clonal expansion in most
Asian and African countries [59].

Animals were not considered a natural host of Shi-
gella and the isolation rate from animals was low at
1.62%. Over 60% of the isolates were obtained from
calves with diarrhoea, suggesting that S. flexneri can
cause disease in young animals. Further studies are
required to determine the virulence factors needed
for them to cause disease in animals. Nearly all PG1
animal isolates lacked the invasion region or the entire
pINV plasmid, suggesting that other virulence factors
may have played a role in causing diarrhoea.

Examination and comparison of clades within the
phylogeny of this lineage revealed different evolution-
ary rates between humans and animals. Our results
suggested animal-associated strains evolve at a con-
siderably slower rate than human-associated strains.
It could be caused by multiple factors, such as different
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selective pressure suffered between the animal and
human isolates and insufficient temporal signal in
the animal isolates. It is thus plausible that these
lineages, once entered the animal population, had
evolved slower in the new host environment. The
differences of animals in life-history traits may leave
a measurable imprint on the isolates’ rate of evolution.
However, the temporal signals in animal only isolates
from both PG1 and PG3 datasets were insufficient for
molecular dating (R2 was negative [data not shown]).
The lack of temporal signals was likely to have been
caused by the limited number of animal isolates
sampled and a very short sampling time of only two
years (2016–2017) with no animal isolates from any
earlier years. Another possibility is that the tip date
calibration underestimated the divergence of animal
lineages. In particular, PG1 arose earlier than PG3
and had evolved for a longer evolutionary time with
deeper branches. Underestimation of deep divergence
times based on tip date calibration has been discussed
recently in measles virus evolution [42,60]. Long term
substitution rates are affected by long-term purifying
selection and possible substitution saturation [42].
Therefore, although our results strongly support a
rate slow-down in animal isolates, further investi-
gation using a dataset with animal strains sampled
over a longer time period are needed to understand
any possible effects of transmission between the two
different hosts on the evolutionary rates.

In conclusion, there were multiple S. flexneri
lineages in the animal populations and animals may
act as a reservoir of S. flexneri. Different clades of
S. flexneri may persist in the animal population. In
particular, S. flexneri may have been circulating in
the yak population for a long time or transmitted to
the yaks during PG1 circulation in the human popu-
lation in China. Other animal S. flexneri isolates
were likely recent transmissions from human popu-
lations indicating that and animals are a potential
reservoir for human infections. Further studies are
needed to determine the potential transmission of
S. flexneri from animals to humans as a public health
threat.
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