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Pyroptosis is a highly inflammatory and lytic type of programmed cell death (PCD)
commenced by inflammasomes, which sense perturbations in the cytosolic environment.
Recently, several ground-breaking studies have linked a family of pore-forming proteins
known as gasdermins (GSDMs) to pyroptosis. The human genome encodes six GSDM
proteins which have a characteristic feature of forming pores in the plasma membrane
resulting in the disruption of cellular homeostasis and subsequent induction of cell death.
GSDMs have an N-terminal cytotoxic domain and an auto-inhibitory C-terminal domain
linked together through a flexible hinge region whose proteolytic cleavage by various
enzymes releases the N-terminal fragment that can insert itself into the inner leaflet of the
plasma membrane by binding to acidic lipids leading to pore formation. Emerging studies
have disclosed the involvement of GSDMs in various modalities of PCD highlighting their
role in diverse cellular and pathological processes. Recently, the cryo-EM structures of
the GSDMA3 and GSDMD pores were resolved which have provided valuable insights
into the pore formation process of GSDMs. Here, we discuss the current knowledge
regarding the role of GSDMs in PCD, structural and molecular aspects of autoinhibition,
and pore formation mechanism followed by a summary of functional consequences of
gasdermin-induced membrane permeabilization.

Introduction
Inflammasomes act as sensors of the innate immune system and function at its principal subcellular
sites by detecting pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) and
driving immediate inflammatory immune responses [1–3]. Inflammasomes are made up of a sensor
protein such as NLR containing protein that detects the danger signals and recruits adaptors such as
ASC. ASC ultimately incorporates effector proteins into the assembly for example caspase-1 via homo-
typic death domain interactions which results in higher-order assembly of inflammasomes yielding
activated caspases [4–6]. The NLR/ALR-containing inflammasome are often termed as canonical
inflammasomes, for example, NLRP3 inflammasome. On the other hand, oxidized lipids or lipopoly-
saccharides (LPS) from Gram-negative bacteria can activate murine caspase-11 (caspase-4/5 in
humans), forming the non-canonical inflammasome (Figure 1A,B) [7,8]. Human caspase-1, -4, -5,
and -12 and, mouse caspase-1, -11, and -12 are collectively referred to as inflammatory caspases.
Direct downstream effects of activated inflammasomes include maturation of inflammatory cytokines
such as IL-1β and IL-18, and subsequent pyroptosis [9]. Pyroptosis is a lytic and inflammatory form
of PCD which was initially described in 2000 [10,11]. The characteristic morphological features of
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Figure 1. GSDMs can be activated by diverse range of enzymes leading to the induction of various forms of programmed cell death. Part 1 of 2

(A) Diverse microbial and cellular stress signals are detected by the sensor proteins of the canonical inflammasomes resulting in the recruitment of adaptor

protein ASC and procaspase-1 resulting in inflammasome assembly which yields active caspase-1. Proinflammatory cytokines pro-IL-1β and pro-IL-18 are
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pyroptosis include swelling and lysis of cells resulting in the release of cytoplasmic content which attracts the
effector immune cells to elicit an inflammatory immune response [12]. The term pyroptosis is derived from the
Greek words ‘pyro’ which means fever or fire and ‘ptosis’ which means to fall underlying its association with
the secretion of IL-1β and IL-18. Earlier, pyroptosis was recognized as ‘caspase-1-dependent necrosis’, because
of morphological resemblance and its stringent requirement of caspase-1 [13], however, the discovery of the
inflammasome in 2002 [14] and subsequent identification of non-canonical inflammasome in 2011 [15] led to
redefining of pyroptosis as an effector mechanism of the inflammasome activation.
A recent breakthrough in inflammasome biology and pyroptosis research was the identification of the gasder-

min D (GSDMD) protein which has now emerged as a key executioner of pyroptosis. Several landmark studies
in 2015 have independently reported that the central mediator of pyroptotic cell death is GSDMD. Activated
inflammatory caspases such as human caspase-1 and -4, and murine caspase-1 and -11 cleave within a central
linker region joining two domains of GSDMD producing a 31 kDa N-terminal fragment which can initiate pyr-
optosis by forming membrane pores [16–19].

The gasdermin (GSDM) family
Nearly two decades ago, the GSDM family was mentioned in the literature for the first time as a gene family
which can cause hearing loss in humans and alopecia in mice [20]. The name ‘gasdermin (gastro + dermato)’
was assigned based on the predominant expression of mouse GSDMA in the upper gastrointestinal (GI) tract
and the skin [20]. At present, the family comprises six paralogous genes in humans: GSDMA, GSDMB,
GSDMC, GSDMD, GSDME (DFNA5), and PJVK (DFNB59) (Table 1). Mice lack GSDMB and encode multiple
isoforms of GSDMA (GSDMA1–3) and GSDMC (GSDMC1–4). In humans, GSDMA and GSDMB are located
at chromosome 17q21.1, while GSDMC and GSDMD are at chromosome 8q24. In mice, paralogous genes
GSDMA1, GSDMA2, and GSDMA3 are located on chromosome 11, while GSDMC1, GSDMC2, GSDMC3,
and GSDMC4 are located at chromosome 15. Phylogenetic analysis reveals that the GSDME-like gene origi-
nated in Cnidaria which gave rise to the GSDM genes in the animal kingdom. From a duplication event of the
ancestral GSDME gene, PJVK was originated which is related to the development of the complex inner ear in
vertebrates. The presence of GSDMA in birds, reptiles, and platypus, and GSDMB, GSDMC, and GSDMD in
mammals and placenta depicts high evolutionary pressure. However, these genes can be expanded or deleted
depending on the species [21]. The predominant expression of GSDMs is observed in the skin, GI tract, and
various immune cells. They are associated with various diseases such as deafness, alopecia, inflammatory disor-
ders and cancer (Table 1) [22].
The GSDMs share nearly 45% sequence homology and are leucine-rich proteins. Their structure depicts well-

conserved N-terminal and C-terminal gasdermin domains which are linked through an intervening flexible
hinge region which is a potential substrate site for proteases including caspases and granzymes [23]. Based on

Figure 1. GSDMs can be activated by diverse range of enzymes leading to the induction of various forms of programmed

cell death. Part 2 of 2

processed by caspase-1 to release mature IL-1β and IL-18. Caspase-1 can initiate pyroptosis by cleaving GSDMD to generate active

GSDMD-NT which forms pores in the plasma membrane by targeting phospholipids resulting in pyroptosis, although other

caspase-1 substrates capable of inducing pyroptosis may also exist. IL-1β and IL-18 are presumably released by cell lysis during

pyroptosis. (B) The non-canonical inflammasome pathway is triggered by cytosolic Gram-negative bacteria or bacterial LPS in the

infected cells resulting in activation of caspase 11 in mice (caspase-4/5 in humans) which cleaves GSDMD initiating pyroptosis. In

the first step, the GSDMD pores allow potassium release, resulting in the activation of the NLRP3 inflammasome and IL-1β/IL-18

maturation. In a second step, GSDMD pores cause pyroptosis, thereby driving the release of mature cytokines. (C) Granzymes initiate

GSDMB-NT- and GSDME-NT-induced pyroptosis. GzmA or GzmB, which is released from killer cytotoxic lymphocytes, induces

GSDMB- or GSDME-dependent pyroptosis in tumor cells, respectively. (D) The intrinsic or extrinsic apoptotic pathway can activate

caspase-3 which cleaves GSDME to produce the pyroptotic GSDME-NT, leading to membrane permeabilization and releases of

proinflammatory DAMP molecules such as high mobility group box protein 1 (HMGB1), subsequently inducing secondary necrosis in

macrophages. ASC, apoptosis-associated speck-like protein containing a CARD; AIM2, absent from melanoma 2; GSDMD,

gasdermin D; GSDME, gasdermin E; GSDMB, gasdermin B; GzmA, granzyme A; GzmB, granzyme B; HMGB1, high mobility group

box protein 1; IL-1β, interleukin-1β; IL-18, interleukin-18, LPS, lipopolysaccharide; NLRP3, Nod-like receptor (NLR) pyrin

domain-containing 3; NLRC4, NLR family CARD domain-containing protein 4.
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the presence of two potential leucine zippers in GSDMs, it was presumed that these proteins may act as tran-
scriptional factors, however, the absence of nuclear localization signal sequence and DNA binding motifs, and
their presence in the cytosol have weakened this hypothesis [24]. Hence, the presence of leucine zippers
remains to be experimentally proved. Except for PJVK, the N-terminal domain of all GSDMs can oligomerize
to form plasma membrane pores which can lead to cell death [25–27]. In PJVK, the N-terminal domain is dir-
ectly linked to a short C-terminal domain carrying a zinc-finger domain of the anonymous function [28].

Gasdermins can induce various modalities of programmed
cell death (PCD)
At present, the most studied modes of PCD include pyroptosis, apoptosis, secondary necrosis, and NETosis.
Initially, these mechanisms were viewed as independent processes, however, emerging data suggest that these
four PCD pathways execute substantial cross-talk and can be induced by the same effectors, i.e. gasdermin pro-
teins [29]. Although, pyroptosis seems a generic term for GSDMs’ induced cell death, in fact, many recent
studies have reported that GSDMs can execute other modes of PCD in addition to pyroptosis. Inflammatory
caspases were thought to act as bona fide activators of GSDMs, however, latest data indicate that GSDMs can
induce pyroptosis not only via inflammatory caspases but also through other inflammatory
caspase-independent pathways. These findings elucidate that the repertoire of GSDMs activation outspreads
inflammasome caspases. Furthermore, current researches have also reported that some GSDMs can target other
cellular membranes in addition to the plasma membrane, for instance, N-terminal of GSDMA, -D and -E can
target mitochondria, N-terminal of GSDMD can also target nuclear envelope membrane and azurophilic gran-
ules and PJVK can target peroxisomes. These revelations suggest that GSDMs could be involved in other intra-
cellular processes in addition to PCD [21].

Gasdermins induce pyroptosis using inflammatory caspases, pro-caspases,
and granzymes
Caspase-1 from canonical inflammasome and caspase-11 (human caspase-4/5) from non-canonical inflamma-
some use GSDMD as their substrate and cleave linker region after residue Asp275 and Asp276 in humans and

Table 1. Gasdermin family members, expression pattern, and associated diseases

Human
members

Mouse
members Expression

Activating
enzymes Associated diseases References

GSDMA Gsdma1
Gsdma2
Gsdma3

Skin, esophagus, tongue,
stomach, mammary glands, and
umbilical cord

Unknown Asthma, systemic sclerosis, alopecia,
inflammatory bowel disease

[22,82–86]

GSDMB Absent Esophagus, stomach, liver, colon
and Lymphocytes,

Granzyme A (GzmA) Rheumatoid arthritis, inflammatory
bowel disease, type 1 diabetes

[82–84,86–88]

GSDMC Gsdmc1
Gsdmc2
Gsdmc3
Gsdmc4

Esophagus, trachea, stomach,
intestines spleen, bladder and
skin

Unknown Unknown [82–84]

GSDMD Gsdmd Esophagus, stomach, intestines,
Immune cells,

Caspase-1/4/5/8l11,
neutrophil
elastase,
cathepsin G

Sepsis, familial Mediterranean fever,
rheumatoid arthritis, inflammatory
bowel disease

[82–84,89–91]

GSDME
(DFNA5)

Dfna5 Intestines, brain, kidney, heart,
cochlea, placenta, and
IgE-primed mast cells

Caspase-3,
granzyme B (GzmB)

Autosomal dominant congenital
deafness

[22,82–84]

GSDMF
(DFNB59,
PJVK)

Dfnb59 Inner ear hair cells, auditory
system, broadly expressed in
other tissues

Unknown Autosomal recessive congenital
deafness

[22,82–84]
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mice, respectively, to release GSDMD-NT. This cleavage-liberated 31 kDa GSDMD-NT relocates from the cyto-
plasm to the plasma, nuclear or mitochondrial membrane to assemble membrane pores [18,30,31]. The
GSDMD pores can allow the flow of a variety of species from the cells including ions, therefore, potassium
efflux from these pores can further induce NLRP3 inflammasome activation (Figure 1B), which detects mem-
brane disruption and contributes to the formation of a canonical inflammasome [32]. This phenomenon of sec-
ondary inflammasome activation establishes a positive feedback loop and strengthens the prospect of GSDMD
acting upstream or downstream of inflammasomes [22].
Pro-apoptotic caspases including caspase-3 and caspase-8 are implicated in the regulation of GSDMD in

macrophages by current findings. Caspase-8 is long known for its role in the control of apoptotic cell death,
however, emerging studies are unveiling its role in pyroptotic cell death as well during specific inflammatory
responses and pathogenic infections [32–35]. It catalyzes GSDMD to produce active p30 fragments that drive
cell death in macrophages morphologically similar to pyroptosis, however, cleavage of GSDMD into p20 and
p43 fragments were also observed which was suggested to be carried out by caspase-3. Activation of caspase-3
takes place downstream of caspase-8 and by cleaving GSDMD into inactive p20 and p43 fragments, it counter-
acts the function of caspase-8 [33,34]. Another study further reported that caspase-3 and -7 can cleave
GSDMD at D87 to produce inactive fragments [36]. Taken together, these studies entail that caspase-8 and
caspase-3 function to balance GSDMD activation and inactivation which can be important during inflamma-
tion and infection. In contrast with other GSDMs, that can induce pyroptosis after cleavage, full-length
GSDMB is found to induce pyroptosis by activating caspase-4 via interaction to its CARD domain [37].
Granzymes are serine proteases produced by cytotoxic T cells to induce PCD in cancerous or infected cells.

Recent studies have shown that granzymes can be involved in the activation of some GSDMs and ultimately
drive pyroptosis. The study by Zhang et al. has shown that granzyme B (GzmB) can cleave GSDME which trig-
gers pyroptosis [38]. Furthermore, GzmB produced by killer cytotoxic lymphocytes also induces caspase-3 acti-
vated GSDME-dependent pyroptosis in cancer cells (Figure 1C). The danger signals released by pyroptotic
cancer cells exert remarkable promoting effects on cytotoxic lymphocytes [39]. These results highlight the
novel role of GSDMs in antitumor immunity which can help devise future anti-cancer strategies. These studies
also reinforce that GSDMs can induce pyroptosis independent of canonical or non-canonical inflammasome
activation.
Furthermore, new activating enzymes are also being reported for GSDMs, for example, cathepsin G produced

by cytoplasmic granules of monocytes and neutrophils, and neutrophil elastase (ELANE) produced by aging
neutrophils, are recently reported to cleave GSDMD [40,41]. The cleavage site of these enzymes is slightly dif-
ferent from that of inflammatory caspases, nevertheless, they produce ∼30 kDa GSDMD-NT which can form
membrane pores [22]. Given the fact that multiple activating enzymes work for many GSDMs such as for
GSDME and GSDMD, a redundant backup mechanism is discernible for inducing pyroptosis to stimulate a
robust immune response [39].

Gasdermins induce autophagy, apoptosis, and secondary necrosis
Numerous studies have suggested that expression levels of GSDMs can control the type of cell death they will
induce. Upon inhibited or insufficient scavenging, the apoptotic cells can enter into another phase at the end
of the apoptotic pathway called secondary necrosis [42]. It has been reported that GSDME can switch apoptosis
to so called secondary necrosis/pyroptosis upon apoptotic stimulations downstream of caspase-3 [43–45] and
acts upstream of caspase-3 to augment caspase-3 activation [45,46]. In bone-marrow-derived macrophages,
upon induction of the mitochondrial apoptotic pathway, caspase-3-mediated cleavage of GSDME at D270 pro-
duces a necrosis-inducing fragment of GSDME-NT (Figure 1D), which induces secondary necrosis following
apoptotic plasma membrane blebbing. Upon ablating GSDME, this necrotic morphology is disappeared, sug-
gesting that GSDME carries out necrotic membrane pearmiabilization [39,43,47]. Multiple studies have
reported that following treatment of cancer cells with chemotherapeutic drugs, the mitochondrial intrinsic
apoptotic pathway is activated leading to caspase-3 mediated cleavage of GSDME resulting in robust pyroptotic
cell death, in addition to simultaneously inducing cellular apoptosis [47,48]. After chemotherapy, the simultan-
eous detection of biochemical markers for apoptosis and pyroptosis suggests the co-occurrence and interplay of
apoptosis and pyroptosis. In the absence of GSDME, the dominance of apoptotic markers with prolonged
apoptotic morphology were observed [44,47–49]. GSDME also acts as mitochondrial pore-forming protein
(PFP) that augments activation of the apoptotic pathway by releasing high-temperature requirement protein A2
(HtrA2/Omi) and cytochrome c (Cyt c) from the mitochondria and activating the intrinsic apoptotic pathway
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[46]. Furthermore, other GSDMs can also augment the mitochondrial apoptotic pathway as shown by the
interaction of GSDMA3 with Hsp90/Hsp70 machinery complex which targets GSDMA3-NT into mitochondria
for interaction with a chaperone Trap1 to trigger mitochondrial permeability, reactive oxygen species (ROS)
production, and secretion of Cyt c, all of which result in cell death [50]. Association of GSDMA3 with
TNF-α-induced apoptosis has also been reported by multiple studies [51–53].
A possible role of GSDMs in autophagy is proposed based on evidence that GSDMD-NT can bring about

the release of elastase and formation of LC3+ autophagosomes in NLRP3-activated neutrophils without plasma
membrane perforation or lytic death [54]. Additionally, GSDMDA3-NT and GSDMD-NT elevated the mito-
chondrial expression of the autophagic marker LC3-II in HEK293T cells [55], hinting at a possible role of
GSDMs in mitophagy.

NETosis induced by the GSDMs
‘NETosis refers to a ROS-dependent modality of regulated cell death restricted to cells of hematopoietic deriv-
ation and associated with neutrophil extracellular traps (NETs) extrusion’ [56]. It is a programmed neutrophil
cell death which serves as a crucial anti-pathogenic strategy. During NETosis, NETs which are extracellular
web-like matrices are formed by neutrophils via secretion of granular and cytoplasmic proteins, associated pro-
teases, and chromatin [57,58]. The antimicrobial proteins including neutrophil elastase (NE), cathepsin G, and
histones in NETs can eradicate the trapped pathogens [59], thus contributing to antimicrobial defense.
Although exact mechanisms employed by NETosis are not fully disclosed, yet incoming studies are reporting
that non-canonical inflammasome-activated GSDMD triggers NETosis [60], however, neutrophils are known to
resist canonical inflammasome-induced pyroptosis [61,62]. Furthermore, it has also been reported that during
the formation of NETs, GSDMD can be activated via a caspase-independent mechanism [40,63]. Overall, these
studies have disclosed the remarkable contribution of GSDMD in NETosis upon diverse stimuli including LPS,
ROS, and Gram-negative bacteria.

Structural overview of GSDM architecture
The X-ray crystal structures of full-length mouse GSDMA3 and GSDMD depict that the overall structure of
GSDMs is divided into N-terminal domain (GSDM-NT) and C-terminal domain (GSDM-CT) (Figure 2B)
[18,27]. GSDM-NT predominantly consists of loops and β-strands (β1–β11 in GSDMA3), additionally, it con-
tains multiple α helices (α1–α4 in GSDMA3) (Figure 2B). During the pore formation process, this domain
exhibits a dramatic change in its conformation [18]. Helix α1 and adjacent β1–β2 hairpin loop are present
deep in the β-sheet, which is flanked by helices α2 and α3 at one end. In GSDMA3, aromatic residues F48 and
W49 of the hairpin loop are surrounded by L270, Y344, A348, and A443 in a deep groove forming a hydro-
phobic core (Figure 2B,C). From the other end of the β-sheet, helix α4 protrudes away via two loops to interact
with the GSDM-CT [18]. In the crystal structure of GSDMD, the hydrophobic pocket consists of L292, E295,
Y376, A380, S470, and A474 of GSDMD-CT in which two aromatic residues from GSDMD-NT are inserted
(F50 and W51 in mouse GSDMD or F49 and W50 in human GSDMD). This hydrophobic core is a conserved
feature of GSDM family members and is critical for autoinhibition [27].
GSDM-CT depicts a globular conformation made up of mostly α-helices (α5–α12 in GSDMA3) making its

crystallization relatively easy as compared with full-length protein [18,27] and is covered by a small
three-stranded β-sheet (β12–β14 in GSDMA3) (Figure 2B). GSDM-NT and GSDM-CT are joined through a
long flexible linker (residues 234–263) which extends away from the main body making it accessible to activat-
ing enzymes. Caspase-1 and -11 cleave the linker after amino acid 275 at a conserved (F/L)LTD motif [16,17].
The structural homology search for GSDMA3-NT and GSDMA3-CT revealed no significant similarity to other
known proteins, implying that it represents a new type of PFP [18].

Autoinhibition of GSDMs
To induce autoinhibition, GSDMA3-CT masks GSDMA3-NT at three main sites using hydrophobic, hydro-
gen bonding, and electrostatic interactions. These three contact sites include α1 helix (predominantly via
charge–charge interactions), α4 helix (predominantly via hydrophobic interactions), and the β1–β2 loop of
GSDM-NT (predominantly via charge–charge interactions). Helices α1 and α4 have been shown to play a
vital role during lipid binding and membrane insertion, therefore, these helices are masked by GSDM-CT
to make the full-length protein inactive [64] (Figure 2B). Although the β1–β2 loop is also masked by the
GSDM-CT, its role in pore formation is yet unclear. Surprisingly, GSDM-NT and GSDM-CT are found to
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Figure 2. Two domain architecture and crystal structure of GSDMA3.

(A) The two domain architecture of the GSDM family. Before proteolytic activation, the pore-forming GSDMA3-NT is kept

inactive by the auto-inhibitory GSDMA3-CT. (B) X-ray crystal structure of murine GSDMA3 (PDB: 5B5R) is shown as a cartoon

model with labeled secondary structure elements. The structure shows that GSDMA3-CT, colored in green, folds back on the

functional GSDMA3-NT, colored in light-blue, for autoinhibition. (C,D) The two domain interaction sites I and II are shown.

Residues involved in the auto-inhibitory interactions are labeled and shown as sticks.
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remain bound to each other even after cleavage at inter-domain linker region under in vitro conditions
deprived of lipids [18], suggesting that lipid environment may be a pre-requisite for the separation of two
domains. Moreover, mutagenesis of GSDM-CT to remove its contact with GSDM-NT restored the pore-
forming ability of full-length protein which makes it clear that it is the dissociation of GSDM-CT from
GSDM-NT but not the proteolytic cleavage which is important for the pore formation process [18]. Taken
together, these results point towards many important questions such as whether proteolysis is essential for
activating the GSDMs or not? What is the molecular basis of GSDM-NT/CT non-covalent complex’s
binding to membrane lipids? What is the role of post-translational modifications in autoinhibition and pore
formation?

Biological and structural basis of GSDM pore formation
The process of pore formation can be divided into three major steps for conceptual understanding, although
these three steps may take place concomitantly. These steps include (i) lipid binding upon inter-domain proteo-
lytic cleavage (ii) oligomerization, and (iii) membrane insertion [27,64]. Nevertheless, it is yet to be discovered
if all the GSDMs follow this three-step model for pore formation. GSDMD-NT shows an affinity for cardiolipin
(CL) or phosphatidylinositol phosphate PIP1 and PIP2 species, while it may exhibit a relatively reduced affinity
for triple-phosphorylated PIP3 and the zwitterion head group phosphatidylserine (PS) [18,31]. In vitro lipid
binding assays also revealed that non-charged head group lipid phosphatidylinositol (PI) or the positively
charged head group lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) do not have a
binding affinity with GSDMD [18,31]. CL is exclusively found in bacterial membranes and mitochondria, while
PS and PIPs are present in the inner leaflet of the plasma membrane. The selectivity of GSDMD to bind with
acidic lipids highlight its ability to rupture plasma and mitochondrial membranes [46,50] and kill bacteria [31].
Furthermore, the presence of PS and PIPs in the cytosolic leaflet of the plasma membrane ensures that pore
formation takes place on the cytosolic face of the plasma membrane while not damaging bystander cells [31].
Until now, it has been unclear if oligomerization of GSDMs can occur before membrane lipid binding or these
two processes occur simultaneously [18,31], however, a recent study on GSDMD induced pyroptosis by
Evavold et al. [65] has suggested that monomers of GSDMD-NT can insert into the plasma membrane and
then assemble into pore-forming oligomers.

AFM studies to explore the pore formation process
To better elucidate the process of pore formation, Mulvihill et al. used atomic force microscopy (AFM) which
revealed that after cleavage of GSDMD by caspase-1, GSDMD-NT assembles arc-, slit-, and ring-shaped oligo-
mers capable of forming transmembrane pores by binding to the PI-, PIP-, or PS-containing membranes.
These oligomers incorporate additional oligomers into the assembly over time to establish stable and large
membrane pores with an average diameter of 22.6 nm [66]. The arc-, slit-, and ring-shaped oligomers were
assembled in the presence of phosphoinositide (PI(4,5)P2) but not phosphatidylinositol. Furthermore, PIP
enhanced the formation of ring-like oligomers in the membrane without altering their diameters. Importantly,
GSDMD-NT could not bind to the PIP-containing membrane in the presence of cholesterol and showed no
oligomer formation. These findings further validate the statement that GSDMD forms pores in the inner side
of the mammalian membranes, not the outer leaflet because it contains cholesterol [18].

Structural basis of pore formation
Recently, cryoelectron microscopy was used to resolve the structures of GSDMA3 and GSDMD pores which
provided excellent details of the pore formation process [64,67].
The cryo-EM structure of the GSDMA3 membrane pore was reconstituted on CL-containing liposomes

which revealed that GSDMA3 shows heterogeneity in oligomerization by assembling 26–28 fold pores with
dominant 27-fold pore. The 27-subunit pore has an inner diameter of 180 Å or 18 nm with a prominent
β-barrel transmembrane (TM) region having 108 β-strands and a globular cytosolic rim next to the β-barrel
(Figure 3D). The major binding element of GSDMA3-NT was the positively charged α1 helix containing three
Arg residues. This α1 helix is covered up by the GSDMA3-CT in full-length protein, hence, full-length
GSDMA3 cannot induce membrane pore. A cryo-EM density blob observed next to the α1 helix was thought
to represent the head of the acidic lipid CL [64]. X-ray structural data also revealed that mutating the basic resi-
dues of α1 helix diminishes the pore-forming activity of both GSDMD and GSDMA3. A previous study has
shown that mutating the residues of α3 helix compromises the lipid interaction [31], however, the cryo-EM
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map showed no density near α3 helix. The importance of the α3 helix is linked with its location which is near
to a subunit oligomerization interface, therefore, α3 mutation may interfere with the oligomerization process.
Furthermore, oligomeric GSDMD binds to lipids more strongly as compared with monomeric GSDMD
mutant, hence, during lipid binding, oligomerization-mediated cooperativity may exist. The mechanism of
oligomerization involves extensive intermolecular interacts between neighboring subunits mainly charge–charge
interactions and hydrogen bonding [64].
GSDMA3-NT undergoes significant conformational changes during pore formation leading to the formation

of four transmembrane β-strands which are two hairpin structures HP1 and HP2 formulated by two extension
domains ED1 and ED2, respectively, of autoinhibited GSDMD-NT (Figure 3A–C). ED1 spans the β3–β4–β5
region and during membrane insertion, it transforms into HP1. One TM β-strand of HP1 is formed by β3
elongation and the second TM β-strand is formed by β4, β5, and the loop between them. ED2 spans the β7–
α4–β8 region. The α4 helix and the flanking loops become straightened to form β-strand along with β7 and β8,
leading to the formation of HP2. HP1 and HP2 of the same subunit and the neighboring subunits develop an
extended hydrogen-bonding network between amides and carbonyl groups of the backbone which stabilizes the
β-barrel. Along each β-strand, hydrophobic and hydrophilic amino acids assemble in a manner that the side of
the β-barrel facing the pore channel has abundant polar amino acids while the side facing the membrane has
mainly non-polar amino acids. The oligomerization interfaces generated by these conformational changes are
crucial to assemble the membrane- inserting β-barrel and mutations at the oligomerization interfaces or in the
β-barrel drastically affect the pore formation process [64]. The known function of the cytosolic globular region
is to enable the intermolecular contacts, however, given its size and structure further research may disclose
more functions.
Very recently, the cryo-EM structure of the GSDMD pore was resolved by Xia et al. which revealed that the

GSDMD pore has 31–34-fold symmetry with 33-fold being dominant, in contrast with the 26–28 fold sym-
metry of GSDMA3 pore (Figure 3E). This variation suggests that different GSDMs can have different degrees
of oligomerization and also modest plasticity in pore size. The inner and outer diameters of the GSDMD pore

Figure 3. Mechanism of GSDM pore formation.

(A) Crystal structure of autoinhibited GSDMA3 (PDB: 5B5R). (B) Ribbon diagram of GSDMA3-NT domain in the pore

conformation. (C) Conformational changes from autoinhibited to membrane-inserted GSDMA3-NT. Extension domains ED1

shown in gray color and ED2 shown in blue color, which transition into the finger-like hairpins HP1 and HP2, respectively. (D)

The cryo-EM structure of the 27-subunit murine GSDMA3 pore (PDB: 6CB8). In addition to the 108-strand β-barrel that inserts

into the membrane, each subunit contributes a basic α1 helix (orange) that interacts with acidic lipids and a globular domain

(green) above the transmembrane (TM) region (adapted from [64]). (E) Ribbon diagram and dimensions of the 33-subunit

human GSDMD pore structure fitted into its cryo-EM density map. The 33-fold pore comprises a large transmembrane β-barrel

and a globular domain on the cytosolic side of the pore (adapted from [67]).
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are 215 Å and 310 Å, respectively, larger than that of GSDMA3. Each pore-forming subunit of GSDMD also
contains two inserted β-hairpins and a globular domain, though, with a ∼16° angle difference from the globular
domain of GSDMA3 pore hinting for a flexible junction between globular domain and β-barrel. GSDMD-NT
also undergoes conformational changes to convert ED1 and ED2 into HP1 and HP1 during membrane inser-
tion [67]. While in GSDMA3 positively charged α1 helix is essential for membrane lipid binding, in the
GSDMD pore, the β1–β2 loop having a hydrophobic tip flanked by basic residues was proposed to be import-
ant for interaction with membrane lipids. The hydrophobic tip inserts into the membrane acting as an anchor,
while its flanking basic residues interact with membrane lipids. The sequence and structure of this hydrophobic
tip are conserved among GSDM family members. The GSDMD pore conduit has a predominant negative
charge and based on electrostatic filtering favors the release of IL-1β and IL-18 as compared with their precur-
sors emphasizing the importance of charge as well as the size of the pore in the passage of cargo [67].

Outcomes of GSDM pore formation and implication for
lysis-independent functions
Following the formation of GSDM pores, the plasma membrane loses its normal permeability barrier leading to
the catastrophic disturbance in the normal separation of potassium and sodium which aids in cell rupturing [68].
The end result of GSDM pore formation was originally assumed to be always terminal in the form of pyroptotic
cell death [16,17,31,69], however, subsequent studies have shown that the main function of GSDM pore formation
is not necessarily cell death [70,71], because, cell death following GSDM pore formation is also regulated and can
be postponed or even circumvented. Cells can regulate the pore formation process by controlling the expression
level of a particular GSDM to a low level, so that cell death can be avoided. Furthermore, variations in caspase
activity may also contribute to sublytic pore formation [72]. Besides, the ESCRT machinery have been shown to
remove GSDMD pores from the plasma membrane [73]. Multiple other studies have reported several mechanisms
that can repair the plasma membrane damage aroused from pore-forming toxins, mechanical and laser-stress to
restore the integrity of the plasma membrane [13]. Although, lysis-independent functions are known only for
GSDMD as of now, however, given the similarity between GSDMs, it is convincible that other members also
perform such functions. GSDMD activation downstream of activated NLRP3 inflammasome has been shown to
release IL-1β without detectable cell lysis in mouse macrophages [8,70,71]. These studies imply that sublytic
GSDMD pore formation could be an unconventional method employed by cells to secrete cytokines, small cyto-
solic proteins or cysteine protease inhibitors cystatins [71,74]. However, consideration should be given to the fact
that assays using LDH release as an indicator of cell death are not very sensitive as they cannot detect the death
of small fraction of cells. Moreover, LDH is also released during other types of cell death, therefore, more sensitive
methods which offer simultaneous real-time optical detection of cell death and IL-1β release at single-cell level
should be employed [75]. Recently, a cell-surface protein NINJ1 was reported to be crucial for plasma membrane
rupture, however, GSDMD pores could still be formed in the absence of NINJ1 suggesting that GSDMD pores
can release IL-18 and IL-1β without inducing plasma membrane rupture [76]. Taken together, GSDM pores
appear to act as master regulators for the secretion of leaderless proteins either via membrane lysis or through
lysis-independent pore formation.
The size and numbers of particular GSDM pores are likely to be varied depending upon the type of cells [77].

Furthermore, the function of these pores is based on size restriction and charge properties of the conduit [67]
Noticeably, GSDM pore having a diameter of 10–15 nm can secrete IL-1β (4.5 nm) [18,31] and IL-18 (5.0 nm),
while it is small enough to prevent the passage of larger molecules, i.e. 25–30 nm diameter ribosomes [78]. In the
presence of few GSDM pores, a cell can use compensatory mechanisms to lower the cell volume for example
using swelling-activated Cl−, K+, and organic osmolyte channels that can export volume-increasing solutes and
their accompanying water [79]. Normal emergency exocytic membrane fusion events also repair the pores in the
membrane if their number is small, e.g. MLKL pore removal by ESCRT machinery during necroptosis [79–81].
On the other hand, if the number of GSDM pores exceeds the cell s’ compensatory capability, then a membrane
rupture event is inevitable [78].

Conclusion
Here, we have summarized the current knowledge about the GSDM protein family, their role in programmed
cell death, and lastly structural and molecular aspects of the GSDM pore formation process. Elucidation of
further aspects of cytotoxic activity of GSDMs has the potential to disclose novel molecular participants in the
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process of cell death. Clearly, current studies have only touched the tip of the iceberg and much work still
remains to be done until we get a complete picture of the biological relevance of GSDMs.

Perspective
• Given the importance of gasdermin-induced cell death in tissue damage and inflammation,

they have taken prominent place in cell death pathways. Elucidation of biological and struc-
tural aspects of gasdermins can help to design novel therapeutic strategies. We still need to
know if all the GSDMs have a role in inflammation and antimicrobial immunity. How do their
functions differ from each other? What structural factors contribute to the differences in the
functions of various GSDMs?

• Recent cryo-EM structural data has provided valuable information regarding the pore forma-
tion process of GSDMA3 and GSDMD. Our knowledge regarding the role of GSDMA- and
GSDMC-mediated pore formation is still inadequate. Future studies can focus on deciphering
the pathological or physiological signals that drive the cleavage of GSDMA and GSDMC in
humans.

• Since distinct GSDMs exhibit a cell-type and tissue-specific expression, hence, it will be of
great importance to describe the cell-type and tissue-specific functions of the different
GSDMs which may elucidate their role in various diseases. Furthermore, besides inflamma-
somes, are there other sensor systems with similar complexity upstream of GSDMs which can
activate them?
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