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A B S T R A C T   

In this paper, the bound state solutions of the radial Schrödinger equation are obtained in closed 
form under an improved Scarf II potential energy function (ISPEF) constrained by external 
magnetic and Aharonov-Bohm (AB) flux fields. By constructing a suitable Pekeris-like approxi-
mation scheme for the centrifugal barrier, approximate analytical expressions for the bound- 
states and thermal partition function were obtained. With the aid of the partition function, an 
explicit equation for magnetization at finite temperatures is developed. The obtained equations 
were then applied to calculate the energy levels and magnetic properties of 7Li2 (2 3Πg), K2 (X 
1Σg

+), Mg2 (X 1Σg
+) and NaBr (X 1Σ+) diatomic molecules. The obtained numerical results of the 

vibrational energies for these molecules were found to be in good agreement with theoretic and 
experimental values reported in the existing literature. The results indicated that by turning off 
the magnetic and AB fields, the energy levels of the diatomic molecules degenerate. The results 
further revealed that an increase in the temperature of the molecules and the AB field strengths 
leads to a linear decrease in magnetization.   

1. Introduction 

A potential function can be regarded as the dependence of the function of a quantum mechanical system on independent pa-
rameters such as radial and angular distances. The potential function serves as the medium of interaction between a quantum system 
and its neighbourhood. Some examples of atomic potential energy models are given elsewhere [1–5]. Diatomic potential energy 
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functions (also known as diatomic oscillators) are specialized potential energy models suitable for the description of interactions in 
diatomic systems. An essential feature of a molecular interaction potential is that it must obey the three necessary Varshni conditions 
for a molecular interaction potential [6]. Examples of diatomic molecule potentials are listed in Refs. [7–15]. 

Diatomic oscillators and atomic potential energy functions are important in the subject of molecular spectroscopy and quantum 
mechanics due to the information they provide about the quantum states of atoms and molecules of interest. For instance, by solving 
the wave equation within the non-relativistic and relativistic regimes, under potential functions, many physical properties of systems 
such as optical, magnetic, electrical, thermodynamic and thermo-chemical properties among others have been investigated [9,16–28]. 

Several algebraic methods have been constructed to analytically solve the wave equations. Some of the proposed methods include; 
the functional analysis approach, supersymmetric quantum mechanics approach, Laplace transform method, asymptotic iteration 
method and so on. Utilizing these methods, the exact and approximate analytical solutions of the Schrödinger equation (SE) have been 
obtained using different potential functions based on the Pekeris and Greene-Aldrich approximation schemes [29–38]. 

Researchers have focused a lot of emphasis on the Schrödinger equation bound state solutions under magnetic vector potential 
fields. The energy spectra have been obtained with the Morse potential, Kratzer potential, screened Coulomb potential, exponential 
screened Coulomb potentials, and Pöschl-Teller potential, among others, using approximation schemes for the centrifugal barrier 
[39–42]. Also, the non-relativistic energy levels were obtained with a screened cosine Kratzer potential constrained by external 
magnetic and AB flux fields [43]. The energy was then applied to derive the partition function and the associated thermodynamic 
functions. 

In earlier works, approximate analytical bound state equations of the SE were obtained with various potential models under 
external fields. The equations were derived using the Greene-Aldrich approximation which, is restricted to some potential functions 
and is also not compatible with many others. 

Additionally, it has been shown in the literature [15,44,45] that the Greene-Aldrich approximation is a less precise model than the 
Pekeris approximation scheme for the approximate solution of the SE. In a recent development, several scientists used a Pekeris-type 
approximation approach to get an approximate analytical solution to the SE under magnetic and AB fields with different potential 
models [46–48]. 

In this work, the improved Scarf II potential energy function (ISPEF) is considered. The ISPEF is a member of the class of 
hyperbolical-type potentials which has practical implications in many fields of Physics [49]. The equation for pure vibrational state 
energies obtained for the ISPEF has been used to analyze the energy states of diatomic molecules [11]. Thermo-chemical equations of 
substances have also been reported with various formulations of the ISPEF [8,50]. 

Motivated by the highly accurate energy eigenvalues obtained with a Pekeris-type approximation scheme [15,44–47], we are 
encouraged to calculate the energy eigenvalues and finite-temperature magnetization for the improved Scarf II potential perturbed by 
external magnetic and AB flux fields. To the best of our knowledge, no previous versions of this work have been published in the 
literature. The remaining parts of the article are organized as follows: In section 2, an approximate energy spectrum would be obtained. 
Finite-temperature magnetic susceptibility is derived in section 2. Section 3 presents the results and discussion. The paper is concluded 
in section 4. 

2. Bound state solutions of the ISPEF under external magnetic and AB flux fields 

In this section, we present the bound state solutions of the SE under the ISPEF. To describe the potential energy-distance rela-
tionship in a chemical bond, we utilized the ISPEF model given in Ref. [11]. 

U(r)=De +
U1 + U2 sinh(αr)

cosh2(αr)
, α= πcωe(2m0/De)

1
2, (1)  

where U1 = De(sinh2 a − 1)U2 = − 2De sinh a, a = αre, De is the equilibrium dissociation energy, r, re and α is the bond length, and 
equilibrium bond length and potential screening parameter, respectively. m0 is the reduced mass, c is the speed of light and ωe is the 
equilibrium vibrational frequency. The SE for a charged particle under a radial potential, U (r) is given as [30,46] 

{
1

2m0

(
− iℏ∇+

e
c

A
)2

+U(r)
}

ψ(qi)=E ψ(qi), (2)  

where ħ = h/2π, h represents the Planck constant. qi, E and ψ are the space coordinate, energy and wave function, respectively. A is the 
vector potential, ∇ is a gradient operator, and e denotes the charge. Equation (2) may be rewritten as 

{

∇2 +
ie
cℏ

(A · ∇+∇ ·A) −
e2A2

c2ℏ2 +
2m0

ℏ2 (E − U)

}

ψ(qi)= 0, (3) 

The next important task is to choose the vector potential to solve equation (3). It is usual to choose the vector potential so that [40, 
42]. 

∇×A = B, (4)  

where B is the magnetic field vector. Based on the symmetry gauge representation, the vector potential A is resolvable into components 
written as [42] 
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A=A1 + A2. (5) 

By putting equation (5) into (4), it is clear that the vectors A1 and A2 are constrained by 

∇×A1 +∇× A2 = B, (6)  

In accordance with the potential energy function employed in this study, the potential A1 is taken as A1 = 1
2 B tanh(αr)φ̂, where B is a 

constant scalar in units of magnetic field strength. Similar vector potential had been applied to study the thermo-magnetic properties of 
diatomic systems confined by modified Pöschl-Teller potential [41]. By this choice, it is obvious that for values of r of the order of re, 
Taylor series expansion about r = 0 gives tanh (αr) ≈ αr. Using this approximation, and assuming a cylindrical coordinate system, we 
have ∇× A1 ≈ αBẑ, where ẑ represents a unit vector pointing in the z-direction. Following Ref. [42], we let A2 = ΦAB

2π rφ̂, where φ̂ is a 
unit vector in the azimuthal direction, ΦAB denotes the additional magnetic field created by a solenoid [51]. Evidently, it is clear that 
∇× A2 = 0. Substituting ∇× A1 ≈ αBẑ and ∇× A2 = 0 into expression (6) gives B = αBẑ. This result is a demonstration that the 
magnetic field is of uniform magnitude, B0 = αB acting in the ̂z. The explicit equation for the magnetic vector potential can be obtained 
by replacing A1 = 1

2 B tanh(αr)φ̂ and A2 = ΦAB
2π rφ̂ into (5) to yield A = λ(r)φ̂, where 

λ(r)=B tanh(αr) +
ΦAB

2πr
. (7) 

Expression (3) and the vector potential A = λ(r)φ̂ gives 
{

∂2

∂r2 +
1
r

∂
∂r

+
1
r2

∂2

∂φ2 +
∂2

∂z2 +
ie
cℏ

λ(r)
r

∂
∂φ

−
e2

c2ℏ2λ2(r)+
2m0

ℏ2 (E − U)

}

ψ(r,φ, z)= 0. (8)  

Since U (r) and λ (r) are functions of r only, one can focus on the radial component of equation (8) by employing the separation of 
variables approach. In this approach, an ansatz of the form ψ(r,φ, z) = (2πr)−

1
2eim φunm(r)fnm(z) is assumed with unm (r) as the radial 

wave function. The principal quantum number is given by n = 0, 1, 2, …, m = 0, ±1, ±2, …±ℓ is the magnetic quantum number, ℓ = 0, 
1, 2, …is the orbital quantum number and fn (z) is a function of z [40]. For reason of simplicity, the function fn (z) is assumed constant in 
a 2D plane containing the magnetic and AB fields. By inserting the ansatz into equation (8), one obtains 

u″
nm(r)+

⎧
⎪⎨

⎪⎩

2m0

ℏ2 (Enm − U) −
em
ℏc

λ(r)
r

−
e2

ℏ2c2
λ2(r) −

m2 − 1
4

r2

⎫
⎪⎬

⎪⎭
unm(r)= 0, (9)  

where prime denotes the derivative with respect to r. Using equations (1) and (7) to eliminate U and λ in expression (9) gives 

u″
nm(r)+

2m0

ℏ2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Enm − De −
U1 + U2 sinh(αr)

cosh2(αr)

−
e2B2

2m0c2tanh2(αr) − p
tanh(αr)

r
− q

1
r2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

unm(r)= 0. (10)  

where 

p=
eℏB
2m0c

(
m+

eΦAB

πℏc

)
, q=

ℏ2

8m0

{(
m +

eΦAB

πℏc

)2
+ 3m2 − 1

}

. (11) 

Due to the presence of tanh (αr)/r and 1/r2, equation (11) can only be solved numerically. Nevertheless, an approximate solution 
could be obtained by using a Pekeris-type approximation. This model is based on the Taylor series expansion procedure [52,53]. 
Therefore, for small values of r, the Pekeris approximations to p tanh(αr)/r and q/r2 can be written in the form of the potential (1) as 

p
tanh(αr)

r
≈ p

{

c0 +
c1 + c2 sinh(αr)

cosh2(αr)

}

, (12)  

q
1
r2 ≈ q

{

d0 +
d1 + d2 sinh(αr)

cosh2(αr)

}

. (13)  

where cj and bj (j = 0, 1, 2) are given in Appendix A by equations (A12) and (A17), respectively. It follows that by inserting equations 
(12) and (13) into (10), one obtains 

u″
nm(r)+

2m0

ℏ2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Enm − De − pc0 − qd0 −
e2B2

2m0c2

−

U1 + pc1 + qd1 −
e2B2

2m0c2 + (U2 + pc2 + qd2)sinh(αr)

cosh2(αr)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

unm(r)= 0, (14) 
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Using the coordinate transformation z = isinh(αr), equation (14) takes the form 

(
1 − z2)u″

nm(z) − zu′
nm(z)+

⎧
⎪⎨

⎪⎩
a0 −

1
2 (a1 − ia2)

1 − z
−

1
2 (a1 + ia2)

1 + z

⎫
⎪⎬

⎪⎭
unm(z)= 0, (15)  

where 

a0 =
2m0

α2ℏ2 (De − Enm + pc0 + qd0) +
e2B2

α2ℏ2c2

a1 = −
2m0

α2ℏ2 (U1 + pc1 + qd1) +
e2B2

α2ℏ2c2

a2 = −
2m0

α2ℏ2 (U2 + pc2 + qd2)

. (16)  

In equation (15), singularities occur at z = ±1, for this reason, the wave function is assumed as unm(z) = Nnm(1 − z)
1
2 σ
(1 + z)

1
2 τΩnm(z), 

where σ and τ are constants, Nnm is the normalization factor and Ωnm (z) is a function of z. By inserting this wave function into (15), one 
obtains 

(
1 − z2)Ω″

nm +{σ − τ − (σ + τ+ 1)z}Ω′
nm

−

⎧
⎪⎨

⎪⎩

1
4
(σ + τ)2

− a0 −

1
2
(σ2 − σ − a1 + ia2)

1 − z
−

1
2
(τ2 − τ − a1 − ia2)

1 + z

⎫
⎪⎬

⎪⎭
Ωnm = 0.

(17)  

Equation (17) is Gauss-hypergeometric if the last two terms separately vanish, leading to 

σ =
1
2
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a1 +
1
4
− ia2

√

, τ =
1
2
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a1 +
1
4
+ ia2

√

. (18) 

Using the conditions (18), the solution of equation (17) is written as 

Ωnm(z)=N1m (1 − z)
1
2

σ
(1 + z)

1
2

τ
2F1(a, b; c; z)

+N2m (1 − z)
− σ+

1
2(1 + z)

1
2

τ
2F1(a+ 1 − c, b+ 1 − c; 2 − c; z),

(19)  

where N1m and N2m denote the normalization constants, the parameters a, b, and c are given as 

a=
1
2

σ +
1
2

τ + ̅̅̅̅̅
a0

√
, b =

1
2

σ +
1
2

τ − ̅̅̅̅̅
a0

√
, c = σ − τ, (20) 

For bound-state solution, expression (19) is expected to diverge as z → − 1 (r → 0) and must be identically be zero as z → 1 (r → ∞). 
This means that to obtain a finite wave function when σ > 0, for z → − 1, then N2m = 0. Additionally, taking the asymptotic behavior of 
the Gauss hypergeometric equation into consideration, for the case z → 1, if τ > 0, either a or b must be a negative integer. Letting b = – 
n, equations (16), (18) and (20) yield 

Enm =De + pc0 + qd0 +
e2B2

2m0c2 −
α2ℏ2

2m0

⎧
⎪⎨

⎪⎩
n +

1
2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2
a1 +

1
8
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
2
a1 +

1
8

)2

+

(
1
2

a2

)2
√√

√
√
√

⎫
⎪⎬

⎪⎭

2

. (21)  

if m is given, Enm is expected to increase as n is increased from zero. The maximum vibrational quantum number (nmax), can be obtained 
from the relation E′nm (nmax) = 0, 

nmax = −
1
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

a1 +
1
8
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
2
a1 +

1
8

)2

+

(
1
2
a2

)2
√√

√
√
√

. (22) 

This implies that the principal quantum number can take values from 0, 1, 2, …, [nmax]. The term [nmax] signifies the largest integer 
inferior to nmax if the result computed from expression (21) is not an integer. 
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3. Magnetization at finite-temperature 

Having obtained the energy spectra equation, we proceed to derive the equation for magnetization at finite temperature for the 
ISPEF. At a temperature, T ∕= 0, the magnetization is evaluated from the equation [54]. 

Mm =
1
β

∂
∂B

lnZ, (23)  

where β = (kBT)− 1, kB is the Boltzmann constant, Z is the vibrational partition function. The first derivatives of the functions p, q, a1, a2 
and nmax required for the evaluation of the magnetization are deduced by differentiating equations (11) and (16) with respect to B to 
obtain 

p′ =
p
B
, q′ = 0, a′

1 =
2e2B

α2ℏ2c2

(

1 −
m0c2c1p

e2B2

)

, a′
2 = −

2m0c2p
α2ℏ2B

, (24)  

where prime stands for the derivative with respect to B. Expression (22) is also rewritten as 
(

nmax +
1
2

)4

−

(

a1 +
1
4

)(

nmax +
1
2

)2

=
1
4
a2

2. (25) 

Differentiating (25) with respect to B and using (24) to eliminate a′
1 and a′

2 gives 

n′
max =

e2B
2α2ℏ2c2

(
1 − m0c2c1p

e2B2

)(
nmax +

1
2

)2
− m0a2c2p

4α2ℏ2B
(
nmax +

1
2

)3
− 1

2

(
a1 +

1
4

)(
nmax +

1
2

) . (26)  

The vibrational partition function is given by the equation [18]. 

Z=
∑nmax

n=0
e− βEnm . (27) 

Inserting equation (21) into (27), with the help of (22), we obtain 

Z=Z0

∑nmax

n=0
F(n), (28)  

where 

Z0 = exp
(

− βDe − βpc0 − βqd0 −
βe2B2

2m0c2

)

, ε= αℏ

̅̅̅̅̅̅̅̅
β

2m0

√

,F(n)= exp (εn − εnmax)
2
, (29) 

The summation in (28) can be obtained approximately with the aid of the modified Poisson summation formula [55]. By employing 
the result given by equation (36) of Ref. [50], the lowest order approximation for the summation in (28) is obtained as 

∑nmax

n=0
F(n)=

1
2
{

exp
(
ε2n2

max

)
− exp

(
ε2)}+

̅̅̅
π

√

2ε {Erfi(εnmax)+Erfi(ε)}, (30)  

where Erfi denotes the imaginary error function. Inserting equation (30) into (28), the partition function is found as 

Z=
1
2
Z0

{

exp
(
ε2n2

max

)
− exp

(
ε2)+

̅̅̅
π

√

ε [Erfi(εnmax)+Erfi(ε)]
}

. (31) 

Substituting equation (31) into (23) gives 

Mm = −

(

p′c0 + q′d0 +
e2B
m0c2

)

+
Z0

βZ
n′

max

(
ε2nmax + 1

)
exp

(
ε2n2

max

)
. (32)  

Using equations (24) and (26) to eliminate the first derivatives in (32), the finite-temperature magnetization formula is obtained as 

Mm = −
pc0

B
−

e2B
m0c2 +

Z0

βZ

{
e2B

2α2ℏ2c2

(
1 − m0c2c1p

e2B2

)(
nmax +

1
2

)2
− m0a2c2p

4α2ℏ2B

}
(ε2nmax + 1)exp

(
ε2n2

max

)

(
nmax +

1
2

)3
− 1

2

(
a1 +

1
4

)(
nmax +

1
2

) . (33)  

4. Results and discussion 

The equations of the energy levels and magnetization are applied to diatomic substances including 7Li2 (2 3Πg), K2 (X 1Σg
+), Mg2 (X 
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1Σg
+) and NaBr (X 1Σ+) molecules. The diatomic molecules are chosen based on the availability of experimental data for spectroscopic 

constants and vibrational energies. The spectroscopic constants are listed in Table 1. The observed values of De, re and ωe given in the 
table were those reported in the literature [56–59]. The results in the last column of the table are obtained with the expression for the 
potential screening parameter given in (1). 

First and foremost, we confirm the validity of the approximation schemes (12) and (13) used in the study. In Figs. 1–4, the function 
X1 = pr− 1 tanh(αr) and the approximation model X2 = pc0 + p[c1 +c2 sinh(αr)]sech2(αr) are plotted as function of internuclear sepa-
ration r for the diatomic molecules. The graphical plots in Figs. 5–8 are obtained with Y1 = qr− 2 and the approximation function Y2 =

qd0 + q[d1 + d2 sinh(αr)]sech2(αr). Evidently, the figures reveal that for the small values of the internuclear separations used, the data 
calculated with X2 and Y2 are in agreement those obtained with X1 and Y1, respectively. The results signify that the Pekeris 
approximation schemes (12) and (13) may be applied to obtain the approximate solution of the radial SE given by equation (10). 

It is worthy to relate the present results with the literature on ISPEF. In Ref. [11], the equation for the energy spectra was obtained 
at zero external fields. In contrast, the equation for the energy levels obtained in the present work depends on the external magnetic 
and AB fields. In addition, the radial SE (13) of Ref. [11] was derived based on transformations involving spherical coordinates. 
However, in this work, transformation equation in cylindrical coordinates was used to obtain the Schrödinger equation. Therefore, 
when the external magnetic and AB fields are not present, it will be appropriate to compare the equations obtained in this study with 
those given in Ref. [11]. 

Letting B = ΦAB = 0, equation (11) gives p = 0 and q = ℏ2

2m0

(
m2 − 1

4
)
. These results inserted in equation (10) yields 

u″
n(r)+

2M0

ℏ2

⎧
⎪⎪⎨

⎪⎪⎩

Enm − U(r) −
ℏ2( m2 − 1

4

)

2M0r2

⎫
⎪⎪⎬

⎪⎪⎭

un(r)= 0. (34)  

Equation (34) is the same to equation (13) of Ref. [11] if m = ℓ + ½. This means that the substitution m = ℓ + ½ converts equations 
in 2D to equations in 3D. Conversely, l = |m| − 1

2 changes equations in 3D to equations in 2D. Using B = ΦAB = 0, the relation m = ℓ +
½, and the mapping De → ηDe, equation (21) reproduces expression (50) of Ref. [11]. 

With the aid of expression (21), the energy is generated for the diatomic molecules with B = ΦAB = m = 0. The data are given in 
Table 2 and Table 3. The results show that the energy levels of the increase as n increases up to the maximum vibrational quantum 
number. Equation (22) gives nmax as 89, 96, 16 and 186 for the 7Li2 (2 3Πg). K2 (X 1Σg

+), Mg2 (X 1Σg
+) and NaBr (X 1Σ+) molecules, 

respectively. Equation (50) of Ref. [11] has also been used to calculate the vibrational quantum state (ℓ = 0) energies (En) for the 
molecules. The results obtained as well as the literature on the vibrational energies of diatomic molecules are given in Tables 2 and 3. 
Using the experimental data as the standard for comparison, it is obvious that the results obtained with the present model are better 
compared to the energy eigenvalues calculated by using equation (50) of Ref. [11]. 

The variations of the energy with both the magnetic field and AB flux fields are also examined for the molecules. Table 4 and 
Table 5 shows the results of numerical computations using equation (21). The computed results are obtained with and without external 
magnetic and AB fields. The computations are carried out at arbitrary values of n and m. As shown in the tables, with the external fields 
set to zero (B = ΦAB = 0), and constant n, the energy spectra for m = ± ℓ are indistinguishable which is an indication of degenerate 
energy levels in the diatomic molecules. 

By including only one of the external fields and excluding the other, the tabulated results show that, irrespective of the external 
field present, if m is fixed, the energy eigenvalue of a molecule increases with an increase in B or ΦAB relative to the energy of the 
system without the external fields. Fig. 9 shows the variations in the energy with n obtained for different values of ΦAB. In Fig. 10, the 
energy spectra are plotted against n for different values of B. The data in the figures are obtained with the parameters of the 7Li2 (2 3Πg) 
molecule. Similar plots were obtained with the parameters of K2 (X 1Σg

+), Mg2 (X 1Σg
+) and NaBr (X 1Σ+) molecules. The plots reveal that 

AB fields of the order of just a few militesla are sufficient to remove degeneracy from the system. Nevertheless, under a magnetic field, 
values of B in the range of megatesla are needed to lift the energy overlap of the molecules. For this purpose, a laser pulse implosion 
device (LPID) could be employed. The LPID is known to produce very strong magnetic fields of the order of thousands megatesla [60]. 
If the external fields are both turned on (B ∕= 0, ΦAB ∕= 0), the energy eigenvalues of the molecules are summarized in Tables 4 and 5. 
The results reveal that at a given value of m, the energy of a molecule is increased, in addition, degeneracy in the energy levels is 
completely eliminated, leading to a more bounded system. 

Figs. 11–13 show the variation of the magnetization as a function of; magnetic quantum number, magnetic field, and AB field at 

Table 1 
Spectroscopic parameters of the diatomic molecules investigated in this study.  

Molecule State Spectroscopic parameter Ref. α (Å− 1) 

De (cm− 1) re (Å) ωe (cm− 1) 
7Li2 2 3Πg 8479.621 3.8463419 188.6858 [56] 0.4674 
K2 X 1Σg

+ 4447 3.92433 92.398475 [57] 0.7460 
Mg2 X 1Σg

+ 424 3.890 51.121 [58] 1.0540 
NaBr X 1Σ+ 27270.21 2.359 293.2 [59] 0.9123  
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Fig. 1. Fitting of the Pekeris approximation scheme pc0 + p[c1 +c2 sinh(αr)]sech2(αr) to the function pr− 1 tanh(αr) for the Li2 (2 3Πg) molecule.  

Fig. 2. Fitting of the Pekeris approximation scheme pc0 + p[c1 +c2 sinh(αr)]sech2(αr) to the function pr− 1 tanh(αr) for the K2 (X 1Σg
+) molecule.  

Fig. 3. Fitting of the Pekeris approximation scheme pc0 + p[c1 +c2 sinh(αr)]sech2(αr) to the function pr− 1 tanh(αr) for the Mg2 (X 1Σ+) molecule.  
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Fig. 4. Fitting of the Pekeris approximation scheme pc0 + p[c1 +c2 sinh(αr)]sech2(αr) to the function pr− 1 tanh(αr) for the NaBr (X 1Σ+) molecule.  

Fig. 5. Fitting of the Pekeris approximation scheme qd0 + q[d1 +d2 sinh(αr)]sech2(αr) to the function qr− 2 for the Li2 (2 3Πg) molecule.  

Fig. 6. Fitting of the Pekeris approximation scheme qd0 + q[d1 +d2 sinh(αr)]sech2(αr) to the function qr− 2 for the K2 (X 1Σg
+) molecule.  

E.S. Eyube et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e20848

9

Fig. 7. Fitting of the Pekeris approximation scheme qd0 + q[d1 +d2 sinh(αr)]sech2(αr) to the function qr− 2 for the Mg2 (X 1Σ+) molecule.  

Fig. 8. Fitting of the Pekeris approximation scheme qd0 + q[d1 +d2 sinh(αr)]sech2(αr) to the function qr− 2 for the NaBr (X 1Σ+) molecule.  

Table 2 
Vibrational energy (cm− 1) for 7Li2 (2 3Πg) and K2 (X 1Σg

+) diatomic molecules (B = ΦAB = 0).  

n 7Li2 (2 3Πg) n K2 (X 1Σg
+) 

En0 (19) Eexp [56] En [11] En0 (19) Eexp [57] En [11] 

0 93.9724 93.8116 94.0533 0 46.064 46.094 46.078 
1 280.5599 280.1512 280.6402 1 137.503 137.839 137.516 
2 465.0480 464.2410 465.1277 2 227.981 228.927 227.995 
3 647.4368 646.1710 647.5159 3 317.500 319.354 317.514 
4 827.7264 826.0218 827.8049 4 406.059 409.116 406.073 
5 1005.9167 1003.8648 1005.9945 5 493.658 498.209 493.672 
6 1182.0076 1179.7632 1182.0849 6 580.297 586.628 580.311 
7 1355.9993 1353.7728 1356.0760 7 665.976 674.369 665.990 
8 1527.8917 1525.9427 1527.9678 8 750.696 761.427 750.709 
9 1697.6848 1696.3158 1697.7603 9 834.455 847.797 834.468 
10 1865.3787 1864.9297 1865.4535 10 917.255 933.474 917.267 
11 2030.9732 2031.8171 2031.0475 11 999.094 1018.451 999.107 
12 2194.4685 2197.0063 2194.5421 12 1079.974 1102.724 1079.986 
13 2355.8644 2360.5220 2355.9375 13 1159.893 1186.286 1159.906 
14 2515.1611 2522.3854 2515.2336 14 1238.853 1269.131 1238.866 
15 2672.3585 2682.6150 2672.4304 15 1316.853 1351.252 1316.866 
… … … … 16 1393.893 1432.642 1393.905 
41 6022.6405 6299.0486 6022.6967 17 1469.973 1513.294 1469.985  
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different temperatures of the 7Li2 (2 3Πg) molecule. The plots reveal a decrease in magnetization with increasing m, B or ΦAB. In Fig. 11, 
it is clear that negative values of m give rise to positive magnetization and vice-versa. Fig. 13 also indicates that if the AB field is kept 
constant, an increase in the temperature of the molecules leads to an increase in magnetization. Fig. 11 illustrates the concept of 
antisymmetric magnetization. The magnetic order of the system is paramagnetic if m is negative, and diamagnetic if m is positive. The 
antisymmetric feature was removed under the external field as shown in Figs. 12 and 13. The negative magnetization indicates a 
diamagnetic phenomenon since the susceptibility will also be negative. Negative magnetization has many applications in physics such 
as in magnetic switching and spin resolve devices [61]. 

5. Conclusions 

The radial SE is solved with the ISPEF under external magnetic and AB flux fields. By utilizing the ansatz solution technique, an 
approximate energy equation is obtained in closed form within the context of the Pekeris-type approximation. The energy equation 
was used to develop the thermal partition function and magnetization formula for the ISPEF. The equation for the energy eigenvalues is 
used to obtain numerical vibrational energies for the diatomic molecules including 7Li2 (2 3Πg), K2 (X 1Σg

+), Mg2 (X 1Σg
+) and NaBr (X 

Table 3 
Vibrational energy (cm− 1) for Mg2 (X 1Σ+) and NaBr (X 1Σ+) diatomic molecules (B = ΦAB = 0).  

n Mg2 (X 1Σ+) n NaBr (X 1Σ+) 

En0 (19) Eexp [58] En [11] En0 (19) Eexp [59] En [11] 

0 25.152 25.156 25.175 0 146.36 146.31 146.40 
1 73.192 73.037 73.214 1 437.98 436.99 438.02 
2 118.151 117.757 118.172 2 728.03 725.28 728.07 
3 160.027 159.384 160.047 3 1016.50 1011.18 1016.54 
4 198.822 197.971 198.841 4 1303.40 1294.71 1303.43 
5 234.534 233.558 234.553 5 1588.72 1575.85 1588.75 
6 267.166 266.168 267.183 6 1872.46 1854.66 1872.50 
7 296.715 295.811 296.732 7 2154.63 2131.14 2154.66 
8 323.182 322.484 323.199 8 2435.22 2405.33 2435.25 
9 346.568 346.162 346.584 9 2714.23 2677.29 2714.27 
10 366.872 366.806 366.887 10 2991.67 2947.14 2991.71 
11 384.094 384.393 384.108 11 3267.53 3215.02 3267.57 
12 398.234 398.831 398.248 … … … …  

Table 4 
2D Energy eigenvalues (in eV) for various values of B and ΦAB for the diatomic molecules.  

n m 7Li2 (2 3Πg) n m K2 (X 1Σg
+) 

B = 0 
ΦAB = 0 

B = 0 
ΦAB = 0.1 mT 

B = 100 kT 
ΦAB = 0 

B = 100 kT 
ΦAB = 0.1 mT 

B = 0 
ΦAB = 0 

B = 0 
ΦAB = 0.1 mT 

B = 100 kT 
ΦAB = 0 

B = 100 kT 
ΦAB = 0.1 mT 

0 0 0.01165 0.25434 1.35913 2.76107 0 0 0.00571 0.05028 0.27716 0.53868 
2 − 2 0.05782 0.29134 1.39359 2.77418 2 − 2 0.02829 0.07115 0.29708 0.55517 

− 1 0.05770 0.29400 1.40128 2.78262 − 1 0.02827 0.07167 0.29842 0.55698 
0 0.05766 0.29673 1.40906 2.79108 0 0.02827 0.07220 0.29978 0.55881 
1 0.05770 0.29952 1.41693 2.79958 1 0.02827 0.07275 0.30115 0.56064 
2 0.05782 0.30238 1.42488 2.80811 2 0.02829 0.07331 0.30253 0.56249 

3 − 3 0.08062 0.30960 1.41070 2.78060 3 − 3 0.03943 0.08144 0.30690 0.56328 
− 2 0.08043 0.31218 1.41825 2.78894 − 2 0.03939 0.08194 0.30823 0.56507 
− 1 0.08031 0.31483 1.42590 2.79730 − 1 0.03937 0.08246 0.30956 0.56688 
0 0.08027 0.31754 1.43363 2.80570 0 0.03937 0.08299 0.31091 0.56869 
1 0.08031 0.32031 1.44145 2.81413 1 0.03937 0.08353 0.31227 0.57052 
2 0.08043 0.32314 1.44936 2.82258 2 0.03939 0.08408 0.31365 0.57236 
3 0.08062 0.32604 1.45736 2.83107 3 0.03943 0.08465 0.31504 0.57421 

6 − 6 0.14793 0.36345 1.46154 2.79935 6 − 6 0.07219 0.11171 0.33580 0.58709 
− 5 0.14751 0.36579 1.46870 2.80738 − 5 0.07211 0.11216 0.33706 0.58882 
− 4 0.14716 0.36818 1.47594 2.81543 − 4 0.07205 0.11262 0.33834 0.59056 
− 3 0.14690 0.37064 1.48327 2.82352 − 3 0.07201 0.11310 0.33963 0.59231 
− 2 0.14670 0.37316 1.49069 2.83165 − 2 0.07197 0.11359 0.34094 0.59407 
− 1 0.14659 0.37574 1.49820 2.83980 − 1 0.07195 0.11410 0.34226 0.59585 
0 0.14655 0.37839 1.50579 2.84798 0 0.07195 0.11462 0.34359 0.59763 
1 0.14659 0.38110 1.51347 2.85619 1 0.07195 0.11515 0.34493 0.59943 
2 0.14670 0.38387 1.52124 2.86443 2 0.07197 0.11569 0.34629 0.60124 
3 0.14690 0.38670 1.52909 2.87270 3 0.07201 0.11624 0.34766 0.60306 
4 0.14716 0.38959 1.53702 2.88100 4 0.07205 0.11681 0.34905 0.60489 
5 0.14751 0.39255 1.54504 2.88932 5 0.07211 0.11739 0.35045 0.60673 
6 0.14793 0.39556 1.55314 2.89767 6 0.07219 0.11799 0.35186 0.60859  
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1Σ+) molecules. The results were found to be in perfect agreement with theoretical work on the ISPEF and available experimental data. 
The results showed that when the external fields were turned off (B = ΦAB = 0), the energy spectra of the molecules were degenerate. 
Also, the energy overlap is removed if the external fields are present. The results further indicated that the magnetization increases 
with increasing temperature of the molecules and decreases with increasing AB field intensity. The equations and numerical data 
obtained in this research may have practical implications in areas of chemical physics, chemical engineering, atomic and molecular 
physics, and solid-state physics. 

Data availability statement 

Data included in article/supplementary material/referenced in article. 

Table 5 
2D Energy eigenvalues (in eV) for various values of B and ΦAB for the diatomic molecules.  

n m Mg2 (X 1Σ+) n m NaBr (X 1Σ+) 

B = 0 
ΦAB = 0 

B = 0 
ΦAB = 0.1 mT 

B = 100 kT 
ΦAB = 0 

B = 100 kT 
ΦAB = 0.1 mT 

B = 0 
ΦAB = 0 

B = 0 
ΦAB = 0.1 mT 

B = 100 kT 
ΦAB = 0 

B = 100 kT 
ΦAB = 0.1 mT 

0 0 0.00312 0.06895 0.44434 0.72505 0 0 0.01815 0.13561 0.30813 0.79285 
2 − 2 0.01469 0.07403 0.45168 0.73727 2 − 2 0.09034 0.20400 0.37587 0.85503 

− 1 0.01466 0.07466 0.45380 0.73717 − 1 0.09028 0.20538 0.37810 0.85865 
0 0.01465 0.07531 0.45593 0.73699 0 0.09026 0.20680 0.38037 0.86230 
1 0.01466 0.07598 0.45808 0.73672 1 0.09028 0.20825 0.38268 0.86598 
2 0.01469 0.07665 0.46025 0.73636 2 0.09034 0.20974 0.38502 0.86969 

3 − 3 0.01993 0.07612 0.45493 0.74224 3 − 3 0.12619 0.23797 0.40952 0.88592 
− 2 0.01988 0.07671 0.45699 0.74237 − 2 0.12610 0.23931 0.41171 0.88948 
− 1 0.01985 0.07731 0.45906 0.74242 − 1 0.12605 0.24069 0.41394 0.89309 
0 0.01984 0.07792 0.46115 0.74239 0 0.12603 0.24210 0.41620 0.89672 
1 0.01985 0.07855 0.46326 0.74227 1 0.12605 0.24355 0.41850 0.90039 
2 0.01988 0.07919 0.46538 0.74206 2 0.12610 0.24503 0.42083 0.90410 
3 0.01993 0.07984 0.46752 0.74176 3 0.12619 0.24655 0.42321 0.90784 

6 − 6 0.03344 0.08052 0.46294 0.75278 6 − 6 0.23279 0.33898 0.50957 0.97773 
− 5 0.03335 0.08099 0.46483 0.75353 − 5 0.23260 0.34020 0.51164 0.98116 
− 4 0.03327 0.08146 0.46674 0.75421 − 4 0.23244 0.34146 0.51374 0.98463 
− 3 0.03320 0.08194 0.46866 0.75483 − 3 0.23232 0.34275 0.51588 0.98813 
− 2 0.03316 0.08244 0.47060 0.75539 − 2 0.23223 0.34407 0.51806 0.99166 
− 1 0.03313 0.08294 0.47255 0.75588 − 1 0.23217 0.34543 0.52027 0.99523 
0 0.03312 0.08346 0.47452 0.75629 0 0.23216 0.34683 0.52251 0.99883 
1 0.03313 0.08399 0.47650 0.75662 1 0.23217 0.34826 0.52479 1.00247 
2 0.03316 0.08452 0.47850 0.75688 2 0.23223 0.34972 0.52711 1.00614 
3 0.03320 0.08507 0.48051 0.75704 3 0.23232 0.35122 0.52946 1.00984 
4 0.03327 0.08562 0.48254 0.75712 4 0.23244 0.35275 0.53185 1.01358 
5 0.03335 0.08619 0.48457 0.75711 5 0.23260 0.35432 0.53427 1.01735 
6 0.03344 0.08676 0.48662 0.75699 6 0.23279 0.35593 0.53673 1.02115  

Fig. 9. Graphical representation of the vibrational energy eigenvalues at different values of ΦAB for the 7Li2 (2 3Πg) molecule.  
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Fig. 10. Graphical representation of the vibrational energy eigenvalues at different values of B for the 7Li2 (2 3Πg) molecule.  

Fig. 11. Variations of magnetization with magnetic quantum number at different temperatures of the 7Li2 (2 3Πg) molecule.  

Fig. 12. Variations of magnetization with magnetic field at different temperatures of the 7Li2 (2 3Πg) molecule.  
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Appendix A 

This section is devoted to the derivation of the Pekeris approximation schemes used in solving the radial SE (7). The Pekeris 
approximation is a method of expressing a general function χ (r) as a linear combination of differentiable and continuous functions φ 
(r) and θ (r) [47]. By expressing the terms r− 1 tanh(αr) and r− 2 in the same functional form as the potential (1), approximate analytical 
solution of equation (7) can be obtained. Based on this reason, we write the function χ (r) in the form 

ψ(r)≈A +
B + C sinh(αr)

cosh2(αr)
, (A1)  

where A ≡ (c0, d0, …), B ≡ (c1, d1, …) and C ≡ (c2, d2, …) are constant coefficients to be determined by expanding χ (r) in Taylor series 
about the point x = 0, where x = r/re - 1 [46,47]. For different selections of A, B, C, and χ (r), equations (9) and (10) represent the 
Pekeris approximation for the functions r− 1 tanh(αr) and r− 2, respectively. Therefore, in terms of the variable x, equation (A1) is recast 
in a more convenient form as 

χ(x)≈A + Bφ(x) + Cθ(x), (A2)  

where 

φ(x)= sech2(ax+ a), (A3)  

θ(x) = sinh(ax+ a)sech2(ax+ a), a = αre. (A4) 

The Taylor series expansion of expressions (A3) and (A4) about x = 0 are obtained as 

φ(x)≈φ0 − aφ0(2 tanh a)x+ a2φ0
(
3 tanh2 a − 1

)
x2 + ⋯, (A5)  

Fig. 13. Variations of magnetization with AB field at different temperatures of the 7Li2 (2 3Πg) molecule.  
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θ(x) ≈ θ0 − aθ0(2 tanh a − coth a)x+ a2θ0

(

3 tanh2 a −
5
2

)

x2 + ⋯. (A6) 

where φ0 = sech2 a and θ0 = sech2 a sinh a. By inserting equations (A5) and (A6) into (A2), one obtains 

χ(x)≈A+φ0B+ θ0C − a{2φ0B tanh a+ θ0C(2 tanh a − coth a)}x

+a2
{

φ0B
(
3 tanh2 a − 1

)
+ θ0C

(

3 tanh2 a −
5
2

)}

x2 +⋯.
(A7)  

Letting χ(r) = r− 1 tanh(αr) and inserting r = re (1 + x), the Taylor series expansion of χ (x) about the point x = 0 yields 

χ(x)= χ0 − χ0δx+ χ0

(
δ − a2 sech2 a

)
x2 + …, (A8)  

where χ0 = r− 1
e tanh a, δ = 1 − a csch a sech a. Plugging equation (A8) into (A7) and equating corresponding coefficients of x0, x, x2 

gives 

c0 +φ0c1 + θ0c2 = χ0, (A9)  

(2φ0a tanh a)c1 + aθ0(2 tanh a − coth a)c2 = χ0δ, (A10)  

a2φ0
(
3 tanh2 a − 1

)
c1 + a2θ0

(

3 tanh2 a −
5
2

)

c2 = χ0
(
δ − a2 sech2 a

)
. (A11)  

where A, B and C have been replaced with c0, c1 and c2, respectively. Solving equation (A9)- (A11) gives 

c0 =
tanh a

(
7 − tanh2 a

)

6re
−

1
2are

+
tanh a
3a2re

c1 =
tanh a

(
1 − 2 tanh2 a

)

3re
+

δ(11 − cosh 2 a)
12are

−
δ tanh a(3 − cosh 2 a)

6a2re

c2 =
2 sech a tanh2 a

3re
+

δ sinh a
(
3 tanh2 a − 1

)

3are
−

2δ sinh a tanh a
3a2re

. (A12) 

The Pekeris approximation for r− 2 is deduced by choosing χ(r) = r− 2. Putting r = re(1+x) into this expression, the Taylor series 
expansion of χ (x) about the point x = 0 is obtained as 

χ(x)= r− 2
e (1 + x)− 2

≈
1
r2

e
−

2
r2

e
x +

3
r2

e
x2 + …. (A13) 

Using equation (A13) in (A7) and equating the coefficients x2, x and x0 yields the following relations 

d0 +φ0d1 + θ0d2 =
1
r2

e
, (A14)  

(2φ0 tanh a)d1 + θ0(2 tanh a − coth a)d2 =
2

ar2
e
, (A15)  

φ0
(
3 tanh2 a − 1

)
d1 + θ0

(

3 tanh2 a −
5
2

)

d2 =
3

a2r2
e
, (A16)  

where A = d0, B = d1, and C = d2. The solution of equation (A14)- (A16) gives 

d0 =
1
r2

e
−

3 tanh a
ar2

e
+

3
a2r2

e

d1 = −
(cosh 2 a − 11)tanh a

2ar2
e

−
3(cosh 2 a − 3)

2a2r2
e

d2 =
2
(
3 tanh2 a − 1

)
cosh a

ar2
e

−
6 sinh a

a2r2
e

. (A17)  
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dependent mass system in a Pöschl-Teller-type potential constrained by a vector magnetic potential field, Phys. Scripta 98 (2023), 095019, https://doi.org/ 
10.1088/1402-4896/acedd8. 

[49] V.G. Bagrov, D.M. Gitman, Exact Solution of Relativistic Wave Equations, Kluwa Academic, Dordrecht, 1990. 
[50] E.S. Eyube, P.P. Notani, G.G. Nyam, Y.Y. Jabil, M.M. Izam, Pure vibrational state energies and statistical-mechanical models for the reparameterized Scarf 

oscillator, Front. Physiol. 11 (2023), 978347, https://doi.org/10.3389/fphy.2023.978347. 
[51] E.N. Bogachek, U. Landman, Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an 

antidote, Phys. Rev. B 52 (1995), 14067, https://doi.org/10.1103/PhysRevB.52.14067. 
[52] F.J.S. Ferreira, F.V. Prudente, Pekeris approximation - another perspective, Phys. Lett. 377 (2013) 3027, https://doi.org/10.1016/j.physleta.2013.09.028. 
[53] F.J.S. Ferreira, V.B. Bezerra, Some remarks concerning the centrifugal term approximation, J. Math. Phys. 58 (2017), 102104, https://doi.org/10.1063/ 

1.5008654. 
[54] A. Bera, A. Ghosh, Analyzing magnetic susceptibility of impurity doped quantum dots in presence of noise, J. Magn. Magn Mater. 484 (2019) 391, https://doi. 

org/10.1016/j.jmmm.2019.04.005. 
[55] M.L. Strekalov, An accurate closed-form expression for the partition function of Morse oscillators, Chem. Phys. Lett. 439 (2007) 209, https://doi.org/10.1016/j. 

cplett.2007.03.052. 
[56] D. Li, F. Xie, L. Li, A. Lazoudis, A.M. Lyyra, New observation of the 6Li7Li, 3 2Σg

+, 1 3Δg and 2 3Πg states and molecular constants with all 6Li2, 7Li2, and 6Li7Li 
data, J. Mol. Spectrosc. 246 (2007) 180, https://doi.org/10.1016/j.jms.2007.09.008. 

[57] J. Heinze, U. Schühle, F. Engelke, C.D. Caldwell, D, Doppler-free polarization spectroscopy of the B 1Πu - X 1Σg
+ band system of K2, J. Chem. Phys. 95 (1991) 

(1987) 4168, https://doi.org/10.1063/1.453591. 
[58] W.J. Balfour, A.E. Douglas, Absorption spectrum of the Mg2 molecule, Can. J. Phys. 48 (1970) 901, https://doi.org/10.1139/p70-116. 
[59] S. Zeid, N. El-Kork, M. Korek, Electronic structure with the calculation of the Rovibrational, and dipole moments of the electronic states of the NaBr and KBr 

molecules, Chem. Phys. 517 (2019) 36, https://doi.org/10.1016/j.chemphys.2018.09.037. 
[60] D. Shokov, M. Murakami, J.J. Honrubia, Laser scaling for generation of megatesla magnetic fields by microtube implosions, High Power Laser Sci. Eng. 9 (2021) 

e56, https://doi.org/10.1017/hpl.2021.46. 
[61] A. Kumar, S.M. Yusuf, The phenomenon of negative magnetization and its implications, Phys. Rep. 55 (2015) (2015) 1, https://doi.org/10.1016/j. 

physrep.2014.10.003. 

E.S. Eyube et al.                                                                                                                                                                                                        

https://doi.org/10.1080/00268976.2022.2083712
https://doi.org/10.1088/1674-1056/26/6/060302
https://doi.org/10.1016/j.aop.2020.168335
https://doi.org/10.1088/1402-4896/abe3be
https://doi.org/10.1088/1402-4896/abe3be
https://doi.org/10.1088/0953-4075/48/6/065101
https://doi.org/10.1140/epjp/s13360-023-03830-8
https://doi.org/10.1140/epjd/s10053-023-00666-w
https://doi.org/10.1088/1402-4896/acedd8
https://doi.org/10.1088/1402-4896/acedd8
http://refhub.elsevier.com/S2405-8440(23)08056-8/sref49
https://doi.org/10.3389/fphy.2023.978347
https://doi.org/10.1103/PhysRevB.52.14067
https://doi.org/10.1016/j.physleta.2013.09.028
https://doi.org/10.1063/1.5008654
https://doi.org/10.1063/1.5008654
https://doi.org/10.1016/j.jmmm.2019.04.005
https://doi.org/10.1016/j.jmmm.2019.04.005
https://doi.org/10.1016/j.cplett.2007.03.052
https://doi.org/10.1016/j.cplett.2007.03.052
https://doi.org/10.1016/j.jms.2007.09.008
https://doi.org/10.1063/1.453591
https://doi.org/10.1139/p70-116
https://doi.org/10.1016/j.chemphys.2018.09.037
https://doi.org/10.1017/hpl.2021.46
https://doi.org/10.1016/j.physrep.2014.10.003
https://doi.org/10.1016/j.physrep.2014.10.003

	Energy eigenvalues and finite-temperature magnetization for the improved Scarf II potential in the presence of external mag ...
	1 Introduction
	2 Bound state solutions of the ISPEF under external magnetic and AB flux fields
	3 Magnetization at finite-temperature
	4 Results and discussion
	5 Conclusions
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Declaration of competing interest
	References


