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Abstract

Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix syn-

thesis and function of the intervertebral disc. With age and degeneration, the NP

becomes stiffer and more dehydrated, which is associated with a loss of phenotype and

biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes

substantial morphological changes from a rounded shape with pronounced vacuoles in

the neonate and juvenile, to one that is more flattened and spread with a loss of vacu-

oles. Here, we make use of the clinically relevant pharmacological treatment verteporfin

(VP), previously identified as a disruptor of yes-associated protein-TEA domain family

member-binding domain (TEAD) signaling, to promote morphological changes in adult

human NP cells in order to study variations in gene expression related to differences in

cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in

morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology

with decreased transcriptional activity of TEAD and serum-response factor. These

changes were accompanied by an increased expression of vacuoles, NP-specific gene

markers, and biosynthetic activity. The contemporaneous observation of VP-induced
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changes in cell shape and prominent, time-dependent changes within the transcriptome

of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition

to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remo-

deling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional

response to changes in cell shape.
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1 | INTRODUCTION

The nucleus pulposus (NP) is the innermost, gelatinous tissue within

the intervertebral disc (IVD) and plays a critical role in resisting and

distributing loads placed on the axial skeleton.1-6 Surrounded by the

outer anulus fibrosus (AF), the extracellular matrix (ECM) of the juve-

nile NP is relatively soft (0.2-0.5 kPa) and is comprised of collagen

type II, laminins, and proteoglycans, which serve to retain water

within the tissue.1,7-12 Due to their embryonic notochordal origin,

juvenile NP cells preserve some notochord-like features, such as phe-

notypic marker expression, a large, rounded vacuolated morphology,

and primarily exist in clusters.10,13,14 With aging and degeneration,

these characteristics are lost as the ECM dehydrates and stiffens

(�20 kPa), contributing to a flattened, elongated cell shape and a shift

from an anabolic to a catabolic state, decreasing expression of the NP

cell phenotypic markers and transitioning to a more fibroblastic-like

phenotype.8,15,16 These age- and pathological-associated changes to

the NP result in a fibrocartilaginous-like state and an overall impaired

ability to resist compressive loading, and functional changes including

decreased disc height.1,3,6,17-20 While the initiating events leading to

these NP cell changes are yet to be fully elucidated, their inability to

promote new matrix synthesis and tissue repair are of importance and

limit cell-based strategies to slow progressive disc degeneration.21-25

A large body of work has demonstrated that other cell types, such

as stem cells and epithelial cells, are able to sense and respond to

extracellular cues including substrate stiffness, ligand presentation,

porosity, or geometric confinement in 2D and 3D cultures.26-33 Litera-

ture similarly supports that NP cells are mechanosensitive in vitro and

in vivo, and as such, many groups have developed biomaterials

designed to control the phenotype and behaviors of NP cells.7,34-42

Much of this work consistently shows that NP cell morphology

responds to both ligand and stiffness, where soft, laminin-presenting

substrates promote a juvenile, healthy rounded morphology, but stiff

and/or non-laminin associated ligands allow a spread, fibroblastic-like

shape observed in adult NP.7,15,37,42-48 These reports also support the

idea that changes in NP cell shape are associated with concomitant

increases in expression of phenotypic markers and matrix biosynthesis.

While these events have been well characterized, the underlying

mechanisms have yet to be understood. A recent study demonstrated

that primary human NP cells cultured upon polyethylene glycol

functionalized with laminin (PEG-LM) assume a rounded cell shape where

transcriptional co-activators myocardin-related transcription factor

(MRTF), and yes-associated protein (YAP)/PDZ-binding motif remain pri-

marily localized to the cytoplasm, leaving fibroblastic-associated transcrip-

tion factors serum-response factor (SRF) and TEA domain family

member-binding domain (TEAD) inactive.42 It was further shown that in

the absence of this rounded morphology, neither MRTF nor YAP knock-

down could overcome spread cell shape-induced effects, suggesting NP

cell morphology, and not a single co-activator, is the primary driver of NP

phenotype and biosynthetic activity. While collective data suggest that

cell morphology and associated contractile F-actin regulates NP cell phe-

notype, the mechanisms by which this process unfolds remains unknown.

Methods to stably control contractile F-actin (and subsequently cell

shape) have been hampered by use of toxin-derived targeted inhibitors,

such as Latrunculin B and cytochalasin D. An alternate approach has

come from the FDA-approved drug verteporfin (VP), which was discov-

ered as a TEAD inhibitor via a drug library screen.49 Treatment of rabbit

AF cells with VP has been recently demonstrated to mitigate the fibrotic

phenotype and promote decreased cell spreading in rabbit AF cells.50

Here, we seek to investigate VP-induced changes in F-actin that are

associated with altered morphology, phenotype, and gene expression of

degenerative human NP cells toward the goal of promoting a healthy,

biosynthetically active cell phenotype.

2 | METHODS AND MATERIALS

2.1 | Primary human NP cell culture and VP
treatment

NP regions were identified from to-be-discarded surgical waste tissue

(exempt from IRB review, Washington University Institutional Review

Board) from patients (ages 20-68) undergoing surgical treatment for

degenerative conditions. In accordance with the non-human subjects

research designation, only age, race, and gender information were col-

lected, while grade of pathology remained unknown. NP cells were

subsequently isolated using pronase-collagenase digestion as

described previously.7 Briefly, NP tissue was digested with agitation

for 2 to 4 hours in 25 mL digestion media per gram of NP tissue (0.3%

collagenase type II, 0.2% pronase). Cells were expanded to a maximum

of passage 3 in Ham's F12 (Life Technologies Carlsbad, California) cul-

ture media containing 10% FBS, 1% penicillin/streptomycin under 5%
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CO2 and atmospheric oxygen at 37�C. Cells were treated with VP

(1 μM Sigma St. Louis, Missouri) or DMSO vehicle control (0.1%) in

Ham's F-12 media. This concentration was chosen to provide

sustained effects on cell shape over the duration of the experiment.

VP- or vehicle control-containing media was replenished each day

through the duration of the respective culture period.

2.2 | PEG-LM synthesis and coating

PEG-LM solutions were produced as previously described.36,51 Briefly,

laminin-111 (LM, Trevigen Gaithersburg, Maryland) was conjugated

with acrylate-PEG-hydroxysuccinimide (Ac-PEG-NHS, 10 kDa Crea-

tive PEGWorks, Winston-Salem, North Carolina) to produce a

PEGylated-LM solution. This solution was dialyzed against PBS to

remove unreacted Ac-PEG-NHS and the final LM concentration in the

resulting PEG-LM conjugate solution was determined via absorbance

reading at 280 nm. PEG-LM coatings were prepared by diluting to a

working concentration of 25 μg/mL in sterile PBS. After adding to the

bottom of tissue culture plastic wells or glass chamber slides (Millicell

EZslide, Millipore Sigma Burlington, Massachusetts), PEG-LM was

allowed to coat overnight at 4�C. The solution was aspirated and

rinsed twice prior to cell seeding. For biochemical analysis, experi-

ments were conducted upon PEG-LM hydrogels in addition to

LM-coated glass. Hydrogels were formed via 500 μg/mL of the syn-

thesized PEG-LM was combined with 8-arm PEG-acrylate (20 kDa,

Creative PEGWorks) in chamber slides and polymerized in the pres-

ence of a photoinitiator (0.1% w/v, Irgacure 2959, Ciba Specialty

Chemicals) upon UV exposure (3-4 mW cm−2). Hydrogels were pro-

duced at either 4% (w/v, “soft” 0.3 kPa) or 20% (“stiff,” 20 kPa).

2.3 | Transcription factor activity

1. SRF and TEAD transcriptional activation was assessed as previously

described.42 Briefly, a lentivirus (HIV) vector containing firefly lucifer-

ase under the control of four SRF response elements

(pGreenFire1-ELK1-SRF-EF1-Neo, Systems Biosciences Palo Alto,

California) and a plasmid containing four TEAD binding sites upstream

of a firefly luciferase reporter gene (8xGTIIC, Addgene, Watertown,

Massachusetts) were transfected into HEK293T cells with the trans-

fer vector, pMD2.G, and packaging gene vector, psPAX2 (Addgene).

Viral supernatant was collected, filtered, pooled, and concentrated by

ultra-centrifugation. At passage 1, primary human NP cells were

seeded in 6-well plates to attach overnight, followed by the addition

of lentiviral transduction media (Ham's F12, 10% FBS, 4 μg/mL

polybrene, 2 μL concentrated virus). After 18 hours of transduction

media incubation, media were removed and replaced with normal F-

12 growth media.42

2. Transactivation luciferase assays were conducted on serum star-

ved (0.5%, overnight) NP reporter cells. In total, 50 000 cells were

seeded into each well of a coated 8-well chamber slide and cul-

tured in low serum (2%) F-12. Bright-Glo Luciferase Assay

(Promega Madison, Wisconsin) was performed according to the

manufacturer's instructions. Briefly, media was replaced with F-12

media followed by the BrightGlo reagent (1:1). Cultures were incu-

bated for 5 minutes at room temperature with gentle rotation and

contents transferred to a white bottom 96-well plate and lumines-

cence read on a plate reader (Perkin-Elmer Enspire Multimode

Reader Waltham, Massachusetts). Statistical differences were

determined using a two-way analysis of variance (ANOVA) (treat-

ment, time) with Tukey's post hoc test.

2.4 | Immunofluoresence and actin alignment:

Cells were stained for F-actin fibers (post-fixation in 4% paraformalde-

hyde [PFA]) using a conjugated phalloidin antibody (1:200, phalloidin-

AlexaFluor 488 [Invitrogen Carlsbad, California]) for 2 hours at room

temperature. Cells were counterstained for nuclei visualization using

406-diamidino-2-phenylindole (2 μg/mL; Sigma) for 10 minutes at

room temperature. Slides were coverslipped and imaged on a Leica

SPE DM6 confocal microscope (Wetzlar, Germany) using a 40× objec-

tive in oil immersion. Actin alignment was analyzed from images using

the ImageJ plugin OrientationJ.52,53 OrientationJ characterizes the

orientation and isotropic properties of a region of interest (ROI) of an

image with actin visualized by labeling with phalloidin. ROIs were

taken from the same geographically defined areas of each chamber

well slide (totaling nine replicates each), to compute values or orienta-

tion and coherency. Coherency values specify the degree to which

ROI features are oriented with a value of 1 indicating one dominant

orientation and 0 if the local features are isotropic.54,55 Differences in

F-actin coherency for NP cells cultured upon coated glass were deter-

mined using a one-way ANOVA and Tukey's post hoc test.

2.5 | mRNA extraction and quantitative real-
time PCR

Cells were lysed using RLT buffer with β-mercaptoethanol and mRNA

extraction was performed on all samples using the RNeasy mini kit with

DNase I digestion (Qiagen Hilden, Germany). mRNA concentration and

quality (260 nm/280 nm) were determined using a NanoDrop One

(ThermoFisher Waltham, Massachusetts) and then reverse transcribed

into cDNA using iScript cDNA synthesis kit (Biorad Hercules, California).

Samples were diluted to a final concentration of 10 ng/μL in RNAse-/

DNAse-free water. Taqman primer probes (Life Technologies Carlsbad,

California) were used to perform quantitative real-time PCR (qPCR) with

a StepOnePlus thermal cycler (Applied Biosystems Foster City, California)

in duplicate under standard conditions (12.5 μL 2× universal master mix,

1.25 μL TaqMan primer probes, 9.25 μL ddH2O, and 2 μL 10 ng/μL

cDNA). GAPDH and 18 seconds (Applied Biosystems) were used as

internal control housekeeping genes. The 2−ΔΔCt method was used to

calculate fold changes with the initial Δ accounting for fold change over

the respective housekeeping gene and the second Δ accounting for

change over patient-matched NP cells treated with the vehicle control.
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The vehicle control reference was taken from vehicle control cultures at

each timepoint. Differences in expression level for each gene were calcu-

lated with a student's t-test compared to the control.

2.6 | Biochemical analysis

Production of sulfated glycosaminoglycans (sGAGs) was analyzed

from primary human NP cell cultures upon soft and stiff PEG-LM

hydrogels and LM-coated glass using the dimethylmethylene blue

spectrophotometric method as previously described.7 Media overlay

was collected and corresponding monolayer cultures were digested

separately and in papain solution (125 μg/mL in PBS with 5 mM EDTA

and 5 mM cysteine) for 2 hours at 65�C. A chondroitin-4-sulfate

(Sigma) standard curve was used to quantify sGAG from absorbance

readings (535 nm) and corrected to a cell-free control. Total sGAG

was determined by combining media overlay plus cell digests and then

normalized to total DNA content (Quant-iT Pico-Green dsDNA, Invi-

trogen). sGAG/DNA (μg/μg) differences were determined with a one-

way ANOVA and Tukey's post hoc test.

2.7 | Vacuole imaging and quantification

Monodansylcadaverine (MDC, Sigma) is an auto-fluorescent (ex335,

em518) acidotropic compound that accumulates in vacuoles via ion

trapping and membrane lipid interaction while being excluded from

other endosomal compartments.56-58 MDC was used here to visualize

and quantify vacuole presence in human NP cells. Following the cul-

ture period upon coated glass substrates and protecting from light, liv-

ing monolayer cell cultures were rinsed twice with PBS followed by

the addition of 40 μM MDC in PBS (-Ca/-Mg) and incubated at 37�C

for 10 minutes. Cultures were rinsed twice with PBS and fixed with

4% PFA. Propidium iodide was then added (0.2 mg/mL) to counter-

stain for nuclei. Wells were rinsed twice with PBS, coverslipped, and

immediately imaged on a Leica SPE DM6 confocal microscope. Due to

the extreme light sensitivity and rapid photobleaching of MDC, the

stain was adapted for use as a fluorescent plate reader assay in order

to quantify vacuole presence. Using the Cell-based MDC Assay

(Cayman Chemical Ann Arbor, Michigan), a protocol was optimized for

primary human NP cells. Cells were seeded at 50000 cells/well in a

black bottom 96 well plate and allowed to attach overnight. The

media was then exchanged to treat cells with either VP (1 μM), DMSO

vehicle control (0.1%), or media alone for 24 or 48 hours as described

above. The supernatant was aspirated and MDC (1:1000 in the pro-

vided assay buffer) was added and incubated for 10 minutes at 37�C.

The plate was centrifuged for 5 minutes at 400g at room temperature

and the solution aspirated. Wells were then washed with the assay

buffer and similarly centrifuged twice more. A final solution of assay

buffer was added to each well and fluorescence immediately analyzed

on a plate reader (Perkin Elmer Multimode). Values were normalized

to the no treatment group (media alone) and differences detected

with a one-way ANOVA with a Tukey's post hoc test.

2.8 | RNA-sequencing and analysis

Degenerative NP cells from three patient samples (20-year-old male,

38-year-old male, and 41-year-old male) were plated in triplicate on

PEG-LM coated tissue culture plastic and treated with daily exchanges

of media containing VP- or vehicle-containing cell culture media. Cells

were harvested at 24 hours, 48 hours, and 4 days and lysed at the

respective timepoints when triplicates were pooled. mRNA extraction

was performed on all samples using the RNeasy mini kit with DNase I

digestion (Qiagen) as previously described. RNA quality was ensured

using a Bioanalyzer (Agilent) and all samples had an RNA integrity >8.

ds-cDNA was constructed using Clontech SMARTer Ultra Low RNA

kit (Mountain View, California) for Illumina Sequencing (Clontech) per

manufacturer's protocol. cDNA was fragmented using a Covaris E220

sonicator (peak incident power = 18, duty factor = 20%, cycles per

burst = 50, time = 120 seconds). cDNA was blunt ended, an A base

added to 30 ends, and then Illumina sequencing adapters ligated to the

ends. Ligated fragments were amplified for 12 cycles using primers

incorporating unique dual index tags. Fragments were run on an

Illumina NovaSeq (San Diego, California) reading 150 bases from both

ends to a depth of 30 million reads per sample. Unaligned reads were

trimmed based on quality score (minimum quality level [Phred] = 20,

minimum read length = 25) before being aligned to the whole human

genome (STAR 2.6.1d and referencing to the human genome hg19)

using Partek Flow software (Partek Inc., St. Louis, Missouri). This soft-

ware was used to conduct gene-specific analysis (GSA) to identify dif-

ferentially expressed genes and to perform principle component

analysis (PCA), hierarchical clustering, and gene set enrichment. One

of the outputs of GSA is a fold change value for each gene at each

time point. In order to do this, the software computed the average

normalized count for all three patients in the VP-treated group and

divided by the average normalized count for all three patients in the

DMSO-treated group. Thus, in the present study, the fold change

values were presented as a single data point although they reflect

inputs from three separate human patients. Differentially regulated

genes were considered significant at a threshold of P ≤.05 (false dis-

covery rate [FDR]-adjusted P-value) and a fold change value

(VP/DMSO) ≥2 (upregulated) or ≤−2 (downregulated). The most up-

and down-regulated genes were identified as those with the highest

or lowest fold change values, FDR-adjusted P-values <.05, and with

known molecular function and/or biologic process gene ontology

terms (UniProt database). Entries identified through gene set enrich-

ment were considered significant at a threshold of P ≤ .05. Interac-

tions between specific genes were identified through use of the

SIGNOR 2.0 database shortest path option.59 The RNA sequencing

dataset generated during this study was deposited in the NCBI Gene

Expression Omnibus repository (accession number: GSE151090).

2.9 | Statistical analysis

Statistical analyses for the RNA sequencing including GSA and gene

set enrichment were performed using Partek Flow. Significance levels
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were set at P ≤ .05 and, where applicable, FDR step-ups were applied

as a multiple test correction. All other statistical analyses were per-

formed using GraphPad Prism8 (San Diego, California) with signifi-

cance tested at *P < .05, **P < .01, and ***P < .001 unless otherwise

noted and presented as means ± SD. Data visualization was accom-

plished using GraphPad Prism8 or Partek Flow. Statistical tests may

be found referenced within the respective Methods sections.

3 | RESULTS

3.1 | VP promotes upregulated biosynthetic
activity and expression of juvenile NP markers in
adult, human NP cells

Compared to untreated cells cultured on stiff LM-coated tissue cul-

ture plastic, NP cells that were treated with VP were able to express

significantly higher mRNA levels of genes associated with a healthy,

juvenile phenotype (Figure 1A,B). These VP-treated cells were also

able to recover biosynthetic activity as measured through sGAG pro-

duction, compared to those that were cultured untreated on stiff

PEG-LM hydrogels and LM-coated glass (Figure 1C).

3.2 | Decreased SRF and TEAD transactivation
occur in the presence of VP

VP treated NP cells demonstrate significantly less SRF transcriptional

activation compared to vehicle control cells at both 24 and 48 hours

(Figure 1D). TEAD transcriptional activation was also significantly

decreased at both timepoints in NP cells treated with VP compared to

vehicle control cells (Figure 1E). Common downstream genes of both

SRF and TEAD-driven transcription were also downregulated,

suggesting a decreased fibrotic response (Figure 1F).

F IGURE 1 Schema depicting culture conditions of primary NP cells on different substrates: soft PEG-LM hydrogel, stiff PEG-LM hydrogel,
and LM-coated glass, A. Transcript levels of aggrecan, collagen type II, and GLUT-1 are increased in NP cells treated with VP on LM-coated glass
*P < .05, **P < .01, significant differences between VP treatment and vehicle control (DMSO); data presented are from three human cell isolations

and shown as means ± SD, B. Human NP cells on stiff PEG-LM and LM-coated glass have decreased sGAG production compared to cells on the
same substrate with VP treatment *P < .05, significant differences between VP-treated stiff PEG-LM and untreated stiff PEG-LM. Data presented
are from three human cell isolations and shown as means ± SD, C. SRF reporter shows significant loss of transactivation with VP treatment,
D. 8xGTIIC reporter also indicates decreased TEAD activation with VP treatment **P < .01, ***P < .001, significant differences between VP and
LM-coated glass (DMSO); data presented are from four human cell isolations and shown as means ± SD, E. Common downstream targets shared
by SRF and TEAD are downregulated in primary human NP cells following VP-induced inhibition of YAP/PDZ-binding motif and MRTF nuclear
translocation; data shown as the Log2 transformation of the respective fold change and are from three human cell isolations, F
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3.3 | VP promotes a rounded morphology and
reappearance of vacuoles in human NP cells

In the absence of VP, adult human NP cells form a spread, flattened

shape when cultured atop LM-coated glass substrates (Figure 2A,

top). Upon treatment with VP, NP cells are able to revert to a rounded,

less fibrotic morphology with more cortical actin (Figure 2A, bottom),

despite glass substrate culture conditions. Analysis of phalloidin-

stained actin fibers shows that VP-treated cells have decreased fiber

coherency compared to those treated with the vehicle, where actin is

more highly aligned with increased coherency (Figure 2B).

When NP cells upon LM-coated glass undergo VP-induced

changes in cell shape, it was observed that cells not only revert to a

small, rounded morphology, but one that also presents with large,

perinuclear vacuoles (Figure 2D, right). Cells treated with the vehicle

control remain in the spread, fibrotic shape (Figure 2D, left). Vacuole

presence was confirmed using MDC staining, showing its close prox-

imity to the nucleus (Figure 2E). Quantification of MDC fluorescence

indicates a significant increase in the occurrence of vacuoles in cells

treated with VP compared to the vehicle control (Figure 2C).

3.4 | VP-induced cell rounding associates with
differential gene expression in NP cells

Hierarchical clustering shows separation in genes between the VP and

vehicle conditions (Figure 3A). PCA further reveals that gene expres-

sion in cells treated with DMSO clustered closely by timepoint and

patient (Figure 3B, blue-circled group). While the data from VP-

treated cells (Figure 3B, red circled group) separated according to

timepoint, data from all three patients clustered closely.

The number of differentially regulated genes was examined by time-

point: at 24 hours 537 genes were significantly upregulated and 1273

genes were significantly downregulated (Figure 3C). VP-treatment lead

to differences in gene expression (at 48 hours 2172 genes were signifi-

cantly upregulated and 2115 genes were significantly downregulated,

Figure 3D) with the maximum number of differentially regulated genes

being observed at 4 days (1942 genes significantly upregulated, 7330

significantly downregulated, Figure 3E). The most differentially regulated

(downregulated and upregulated) genes as measured by fold-difference

between groups were identified (Data S1-S3).

3.5 | Expression of phenotypic markers and genes
related to cell shape are associated with VP-induced
cell rounding

The relative gene expression (fold change = VP/DMSO) of previously

indicated NP phenotypic markers were examined.14,19,60-62 The data

reveal that while some NP markers, such as N-cadherin (CDH2) and

brain acid soluble protein 1 (BASP1) decreased in the VP group, others

including cytokeratin 19 (KRT19) and laminin 1 (LAMA1) were

upregulated (Figure 4A). Similarly, examination of select notochordal

markers19,63 shows that while some markers increased with VP treat-

ment (NOG and THBS2), others remained largely unaltered (Chordin)

or decreased over time (MAP1B) (Figure 4B). Other notochordal

markers such as Brachyury (T) were undetectable. Furthermore, fibro-

blastic markers connective tissue growth factor (ccn family member 2)

(CTGF), actin, aortic smooth muscle (ACTA2), S100A4, and discoidin

domain-containing receptor 2 (DDR2) were downregulated in the VP

group (Figure 4C). Given the previous findings showing VP promotes

F IGURE 2 Phalloidin (green)-stained Actin fibers are shown in NP
cells treated with vehicle control, A (top), and VP, A (bottom), (blue = 406-
diamidino-2-phenylindole/nucleus, scale bar 100 μm) upon LM-coated
glass. OrientationJ analysis of the coherency of the stained Actin fibers
demonstrate more highly aligned Actin in cells without VP treatment
***P < .001, significant differences between VP and vehicle control; data
presented are from three human cell isolations and shown as means ±
SD, B. VP-treated NP cells on LM-coated glass have significantly greater
presence of MDC-stained vacuoles compared to those treated with

vehicle control *P < .05, significant differences between VP and vehicle
control; data presented are from four human cell isolations and show as
means ± SD, C. Brightfield images show differences in morphology of NP
cells treated with, D (right), and without, D (left), VP on LM-coated glass.
A representative confocal image of an MDC-stained VP-treated NP cell
displaying a large, perinuclear vacuole (blue) (red = propidium iodide/
nucleus, scale bar 50 μm), E
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rounded NP cell shape, the expression of genes related to regulation of

cell shape (GO term: 0008360) were evaluated. The expression of gua-

nine nucleotide-binding protein subunit alpha 13 (GNA13), BMP and

activin membrane-bound inhibitor homolog (BAMBI), Pleckstrin homol-

ogy domain-containing family O member 1 (PLEKHO1), SEMA4D, and

EPB41L3 indicated temporal changes (Figure 4D). The expression of

GNA13 (G Protein Subunit Alpha 13) in the present study was only

modestly upregulated in VP-treated cells and displayed slight fluctua-

tions in expression level across times, with the greatest expression at

48 hours. BAMBI, PLEKHO1 (also known as Casein Kinase

2-interacting protein 1), and SEMA4D (Semaphorin-4D) were all slightly

downregulated at the 24-hour time point but increased expression over

time. Unlike the other genes in this set, EPB41L3 decreased with VP

treatment, whereas another member of the protein 4.1 superfamily,

EPB41, showed maximal expression at 48 hours (data not shown).

3.6 | Gene set enrichment shows pathways and
cell components regulated by VP including
cytoskeletal remodeling, cell adhesion, vacuolar lumen,
and MAPK activity

Gene set enrichment was conducted at each time point in order to

determine the pathways, processes, and cellular components that are

regulated by VP treatment (Figure 5A,B and Data S4). At 4 days, 1025

gene sets were significantly enriched from the downregulated gene

list and 1001 gene sets were significantly enriched from the

upregulated gene list. The data represented a variety of gene sets,

many of which are related to biosynthesis and metabolism, DNA and

chromatin organization, transcription, intracellular signaling, cytoskele-

tal remodeling, ECM organization, and cell interactions with the ECM.

Several GO terms (Cell Adhesion: GO 0007155, Vacuolar Lumen: GO

0005775, Regulation of Gene Expression: GO 0010468, and Regula-

tion of MAPK Cascade: GO 0043408) were selected for further analy-

sis (Figure 5C-F).

3.6.1 | Downregulated gene sets

Within the Cell Adhesion gene set, Thy1, angiopoietin-1 (ANGPT1),

FAP, cell adhesion molecule 1 (CADM1), and cell adhesion molecule-

related/downregulated by oncogenes (CDON) were downregulated in

VP-treated NP cells (2.59–106.12-fold) compared to vehicle controls

at all time points (Figure 5C). Similarly, actin-related protein

10 (ACTR10), acid ceramidase (ASAH1), cation-transporting ATPase

13A2 (ATP13A2), Versican core protein (VCAN), and lumican (LUM),

genes associated with the vacuolar lumen gene ontology term, were

downregulated by 4 days (ranging from −4.32 to −100.95-fold at the

F IGURE 3 Hierarchical clustering of RNA-sequencing data in NP cells treated with DMSO (left) or VP (right). Column colors show patient number
(1-3; shaded white, gray, and black, respectively) and timepoint (24 hours, 48 hours, 4 days; shown in blue, red, and orange, respectively) and z-scores
of gene expression are plotted across the rows (3.92 (darkest green) to −1.69 (darkest red) where white = 0), A. Principle component analysis (PCA) of
the RNA-sequencing data. Dot size depicts patient number (1-3), dot color shows timepoint, and treatment groups (VP and DMSO) are circled in blue

or red, respectively, B. Volcano plots of RNA-sequencing data show upregulated and significant genes in green, downregulated and significant genes in
red, and non-significant or non-differentially regulated genes in gray at the 24-hour, C, 48-hour, D, and 4-day, E, timepoints
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4 day timepoint; Figure 5D). ACTR10 was only modestly upregulated

at the 24-hour time point but decreased in expression over time. In

contrast, ASAH1 was downregulated at 24 and 48 hours with an even

further decrease in expression observed at 4 days. Similarly, VCAN

and LUM were downregulated at all three time points and decreased

progressively over the three time points. Lastly, ATP13A2 increased

slightly at 48 hours compared to 24 hours but decreased again at

4 days. The products of these genes vary in function and include cyto-

skeletal proteins, ECM proteins, regulators of lipids, and molecular

transport.64-73 Examining themes in the gene sets over time reveals

the most enriched gene sets in the downregulated genes at 24 hours

were largely related to the membrane, but by 48 hours the top gene

sets were related to extracellular components and cellular interaction

with ECM proteins (Data S4). Interestingly, at 4 days the top enriched

gene sets among downregulated genes were related to a mix of

organelle lumens, extracellular organization, and metabolism (Figure 5

and Data S4).

3.6.2 | Upregulated gene sets

Within the Regulation of Gene Expression and Regulation of MAPK

Cascade set, a number of genes were upregulated in the VP-treated

group by 4 days including FOXA3, histone H1.2 (HIST1H1C), FOS,

ETS domain-containing protein ELK-1 (ELK1), Axin-1 (AXIN1), TAB2,

dual specificity protein phosphatase 5 (DUSP5), PKN1, and MAP3K9

(ranging from 2.10 to 47.70 at the 4-day timepoint; Figure 5E,F).

FOXA3 (Hepatocyte Nuclear Factor 3 gamma, also known as

Forkhead box protein A3), HIST1H1C, FOS (Proto-oncogene c-FOS),

and ELK1were upregulated and increased over time. AXIN1, TAB2

(TGF-β activated kinase 1 and MAP3K7 binding protein 2) increased

in expression with continued VP treatment. In contrast to the former

genes, DUSP5, PKN1 (Serine/Threonine-protein kinase N1), and

MAP3K9 (Mitogen-activated protein kinase kinase kinase 9, also

known as Mixed Lineage Kinase 1) increased from 24 hours to

48 hours but decreased slightly from 48 hours to 4 days.

4 | DISCUSSION

Previous studies have shown that control of cell shape and spread

area can be used to alter cell behavior and various intracellular pro-

cesses, including mechanotransduction and cell differentiation.26-33 In

the present study, treatment of degenerative NP cells with the drug

VP was shown to associate with cell rounding and reduced alignment

of F-actin. This finding allowed for the examination of the down-

stream effects of NP cell rounding, without requiring the use of cyto-

skeletal disrupting toxins that may interfere with other features of cell

F IGURE 4 Relative gene expression in cells treated with VP compared to time-matched DMSO-treated controls for NP, A, notochordal, B,
and fibroblastic phenotypic markers, C, as well as genes associated with cell shape, D
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viability and metabolism. As suggested by mechanotransduction stud-

ies in other cell types, such as stem cells and cancer cell lines, we have

confirmed that the promotion of cell rounding in degenerative primary

NP cells occurred coincident with global gene expression

changes.26,31,33,74 that continued to develop over time with VP

treatment.

Prior studies to modify cell morphology in primary human NP

cells employed methods such as controlled hydrogel substrate stiff-

ness for culture.15,36,37,42 use of genetic- or antibody-based inhibi-

tion.42,43 or small molecule inhibitors.42 The present study is the first

to describe use of a clinically relevant pharmacological treatment to

induce a rounded, clustered shape in primary human NP cells when

cultured upon stiff substrates. VP has a t½ of 5 to 6 hours75 and was

accordingly replenished every 24 hours throughout the culture period.

This dosing regimen was chosen to insure a sustained change in cell

shape with associated downstream effects following treatment over

the period of study. VP treatment confirmed that downregulation of

SRF and TEAD transcriptional activity can be expected when cells

form a rounded morphology and occurs with increased phenotype

expression and biosynthetic activity. VP is a known inhibitor of TEAD

by way of targeting its co-activator YAP,49 but these findings suggest

it may have more broad-acting impact given its inhibitory effects on

SRF. Taking into consideration this possibility and the likelihood of

cross-talk between TEAD and SRF pathways,76-78 further down-

stream analysis of contractile-associated transcript-level targets com-

mon between the two were probed, indicating a downregulation of

F IGURE 5 Gene set
enrichment for genes
downregulated at 4 days with
examples of enriched gene sets
highlighted in red, all plotted
gene sets are significantly
enriched (gray dots), A. Gene set
enrichment for genes
upregulated at 4 days with

examples of enriched gene sets
highlighted in green, all plotted
gene sets are significantly
enriched (gray dots),
B. Expression over time for
genes associated with the gene
ontology terms “Cell
Adhesion,” C, “Vacuolar
Lumen,” D, “Regulation of Gene
Expression,” E, and “Regulation
of MAPK Cascade,” F
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many genes with VP treatment. The use of VP has recently been

shown to decrease spread area in rabbit AF cells,50 which was also

observed in the current study where contractile F-actin alignment was

significantly decreased.

It was further observed that upon retention of a rounded, clus-

tered morphology with VP treatment, these adult NP cells began to

re-express vacuoles. The loss of highly vacuolated notochord cells

begins relatively early in humans (≥2 years of age) and notochord-

derived NP cells continue to lose vacuoles with age.79 In species that

maintain notochord cells through the majority of adult life, such as pig

and non-chondrodystrophic canines, the large, characteristic vacuoles

remain.80-82 Earlier studies using experimental and theoretical

methods proposed a critical role for vacuoles in NP cells as osmoregu-

latory organelles that respond rapidly to large hydrostatic pressures

generated in the NP tissue due to axial loading of the spine.80,83,84

Here, quantification of vacuoles localized to the perinuclear space in

rounded human NP cells further suggests a role for these functional

structures in healthy, juvenile-like NP and indicates there may be a

relationship between the observed effects in actin cytoskeleton-

mediated cell shape and the re-occurrence of vacuoles.

Examining the differentially expressed genes at each time point

demonstrates the complexity of the temporal regulation of gene

expression and suggests NP cells undergo early changes with varia-

tions in cell shape. Continued VP exposure and thus maintenance of

rounded morphology also reveals long-term sustained effects on the

transcriptome. Studies over the last few decades in different cell types

have shown that control of morphology can shift undifferentiated

cells toward a particular cell fate or promote polarized states.27,28,30,85

However, studies to understand the role of shape in controlling

behavior and phenotype in primary human NP are ongoing. By investi-

gating the pathways and cellular components altered through gene

set enrichment (GSE), the effect of VP-induced cell rounding on regu-

lating NP phenotype and function can be further analyzed on a global

level. As previously discussed, healthy juvenile NP cells have a charac-

teristic rounded morphology with the presence of large intracellular

vacuoles, which is rapidly lost with age.7,14,82,86 We speculate that a

recapitulation of this morphology may promote degenerative human

NP cells to assume a more juvenile phenotype. Our data suggests that

VP treatment is able to support morphological changes, which shows

association with a transition in degenerative NP cells to decrease

expression of the fibroblastic markers CTGF, ACTA2, S100A4,

and DDR2.87-98 and increase expression of known markers of NP and

notochordal phenotype KRT19, LAMA1, and KLF6, NOG, and

THBS2.14,19,60-62 It should be noted, though, that these VP-induced

effects may be unable to completely shift cells toward profiles consis-

tent with juvenile NP, as previously specified markers, such as CDH2

and BASP1, were downregulated at all three time points. This effect

may be due in part to the cells' exposure to stiff substrates (> 1 GPa)

in culture and requires future investigation into the mechanical mem-

ory of NP cells.99,100

Examining the expression of genes within the ontology term Reg-

ulation of Cell Shape (GO: 0008360) provides insight into the mecha-

nisms by which cell shape may be driving NP phenotype. While the

expression profiles of the genes GNA13, BAMBI, PLEKHO1,

SEMA4D, and EPB41 vary, the proteins for all five of these genes are

implicated in intracellular pathways (eg, Wnt, TGF-β, PI3K-AKT, and

Hippo) as well as cellular functions including control of cell shape, cell

migration, response to hypoxia, regulation of cell viability, differentia-

tion and production of ECM proteins.101-110 GNA13 (G Protein Sub-

unit Alpha 13) is a member of the guanine nucleotide-binding protein

family and is known to be involved in numerous transmembrane sig-

naling pathways including RhoA/ROCK signaling (Uniprot) as well as

Wnt and Hippo pathways,111,112 upstream of cellular processes

including cell shape, actomyosin-contractility, migration, and cytoskel-

etal remodeling.112,113 EPB41 (Erythrocyte Membrane Protein Band

4.1, also known as Protein 4.1) is a key element to the cytoskeleton in

many cell types and may be essential for the accumulation and proper

functioning of membrane proteins and cell adhesion molecules.114-116

Differences observed in expression of these genes are illustrative of

the complex regulation used by cells to sense and respond to their

mechanical and biochemical environment.

Performing GSE on the genes upregulated or downregulated at

each time point allowed us to query the cellular pathways and compo-

nents also altered by the VP-treatment itself or by the subsequent

cell-shape changes.

4.1 | Downregulated gene sets identified through
gene set enrichment

Gene sets enriched in the downregulated genes at the 4-day time-

point, when NP cells have recovered a more juvenile, rounded mor-

phology, included terms such as cytoskeletal part and cortical actin

cytoskeleton. This may confirm the role of cytoskeletal remodeling in

the control of cell shape and NP cell phenotype, though further vali-

dation is needed. Another enriched gene set, Cell Adhesion, is simi-

larly downregulated. THY1 (Thy-1 Cell Surface Antigen) has

previously been shown to be downregulated in NP compared to AF

and upregulated with age, where THY1-cell interactions can result in

focal adhesion formation.60,117 Similarly, ANGPT1, FAP (Prolyl endo-

peptidase FAP), CADM1, and CDON have been associated with cyto-

skeletal reorganization, cell-ECM and cell-cell interactions, as well as

involvement in mechanosensitive intracellular signaling pathways in

cell types including NP and AF cells.118-130

One of the most highly enriched downregulated gene sets was

Vacuolar Lumen, where many genes are associated with lysosomal

activity. It is important to note here that because these gene sets are

pulled from large databases of literature with a heavy reliance on cells

of plant and yeast origin, the contained data set's focus on lysosomal

vacuoles may be due to a lack of previously identified vacuole-specific

genes of human studies. Though a closer look at the indicated genes

in this dataset may not yet be able to identify novel vacuole markers,

it may be possible to rule out some lysosomal activity because of their

downregulation. ACTR10 encodes actin responsible for lysosomal

transport,131 ASAH1 is a lysosomal-associated enzyme,132,133 and

ATP13A2 encodes a lysosomal transmembrane ATPase and also plays
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a role in autophagy,134,135 suggesting an overall loss of lysosome-

associated activity. Taken together with our finding of increased

vacuole-associated MDC staining with VP-induced cell rounding, this

may indicate the specificity of MDC to true vacuoles in NP cells, and

not to lysosomes. The NP is one of the most osmotically regulated tis-

sues and vacuoles are believed to function as a regulator of cell vol-

ume and tonicity during rapid osmotic stress, thus enabling protection

from potentially damaging swelling pressures.84 Though definitive

studies in human NP cells are lacking, vacuoles are believed to carry a

low-osmolality solution (non-chondrodystrophic dogs84), while lyso-

somes are associated with autophagy and cell suicide and are respon-

sible for transporting acidic hydrolases that breakdown cellular

components via endocytosis. Findings here of a strong decrease in

lysosome-associated genes not only suggests a decrease in autophagy

and associated cell death and turnover, but further supports the pres-

ence of MDC-positive vacuoles observed upon retention of a rounded

morphology.

4.2 | Upregulated gene sets identified through
gene set enrichment

Enriched gene sets among the upregulated genes further reveal that

VP-associated changes in cell shape are coincident with differences in

gene expression, biosynthesis, chromatin organization, and intracellu-

lar signaling pathways including NF-κB, JNK, and MAPK. At 24 hours

the most highly enriched gene sets include those related to intracellu-

lar changes, vesicle transport, response to ER stress and unfolded pro-

teins, as well as biosynthesis and metabolism. At both 48 hours and

4 days, gene sets related to biosynthesis, transcription, nucleus, and

metabolism were dominant. These findings confirm what the global

analysis revealed, that promotion of cellular rounding may have broad

implications for cell function, phenotype, and transcriptional activity.

Examining the expression patterns of the genes within the

enriched gene sets provided further evidence that cell shape may cor-

relate with NP cell interactions with the extracellular space, as well as

influencing intracellular events. The upregulation of several genes

within the regulation of gene expression gene set demonstrates the

contribution of each to cell differentiation and homeostasis, but are

further linked to mechanosensitive pathways like JNK, TGF-β, SMAD,

WNT, SHH, and MAPK signaling and can mediate phenotype, biosyn-

thesis, cell division, and cell survival.42,136,137-139,140-147

Genes within the gene ontology term Regulation of MAPK Cas-

cade can be tied back to similar signaling pathways. AXIN and TAB2

(a TGF-β activated kinase binding protein) have both been implicated

in the control of beta-catenin,148-155 an important regulator of

CDH2-associated signaling shown to maintain cell-cell interactions

and clustering in juvenile, healthy NP cells.43 While gene expression

patterns of DUSP5, PKN1, and MAP3K9 varied, there are known

interactions between them. DUSP5 overexpression has been shown

to suppress the production of pro-inflammatory markers and also

interacts with ERK and NF-κB signaling.156 Downstream of Rho/Rac1,

PKN1 may have a protective effect on cells experiencing hyper/hypo-

osmotic stress.157,158 The protein encoded by this gene has also been

shown to interact with Axin proteins and WNT phosphorylation of

LRP6.159 MAP3K9 has been implicated in IVD degeneration, where

the knockdown of MAP3K9 was shown to inhibit NP cell proliferation

and promote apoptosis through its possible role in regulating p38,

JNK, and ERK signaling.160-162

As part of our interest in probing temporal changes associated

with cell shape, we also surveyed the top 10 downregulated and

upregulated genes at 4 days, the time point with the largest number

of genes being differentially regulated. This analysis may provide fur-

ther targets in identifying regulatory genes involved in this response,

but validating all targets was outside the scope of this study. As an

example, three of the top 10 genes upregulated at 4 days have gene

ontology terms associated with G protein-coupled receptor (GPCR)

signaling pathways: GAST, GPR84, and MC5R. While the function of

these genes in controlling IVD homeostasis or pathology is largely

unknown,163 they have been investigated in tissues and disease states

including stomach mucosa/gastrointestinal disorders,164,165

leukocytes/leukemia,166,167 and kidney cells/kidney function,168,169

respectively. Additionally, the products of these three genes, while

not binding to TEAD directly, connect through several intracellular

pathways through major signaling proteins including AKT and ABL1.59

This may be of particular interest, as many GPCRs are known to bind

various ligands such as fatty acid metabolic intermediates.166 There

exist hundreds of FDA-approved drugs targeting these proteins,

including corticotropin which is approved for a number of pharmaco-

logic uses including the targeting of MCR5.170 Interestingly, with

regard to corticotropin, several papers have observed corticotropin-

releasing hormone receptor (CRHR1) expression or methylation in NP

samples; however, the function of CRHR1 in the disc has yet to be

elucidated.171-173 Such targets represent the potential for future stud-

ies to expand upon these findings, but also outlines the complexity in

corroborating each target identified within this data.

Taken together, the data presented in this study have shown that

VP treatment is associated with the promotion of a rounded cell

shape, decreased F-actin alignment, and downstream inhibition of

SRF and TEAD transactivation. qPCR confirms a concomitant shift in

degenerative NP cells from a fibroblastic phenotype toward one con-

sistent with healthy, juvenile NP cells. VP treatment of NP cells also

promotes increased presence of vacuoles, and biosynthetic activity as

measured through sGAG production. RNA-seq and GSE serve to pro-

vide target genes and pathways of interest, but their precise role in

controlling NP cell phenotype must still be investigated in a directed

manner. Future experimentation will be required to investigate the

regulation of these genes by SRF and/or TEAD transcription factors.

Further studies are also needed to couple transcript-level changes

with alterations in protein expression and phosphorylation, post-

translational modifications, as well as compartmentalization within the

cell (ie, nuclear, cytoplasmic, membrane localization) in order to fully

understand the function of these differentially regulated genes in

modulating human NP cell phenotype.
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