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Abstract: The use of the harmonic regression model is well accepted in the epidemiological and
biostatistical communities as a standard procedure to examine seasonal patterns in disease occurrence.
While these models may provide good fit to periodic patterns with relatively symmetric rises and
falls, for some diseases the incidence fluctuates in a more complex manner. We propose a two-step
harmonic regression approach to improve the model fit for data exhibiting sharp seasonal peaks.
To capture such specific behavior, we first build a basic model and estimate the seasonal peak. At the
second step, we apply an extended model using sine and cosine transform functions. These newly
proposed functions mimic a quadratic term in the harmonic regression models and thus allow us to
better fit the seasonal spikes. We illustrate the proposed method using actual and simulated data
and recommend the new approach to assess seasonality in a broad spectrum of diseases manifesting
sharp seasonal peaks.
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1. Introduction

Understanding temporal changes in disease occurrence in human populations is one of priorities
in epidemiology, public health, and life science related disciplines. This lofty goal implies ability
to describe, quantify, and examine temporal patterns, which include increasing or declining trends,
seasonal patterns, unusual spikes associated with outbreaks or disappearance of periodic episodes that
mark disease eradication. These temporal characteristics are often explored in order to detect emerging
trends in populations of concern, determine the success of intervention programs on a population
level, and to forecast the future temporal behaviors [1–3]. The temporal analyses are also performed to
better understand the effects of contributing factors to changes over time.

It is well known that majority of infections exhibit strong seasonal patterns in disease incidence or
prevalence [3–11]. Our own work illustrate that infections caused by bacteria, like Vibrio cholerae [4]
and Salmonella [6]; by protozoa, like Giardia and Cryptosporidium [12]; and viruses, like Influenza [13,14]
and Rotavirus [15,16] have well pronounced seasonal patterns, specific for the location, pathogenic
strains, and the size and socio-demographic composition of the affected populations.

We define ‘seasonality’ as systematic, repetitive, periodic fluctuations in disease incidence over
the course of one year. Disease seasonality is characterized by the magnitude, timing, and duration of
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a seasonal increase [17]. We define the time of a seasonal peak, a parameter of interest, as the position
of the maximum point on a seasonal curve. The maximum and minimum values on the seasonal curve,
the difference between them, and the ratio of these values are the magnitude-related measures. These
characteristics along with their uncertainty measures allow us to compare seasonal patterns across
diseases, locations and populations and offer statistical inferences. The use of the δ-method, which can
be applied to estimate the uncertainty measures within a framework of a harmonic regression model,
simplified substantially the modeling and estimation procedures [17].

Disease occurrence is typically measured as a rate, based on the number of events per unit of time
normalized for population of interest. When the population of interest is relatively stable, disease
occurrence can be measured as counts observed in a particular location and time, generally known as
‘aggregated information’, which will not have denominator. In order to describe and examine temporal
changes, counts of disease episodes need to be organized as a sequence which form a time series of
events in a given population over a pre-specified time period with a pre-specified level of temporal
resolution, such as daily, weekly, or monthly time series.

The compiled time series data are usually analyzed using two approaches [18]. One is ‘time
domain approach’, which treats the time series of events as a function of time with the primary
goal to explore a trend (rising or declining) and if so, to fit a forecasting model. The time domain
approach may be thought of as regression of the present on the past. The other one is a ‘frequency
domain approach’ which is based on the assumption that the behavior of a time series is likely to
be decomposed using periodic functions. The focus of this approach is to determine the periodic
components embedded in the time series. The frequency domain approach may be considered as
regression of the present, which are wave like periodic patterns of peaks/dips can be modeled using
sine and cosine functions [18]. The choice between the frequency domain and the time domain depends
is essentially objective based [19]. Generally, Auto Regressive Integrated Moving Average (ARIMA)
and Seasonal Auto Regressive Integrated Moving Average (SARIMA) methodologies are used for the
time domain approach and regression methodologies are used for the frequency domain approach.
Recently we proposed a method that use both approaches in a combined manner [18].

Regression models adapted for time series of counts are gaining popularity and broad
acceptance [9,20–23]. To describe seasonal oscillations in a time series of counts, a parametric
or non-parametric Poisson regression model is most commonly applied. A parametric Poisson model
typically includes terms based on trigonometric sine and cosine functions, and often has been referred
as harmonic regression models [5–8,10,24]. The standard sine and cosine functions are smooth and
symmetric and thus are appropriate for diseases that exhibited steady seasonal rise and decline.
The use of well-defined function allows for clear and transparent comparison and interpretation of
results. However, the use of Poisson-based approach should be taken with caution, because the actual
data rarely satisfy the assumption of mean-dispersion equality needed for a Poisson distribution.
Generalized Poisson and Negative Binomial models account for under and over dispersed count
data; yet, these models can fit well only data with a moderate level skewness. When a disease
of interest shows the sharp peaks and prolong periods of low incidence, the traditional harmonic
Poisson or Negative Binomial regression models might still underestimate peaks and overestimate the
dips. Therefore there is a need to adapt the existing models with parameters that would capture the
sharp peak.

This communication aims to improve the model to capture the specific behavior with characteristic
sharp peaks and prolong periods of low disease incidence. We propose a two-step procedure, when at
the first step we build a basic model, which allow to estimate the seasonal peak timing. At the second
step we apply an extended model based on newly proposed sine and cosine transform functions,
which mimic a quadratic term and thus better fit the seasonal spikes. We illustrate the method using
actual and simulated data. As the motivational examples, we selected cases of hospitalizations due to
Salmonella infections among older adults (those aged 65 years and older) in the U.S. during 1991–2002 [2],
laboratory confirmed cases of Shigella infections among patients coming to the emergency department
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of the Christian Medical College and Hospital, in Vellore, India over a decade, and monthly pneumonia
and influenza death counts in the U.S. for 11 years, from 1968 to 1978 [18]. We also used simulated
data with predefined trend and seasonal pattern to illustrate the proposed two-step approach.

2. Methods

2.1. The Base Model

The conceptual framework to describe periodic oscillations is expressed as

Zt = µ + γ cos(2πωt + ϕ) + εt (1)

where, Zt is a time series of an outcome of interests measured at time t, t = 1, 2,...., N with N—An
effective length of a time series (number of observations); µ is the constant reflecting the general
baseline of Zt; the periodic component has a frequency of ω, an amplitude of γ, and a phase angle
of ϕ; and εt, are independently and identically distributed normal random variables with E[εt] = 0
and Var[εt] = σ2. This model describes seasonal behavior by a cosine function with symmetric rise
and fall over a period of a full year. The locations of two points, the seasonal curve peak and nadir
(lowest point), can be determined using a shift, or phase angle parameter, which reflects the timing of
the peak relative to the origin. The shift parameter is expressed in the time units of a time series and
can be used for seasonality comparison. The amplitude of fluctuations between two extreme points is
controlled via parameter γ. If γ = 0, there is no seasonal increase.

We assume that a period of oscillation or a cycle is known; thus, the frequency, the reciprocal
of the period in t units, is a fixed number. Therefore, the model has three parameters—the constant,
amplitude and phase. To ease the estimation, the model can be re-formulated as [17]

Zt = µ + γ cos(2πωt + ϕ) + εt = µ + βS sin(2πωt) + βC cos(2πωt) + εt (2)

where, βS = −γ sin ϕ and βC = γ cos ϕ, the model parameters or beta coefficients. The temporal
resolution of actual data can be reflected by ω = 1/M, where M depends on the unit of analysis,
and is 4 for quarterly data, 12 for monthly data, 52.25 for weekly data, and 365.25 for daily data. A
general framework of a regression model is sufficient to estimate the model parameters µ, βS, and βC.
Furthermore, by using the δ-method, the estimates of peak timing and amplitude can be supplemented
by the uncertainty measures [17].

This simple harmonic regression model can be applied to variety of scenarios and satisfy various
forms of actual data in practical settings. For example, to model monthly counts, the model can be
written as

Zti = β0 + βC cos(2πωti) + βS sin(2πωti) + εti (3)

where, Zti is the count in the tth month of ith year; t values range from 1 to 12; i values range from 1 to
L, where L is number of years under observation. In the context of the model ω reflects the period
within every year, and for the monthly data,ω = 1/12. Thus, the above equation can be rewritten as

Zti = β0 + βC cos(2πti /12) + βS sin(2πti/12) + εti. (4)

A linear combination of sine and cosine functions fits the seasonal variation in the outcome as a
regular wave with a single, equally spaced peak and over the calendar year, with the actual position of
the peak and trough guided by the data. The model parameters or beta coefficients β0, βS, βC can be
used to estimate peak timing and amplitude.
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The model can be extended to capture the trend of time series data, while adjusting for seasonality
with the sine/cosine pair. For the example described above, including ‘i’ into the model can help to
capture a long-term linear trend. Now, the harmonic regression model is rewritten as

Zti = β0 + βC cos(2πti/12) + βS sin(2πti/12) + βYear i + εti (5)

where, βYear is the model parameter or beta coefficient of the trend variable. We adapted the above
equation (5) for the Poisson-distributed outcome to form the base model

Model A: Yti = exp{β0 + βC cos(2πti/12) + βS sin(2πti/12) + βYear i + εti} (6)

which we applied to our examples to fit monthly counts and estimate the peak time to enable the
model extension.

We estimated the peak timing, θ and the amplitude, α using the δ-method [17,25] using the
following transformations: θ = M {arctan( βS / βC ) + k}/2π and α ={βc

2 + βs
2}1/2, where βC and βS

were obtained from fitting Model A. The estimate of θ depends on join signs of βC and βS; so k = 0,
when both βC and βS are positive, k = 2π, when βC < 0 and βS > 0, and k = π, otherwise. Furthermore,
standard deviations for amplitude α and peak timing θ can be also estimated.

2.2. Model Extensions

We extend the basic Model A to improve the fit by replacing cosine and sine functions with two
wave functions: 2{1–cos(u)}/u2 and sin(u)/u, which are the Fourier transform/characteristic function of
the symmetric triangular density and the uniform density, respectively. The advantage of using these
functions is that their maximum value is 1 at a predefined time. Similarly to using a linear and quadratic
terms in a simple regression model, the proposed cosine Fourier transform function 2{1–cos(u)}/u2 can
be treated as a squared term of the sin(u/2)/(u/2). This quadratic form can be interpreted as acceleration
to fit a sharper peak than the ordinary sine function. The derivation part is

2{1-cos(u)}/u2 = 2(2 sin2(u/2)/u2) = sin2 (u/2)/(u/2)2 = {sin(u/2)/(u/2)}2. (7)

Based on this property, we transform time ti in Model A with ui = 2πω(ti−θ) = 2π(ti−θ)/M, where
θ is peak timing. For simplicity, the value θ can be estimated from the actual time series, as described
in Equation (7) using the basic Model A.

Thus, Model B uses transformed time ti, as ui = 2π(ti−θ)/12 and two wave functions

Model B: Yti = exp{β0 + βC [2(1-cos ui)/ui
2] + βS [(sin ui)/ui] + βYear i + εti}. (8)

Next, the basic Model A can be further extended to capture slight shifts in peak timing using
simple transformations, such as

cos(ui + 2πθ/12) = cos{(2π(ti−θ)/12) + (2πθ/12)} = cos{2πti/12}

and
sin(ui + 2πθ/12) = sin{(2π(ti−θ)/12) + (2πθ/12)} = sin{2πti/12}.

These linear combinations of two wave functions form two additional Models C and D, respectively

Model C: Yti = exp{β0 + βC [cos(ui + 2πθ/12)] + βS [(sin ui)/ui] + βYear i + εti} (9)

and
Model D: Yti = exp{β0 + βC [2 (1 - cos ui)/ui

2] + βS [sin(ui + 2πθ/12)] + βYear i + εti}. (10)
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The proposed Models B, C, and D captures the variations in year, seasonal variation, and might
be better tuned-up to capture the variations in seasonal amplitudes. The introduced terms based on
Fourier transform functions can accommodate patterns with the sharp increase to reach the peak as
shown in Figure 1. These models are likely to better describe the actual data.

Figure 1. Smooth pattern of the classic sine and cosine functions (dashed line) and pattern of sine and
cosine Fourier transform functions (solid line).

2.3. Data

To illustrate the ability of the proposed models to capture trends and seasonal patterns we are
using four examples based on the three actual datasets and one simulated dataset representing various
infections occurred in specific populations. The datasets are presented in Supplemental Table S1.
Below we provide a general description of infection’s etiology, epidemiology, and an applied data set.

2.3.1. Example 1: Hospitalizations Due to Salmonellosis in U.S. Elderly

Every year, Salmonella infection is estimated to cause over one million foodborne illnesses in
the United States, with 19,000 hospitalizations and 380 deaths annually. Majority of infected with
Salmonella develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness
usually lasts 4 to 7 days, and most persons recover without treatment. In the frail elderly, however,
the infection may be so severe that the patient needs to be hospitalized. The 25,367 hospital records
of salmonellosis (ICD-9-CM 003.X) were extracted from the U.S. Centers of Medicare and Medicaid
Services (CMS) database from 1991 to 2002. Each individual record contained age, admission date,
and diagnosis codes [2]. In order to conduct time series analysis, records were organized as monthly
counts observed among patients aged 65 and older. The aggregation of records into monthly time
series of counts was based on patient admission date.
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2.3.2. Example 2: Laboratory-Confirmed Cases of Shigellosis in Christian Medical College and
Hospital, India

Shigellosis is an infectious disease caused by a group of bacteria called Shigella (shih-GEHL-uh)
with a common fecal–oral transmission route via contaminated food or water. Most of the people who
are infected with Shigella develop diarrhea, fever, abdominal pain, and dysentery (stools with blood
and mucus) starting a day or two after they are exposed to the bacteria. Shigellosis usually resolves
in 5 to 7 days. There may be asymptomatic carriers of the bacteria who are a source of infection to
others. Effective and frequent handwashing, provision of safe drinking water and hygienic methods of
food handling can stop transmission of shigellosis. The Department of Microbiology at CMC, Vellore
receives stool samples that are sent for culture of common enteric pathogens. Stool samples of patients
attending the emergency or outpatient departments or admitted to the hospital with a history of
passing loose, frequent stools were collected and registered for culture. The diagnosis of shigellosis is
made by successfully isolating the organism by conventional culture methods and identifying using
specific antisera and appropriate biochemicals. 1242 records of positive cultures for Shigella were
extracted from laboratory records between January 2003 and December 2013 and organized as monthly
time series.

2.3.3. Example 3: Monthly Records of Pneumonia and Influenza Death in US

Influenza (flu) is a highly contagious viral infection which is one of the most severe illnesses of the
winter season. Influenza is spread easily, when an infected person coughs or sneezes. Pneumonia is a
serious infection or inflammation of the lungs, which can lead to death. Influenza is a common cause
of pneumonia, especially among younger children, pregnant women, individuals with certain chronic
health conditions, and frail elderly. While, in healthy individuals, flu rarely leads to pneumonia,
those that do tend to be more severe and deadly. In fact, flu and pneumonia were the eighth leading
cause of death in the United States in 2014. Monthly records of pneumonia and influenza death per
10,000 population in U.S. for 11 years between 1968 and 1978, representing 3,855 death events were
abstracted from the public source [18]. The monthly rates were converted as per 1,000,000 population
for computational convenience.

2.3.4. Example 4: Simulated Dataset

Monthly counts for 132 time points were simulated based on Seasonal Auto Regressive Integrated
Moving Average (SARIMA) model in R Version 3.3.2 (R Core Team, Vienna, Austria). This model
involves six parameters, which are p (Auto Regression [AR]), d (Differencing [I]), q (Moving Average
[MA]), P (Seasonal Auto Regression [SAR]), D (Seasonal Differencing [SI]), Q (Seasonal Moving Average
[SMA]). The set of ((p, d, q), (P, D, Q), and S) defines the properties of a simulated sequence, where S is
the time span of repeating seasonal pattern, thus for a monthly time series S = 12. To obtain a sequence
of values with an increasing trend and apparent seasonality, the AR and SAR parameters are taken
to be 0.6 and 0 respectively. The MA and SMA parameters control the past error, which are taken as
0.6 and 0 respectively; the I and SI parameters are taken as 0 and 1 respectively. Data were generated
under a Poisson distribution assumption to simulate counts.

3. Results

The inference based on case studies depends on size, prevalence, and seasonality of the specific
diseases. Thus the case studies or data driven evidence of new model is unlikely to be robust. Therefore
with the simulation we have introduced seasonality, trend using auto regression (AR) and moving
average (MA) parameter values and the performance of the new model was compared with commonly
used model.

In general the number of cases reported with Salmonelosis at the hospital has been declining.
The rate of decline per year was by 7.4 counts, and Shigellosis infection is increasing over years at
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the rate of 0.6 counts per year. Flu data shows a declining trend with a rate of 0.9 counts per year.
The dataset simulated showing an increasing trend with the rate of 7.8 counts per year.

The summary statistics for monthly values representing four examples are shown in Table 1. In
addition to typical statistics, such as minimum, maximum, mean, standard deviations, first and third
quartiles for monthly values and overall, we provide the estimates of coefficients of skewness and
kurtosis (Table 2).

Table 1. Summary statistics for four examples: salmonellosis, shigellosis, pneumonia and influenza
and simulated monthly counts for overall time period and by the month of the study period

Statistics Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall

Example 1: Salmonellosis

Mean 129.3 103.5 120.5 131.1 161.3 198.5 249.8 262.5 239.9 209.7 163.6 144.4 176.2
SD 20.4 19.0 28.2 23.0 28.3 50.1 53.3 48.0 52.0 42.7 29.1 31.5 63.5

Min 99 78 75 104 111 145 193 211 176 150 114 100 75
Max 165 138 170 175 208 329 386 376 353 278 219 197 386

1st Qrt 113.5 89.5 96.5 109 145.5 161.5 209 223.5 200 177 142 116.5 131
3rd Qrt 143.5 114.5 140 145.5 182.5 214 277.5 294.5 270.5 239.5 183.5 170 216

Example 2: Shigellosis

Mean 8.9 6.6 7.8 8.1 10.0 16.0 15.9 12.2 6.4 5.7 7.0 7.4 9.3
SD 3.9 4.1 2.5 4.4 5.5 8.5 8.3 6.6 3.4 3.9 2.1 5.5 6.1

Min 4 1 5 2 1 5 1 5 1 1 4 2 1
Max 14 15 14 15 19 33 31 29 13 15 10 22 33

1st Qrt 5 3 6 4 6 8 10 7 3 2 5 4 5
3rd Qrt 13 9 9 12 14 22 23 15 8 7 9 10 12

Example 3: Pneumonia and Influenza

Mean 51.6 45.3 35.5 27.1 22.5 21.0 21.6 20.9 21.2 24.1 25.8 34.1 29.2
SD 19.4 9.1 10.0 2.7 2.0 2.3 2.4 2.2 1.9 2.0 3.6 13.4 12.6

Min 28 30 28 23 20 18 18 18 19 21 21 25 18
Max 82 57 64 31 26 25 25 25 24 27 32 73 82

1st Qrt 31 37 30 25 21 19 19 19 19 22 23 26 22
3rd Qrt 64 52 36 29 24 23 23 23 23 26 29 34 31

Example 4: Simulated Data

Mean 47.5 50.5 56.5 55.1 51.3 46.2 41.3 40.8 38.6 36.4 43.6 47.7 46.3
SD 24.9 27.1 31.1 30.6 24.4 24.9 23.9 23.4 22.9 23.2 25.8 26.1 25.8

Min 9 9 9 10 10 10 8 7 6 4 6 7 4
Max 86 94 106 102 95 86 78 75 74 76 88 90 106

1st Qrt 29 30 30 27 24 23 20 21 20 16 20 25 24.5
3rd Qrt 69 75 84 82 78 69 64 62 58 55 62 68 66.5

Table 2. Summary statistics and seasonality characteristics for four examples: salmonellosis, shigellosis,
pneumonia, and influenza and simulated monthly counts for overall time period

Statistics Example 1:
Salmonellosis

Example 2:
Shigellosis

Example 3:
Pneumonia

Example 4:
Simulated Data

Skewness (SE) 0.85 (0.20) 1.44 (0.21) 2.23 (0.21) 0.25 (0.21)
Kurtosis (SE) 0.58 (0.40) 2.63 (0.42) 5.17 (0.42) −0.93 (0.42)

Peak timing (SE) 8.09 (0.07) 6.29 (0.47) 1.47 (0.12) 3.21 (0.26)
Amplitude (SE) 0.42 (0.02) 0.39 (0.08) 0.43 (0.02) 0.18 (0.03)

Table 3 shows the results of root-mean-square error (RMSE), mean absolute deviance (MAD),
Bayesian information criterion (BIC), and the regression coefficients for annual trend, sine and cosine
terms for Models A, B, C, and D for four examples. Overall, all models provide relatively good fit
to the data, yet the three applied statistics demonstrate potential model preference. While models
are performing equally well in terms of RMSE and MAD, we consider BIC as a better measure for
comparing between models.
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Table 3. Comparison of models for four examples: salmonellosis, shigellosis, pneumonia, and influenza
and simulated monthly counts

Estimator Model A Model B Model C Model D

Example 1: Salmonellosis

Constant 5.39 (5.37 to 5.42; < 0.001) 7.07 (6.79 to 7.35; < 0.001) 4.93 (4.90 to 4.97; < 0.001) 4.79 (4.71 to 4.87; < 0.001)
Year −0.04 (−0.05 to −0.04; < 0.001) −0.04 (−0.05 to −0.04; < 0.001) −0.04 (−0.05 to −0.04 < 0.001) −0.04 (−0.05 to −0.04; < 0.001)
Sin −0.37 (−0.39 to −0.36; < 0.001) 3.91 (3.50 to 4.32; < 0.001) 0.82 (0.78 to 0.86; < 0.001) −0.18 (−0.21 to −0.15; < 0.001)
Cos −0.19 (−0.21 to −0.17; < 0.001) −5.16 (−5.84 to −4.48; < 0.001) 0.02 (0.00 to 0.04; 0.047) 0.80 (0.70 to 0.90; < 0.001)

RMSE 24.47 24.28 28.58 29
MAD 18.76 18.66 22.67 22.41
BIC 1458.28 1451.72 1664.47 1643.73

Example 2: Shigellosis

Constant 1.77 (1.63 to 1.90; < 0.001) 7.92 (5.63 to 10.17; < 0.001) 3.28 (2.60 to 3.95; < 0.001) 0.76 (0.46 to 1.04; < 0.001)
Year 0.07 (0.05 to 0.09; < 0.001) 0.07 (0.05 to 0.09; < 0.001) 0.07 (0.05 to 0.09; < 0.001) 0.07 (0.05 to 0.09; < 0.001)
Sin −0.06 (−0.14 to 0.02; 0.140) 9.58 (6.52 to 12.60; < 0.001) −2.58 (−3.71 to −1.43; < 0.001) −0.06 (−0.14 to 0.02; 0.146)
Cos −0.39 (−0.47 to −0.31; < 0.001) −15.26 (−20.5 to −9.97; < 0.001) −1.55 (−2.06 to −1.02; < 0.001) 1.32 (1.01 to 1.64; < 0.001)

RMSE 4.93 4.86 4.85 5.09
MAD 3.59 3.53 3.52 3.68
BIC 859.66 844.31 842.96 878.93

Example 3: Pneumonia and Influenza

Constant 3.52 (3.45 to 3.58; < 0.001) 3.92 (3.81 to 4.03; < 0.001) 3.39 (3.32 to 3.46; < 0.001) 3.42 (3.31 to 3.52; < 0.001)
Year −0.03 (−0.04 to −0.02; < 0.001) −0.03 (−0.04 to −0.02; < 0.001) −0.03 (−0.04 to −0.02; < 0.001) −0.03 (−0.04 to −0.02; < 0.001)
Sin 0.30 (0.25 to 0.35; < 0.001) 2.00 (1.73 to 2.27; < 0.001) 0.48 (0.42 to 0.55; < 0.001) 0.18 (0.10 to 0.27; < 0.001)
Cos 0.31 (0.26 to 0.35; < 0.001) −1.91 (−2.24 to −1.57; < 0.001) 0.28 (0.23 to 0.32; < 0.001) 0.25 (0.08 to 0.42; 0.004)

RMSE 7.96 7.49 7.11 10.37
MAD 5.22 4.74 4.15 6.97
BIC 896.19 870.76 851.78 1064.65

Example 4: Simulated Data

Constant 2.59 (2.52 to 2.66; < 0.001) 3.06 (2.86 to 3.26; < 0.001) 2.49 (2.41 to 2.56; < 0.001) 2.63 (2.52 to 2.73; < 0.001)
Year 0.18 (0.17 to 0.19; < 0.001) 0.18 (0.17 to 0.19; < 0.001) 0.18 (0.17 to 0.19; < 0.001) 0.18 (0.17 to 0.19; < 0.001)
Sin 0.18 (0.14 to 0.21; < 0.001) 1.33 (0.96 to 1.70; < 0.001) 0.24 (0.18 to 0.30; < 0.001) 0.20 (0.14 to 0.25; < 0.001)
Cos −0.02 (−0.05 to 0.02; 0.396) −1.63 (−2.16 to −1.09; < 0.001) 0.04 (0.01 to 0.08; 0.026) −0.05 (−0.17 to 0.07; 0.383)

RMSE 5.79 5.79 6.76 5.79
MAD 4.62 4.62 5.27 4.63
BIC 870.4 869.87 900.36 870.36

Root-mean-square error (RMSE); mean absolute deviance (MAD); Bayesian information criterion (BIC).

Table 2 also contains the estimates of peak timing using the results of Model A. High values for
skewness and kurtosis indicate the presence of sharp peaks in the studied time series of counts.

Figure 2 shows the time series of monthly counts for salmonellosis for 12 years of the study period.
Counts of salmonellosis have been decreasing from 1991 through 2002 showing a slow trend. The
range of observed values decreased over time with more observations occurring within the range 131
(first Quartile) to 216 (third Quartile). Counts reached its maximum value of 386 in July 1991 and
its minimum value of 75 in March 2000. The time series shows a clear seasonal patterns with high
fluctuations in July (SD = 53.33) and low fluctuations in February (SD = 19.01) as compared to other
months. Similarly, the peak (maximum count) occurs in August and the dip (minimum count) occurs
in February. The results of Model A indicate that on average the counts peaked at 8.09 month, e.g., at
the beginning of August. The time series plot of predicted values confirms a clear downward trend
and a strong seasonal pattern, which account for substantial part of temporal variation, as evidenced
by MAD. As shown in Table 3, Model B offers the best fit with RMSE (24.28) and BIC (1451.72) as
compared to other models.

Figure 3 shows the time series of monthly counts for Shigella-related infections for 12-year study
period. Counts of shigellosis have been slowly increasing from 2003 through 2013. The range of
observed values increased over time with more observations ranging from 5 (first quartile) to 12 (third
quartile) cases per month. Counts reached their maximum value of 33 in June 2010 and kept minimum
value of 1 case in many months. The time series exhibit a clear seasonality with high fluctuations in
June (SD = 8.47) and low fluctuations in November months (SD = 2.05). On average the peak occurs in
June and the dip is in October. The results of Model A indicate that on average the counts peaked
at 6.29 month, e.g., early-mid June. While visually the trend is not apparent and seasonality is hard
to depict, all models had detected a modest but significant upward trend and significant seasonal
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component. As shown in Table 3 all models have overall low values for MAD. Model C had lowest
RMSE (4.85) and BIC (842.96) values as compared to other models.

Figure 2. Time series of actual monthly records and superimposed with predicted values based on four
models for salmonellosis: Models A–D are represented by yellow, green, blue, and red color, respectively.

Figure 3. Time series of actual monthly records and superimposed with predicted values based on four
models for shigellosis: Models A–D are represented by yellow, green, blue, and red color, respectively.

Figure 4 shows the time series of monthly death rates due to pneumonia and influenza for the
11-year period. Death rates showing a slow decreasing trend with the range of observed values ranging
from 22 (first quartile) to 31 (third quartile) cases per month. Rates reached the maximum value of 82
cases in January of 1969 and the minimum value of 18 cases in July of 1976 and in June and August
of 1977. The time series shows an obvious seasonality with high fluctuations in January (SD = 19.39)
and low fluctuations in September (SD = 1.89). In general, the peak occurs in January and the dip
was observed in August. The results of Model A indicate that on average death counts peaked at
1.47 month, e.g. mid-January. The time series plot of predicted values shows a downward trend and
well-defined seasonal behavior, yet with somewhat irregular peaks, fluctuating between December
and March. All models detected downward trend and seasonal patterns. Again, Model C had the best
fit with lowest RMSE (7.11), MAD (4.15), and BIC (851.78) as compared to other models.
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Figure 4. Time series of actual monthly records and superimposed with predicted values based on four
models for pneumonia and influenza: Models A–D are represented by yellow, green, blue, and red
color, respectively.

Figure 5 shows that for simulated data, on average the peak (maximum count) occurs in March
with the dip in October. Model A recovered the simulated peak at 3.21 months very well. The time
series plot of the predicted values indicates that all models detected the strong upward trend and a
significant seasonal component. Model B had a slight advantage over other models.

Figure 5. Time series of actual monthly records and superimposed with predicted values based
on four models for simulated data: Models A–D are represented by yellow, green, blue, and red
color, respectively.

4. Discussion

To capture strong seasonal behavior with sharp peaks, we offered a two-step process when we
first build a basic model and estimate the seasonal peak. We then apply an extended model using
sine and cosine transform functions. These newly proposed functions mimic a quadratic term in the
harmonic regression models and thus allow us to better fit the seasonal spikes. We illustrated the
proposed method using actual and simulated data and can recommend the new approach to assess
seasonality in a broad spectrum of diseases manifesting sharp seasonal peaks.

In epidemiological and medical research, the regression methods are broadly used for the analysis
of the time series data. The adaption of harmonic regression methodology is now well accepted to
explore the trend and seasonality of diseases. Though three types of distributions: Gaussian, Poisson,
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and negative binomial assumed, most often Poisson harmonic regression is applied to accommodate the
skewed nature of counts. The main drawback of harmonic regression is that it assumes a symmetrical
nature of a harmonic process with the same rate of an increase and decrease in disease incidence from
nadir to peak and vice versa [26]. Thus, by assuming a symmetric well-defined periodic structure,
traditional harmonic models may not be ideal to capture the departures from stable oscillations [27].
The proposed approach could mitigate this problem.

There are difficulties involved in understanding and examining the concept of seasonality and
its patterns as this need data to be collected over long time and over large spatial units. In the
absence of such qualities, the evaluation may be affected by time-dependent and space-dependent
confounders, which could possibly be improved by using a systematic approach to evaluation of
seasonal curves [28], including parametric and non-parametric procedures of modeling [6], and
non-linear methods developed with periodic functions in biology and climatology [25]. The proposed
approach could further characterize disease seasonality.

For example, the seasonal pattern of influenza infection is not completely understood due to the
heterogeneity of infection transmission and manifestation. Few ideas of modeling complex influenza
dynamics was explored, including the pyramid structure of disease burden with respect to severity
of disease [14]. Wenger et al., analyzed 13 influenza seasons by developing methods to measure
seasonality characteristics and to quantify the uncertainty of relevant parameters [5]. Wenger et
al., also noted the seasonal peaks in varying heights which could be because of variation between
individual years and detected a positive correlation between peak timing and amplitude, meaning
that the early flu season arrival was typically high in intensity. While the uncertainty of seasonality
parameters was assessed with delta-methods in [5,22], the bootstrap method was applied to find
the confidence intervals [7]. In Eilers et al., to account for the varying annual seasonality in the
disease counts, the coefficients of harmonics (sine and cosines) were allowed to vary smoothly over
the age and time plane in the modelling in analyzing monthly deaths of respiratory diseases, in US
female for years 1958–1998 and for ages 51–100. The over-dispersion encountered during tuning the
smoothness parameter, handled with selective weighting and by using quasi-likelihood instead of
Poisson [29]. Negative binomial regression model with harmonic terms could be preferred over Poisson
model due to the overdispersion confirmed by a statistical test. Chui et al., introduced graphical
tools, so-called multi-panel graphs, to visualize simultaneously the population structure and temporal
trend and to link the graphs to models like harmonic regression to ease the interpretation of models
results. This graphical approach was applied for four datasets: Influenza and Salmonella associated
hospitalizations, confirmed salmonellosis cases, asthma-related hospital visits in USA [30]. The
spatiotemporal patterns of influenza associated hospitalizations were also analyzed using harmonic
regression with an additional squared time term to account for a quadratic trend component along
with the linear trend component [31]. The limitation of this study was that the simulation should
have been done with various sample sizes and means. However, this study indicated that harmonic
regression was meant for sharp peaks based on corroborative evidences from the case studies

In the proposed study, we had illustrated that by adapting a two-step approach to commonly
accepted models that can be easily implemented with existing statistical open-source software, the fit
of the models can be further improved. The proposed approach can be broadly adapted to a wide
range of scenarios when researchers are looking to statistical tools to formally compare the time series
in different populations or across different time periods. In comparing time series, characterization of
trend and seasonality are the key components of the analysis. For example, the outcome of interest
might be the time series of disease incidence in a specific location and the task is to determine whether
there is an overall decline in incidence in presence of strong seasonal variations with a likely complex
form. In fact, we know that monthly cholera occurrences observed over 11 years exhibit a decreasing
trend and a strong seasonality with high incidence in July and August [4,32–36]. Our method would
allow to find a more refined fit to existing data and offer better interpretation of the obtained results as
compared to the traditional approaches.
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The suggested two-step approach can be further improved by exploring harmonic terms with
additional sine/cosine pairs at shorter or longer wavelengths, which should be able to accommodate
a more complex temporal behavior. The typical periodic oscillations well defined in epidemiology
occurred on a weekly, monthly, or quarterly basis and therefore these cycles are observed within
a year. We recognize the limitation in using monthly values, which offer a coarser estimate than
could be offered by refined time units, like days or weeks [26]. In order to improve the descriptive
power of the regression models adapted to time series of counts to detect these cycles, it would be
valuable to examine how the degree of temporal aggregation affect the accuracy and precision. It is
likely that the proposed two-step procedure will improve with increasing temporal resolution, e.g.,
by replacing monthly counts with weekly or daily time series of counts. In our study, we use counts
as an outcome without adjusting for population (except for pneumonia and flu deaths rates). We
assumed the population is unlikely to meaningfully change over the study periods and affect the
seasonality estimates. Further studies could explore the factors that affect trends, including changes in
exposed population.

The suggested two-step approach provides a solution for fitting sharp peaks with simple transforms
when peak timing is unknown. In general, peak timing can be roughly estimated by superimposing
monthly counts over years of the time series data for the study period. One can also assume a discrete
probability model for θ, so the probability masses can be estimated as the frequency ratios of θt, the
corresponding model would represent a harmonic mixture regression model.

Another direction for further adaptation of the proposed model is to expand the model by
allowing additional factors that may help to explain trend and seasonal variation or account for
confounding. As we limited our focus in introducing a model building strategy with new Fourier
terms, we did not explore potential exposure variables. That could possibly be explored further. Thus,
the interest of a study might be to identify factors that influenced a trend of a disease. Such factors
could be represented by environmental, clinical, or demographic variables [7–10,26,27,31,37,38]. For
example, in investigating the factors associated with seasonal peaks of cholera various environmental,
climatic, and meteorological factors demonstrated potential links and provide an insight to underlying
mechanisms [4]. We also assumed that the strong autocorrelation in the outcome time series is not of
major concern after controlling for seasonality and trend patterns [39]. Yet, such an assumption should
be further tested along with the assumption of a true annual period [26].

Applications of time series analysis is gaining momentum and the growing interest of public health
professionals, epidemiologists, and clinicians for a better understanding and quantification of temporal
variations in disease incidence require proper tools to conduct such research with increased accuracy.

5. Conclusions

Though numerous well proved complex models are available for time series data analysis,
researchers prefer and use regression-based methods because of their diversity and flexibility in
adopting amendments during model building procedures. While using these methods for convenience,
unintentionally many inherent qualities of time series data are neglected in modeling. We already have
well accepted harmonic regression model that provide good fit for trend and stable periodic patterns
with relatively symmetric rises and falls. The new proposed model is compared and evaluated with the
existing model using real time and simulated datasets, based on the fit statistics and other values. The
newly developed model can handle time series data with sharp sporadic peaks and prolong periods of
low incidence and could offer an advantage over the traditional harmonic regression model.
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