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Abstract: Hypercoagulability is a recognized feature in SARS-CoV-2 infection. There exists a need for
a dedicated risk assessment model (RAM) that can risk-stratify hospitalized COVID-19 patients for ve-
nous thromboembolism (VTE) and guide anticoagulation. We aimed to build a simple clinical model
to predict VTE in COVID-19 patients. This large-cohort, retrospective study included adult patients
admitted to four hospitals with PCR-confirmed SARS-CoV-2 infection. Model training was performed
on 3531 patients hospitalized between March and December 2020 and validated on 2508 patients
hospitalized between January and September 2021. Diagnosis of VTE was defined as acute deep vein
thrombosis (DVT) or pulmonary embolism (PE). The novel RAM was based on commonly available
parameters at hospital admission. LASSO regression and logistic regression were performed, risk
scores were assigned to the significant variables, and cutoffs were derived. Seven variables with
assigned scores were delineated as: DVT History = 2; High D-Dimer (>500–2000 ng/mL) = 2; Very
High D-Dimer (>2000 ng/mL) = 5; PE History = 2; Low Albumin (<3.5 g/dL) = 1; Systolic Blood
Pressure <120 mmHg = 1, Tachycardia (heart rate >100 bpm) = 1. The model had a sensitivity of 83%
and specificity of 53%. This simple, robust clinical tool can help individualize thromboprophylaxis
for COVID-19 patients based on their VTE risk category.

Keywords: venous thromboembolism; SARS-CoV-2; COVID-19; risk assessment model; deep vein
thrombosis; pulmonary embolism

1. Introduction

Thromboembolic complications are common in hospitalized patients with COVID-19.
The frequency of venous thromboembolism (VTE) in hospitalized COVID-19 patients
significantly varies from 1.7% to as high as 30% [1–4]. Along with large-vessel thrombosis,
platelet–fibrin thrombi in small arterial vessels consistent with coagulopathy are also seen in
the vast majority of patients who die from COVID-19 [5,6]. The possible mechanisms of VTE
in COVID-19 include vascular endothelial inflammation and dysfunction caused by direct
SARS-CoV2 viral infection, interference with the renin–angiotensin–aldosterone system,
abnormal complement and coagulant pathway activation, abnormal platelet activation,
and disseminated intravascular coagulation [7].
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Studies have shown that VTE is associated with high mortality in COVID-19 patients [4,8].
Current guidelines support thromboprophylaxis in all hospitalized COVID-19 patients
unless contradicted with the escalation of dosage in selected patients [9–12]. However,
anticoagulation management remains heterogeneous across the world, given the varying
levels of severity of illness, limited availability of confirmatory diagnostic imaging, and
variabilities in the local hospital policies [13]. Despite the high incidence of VTE and the
associated morbidity and mortality, there is no risk assessment model (RAM) dedicated
to hospitalized COVID-19 patients to predict VTE. In this study, we sought to develop
a robust, simplified RAM using simple variables such as presenting vitals, commonly
tested lab metrics, and baseline comorbidities to help clinicians worldwide in their clinical
decisions on VTE management in hospitalized COVID-19 patients.

2. Materials and Methods
2.1. Data Cleaning

Data were included from one quaternary care and three community hospitals of
the Henry Ford and Trinity Health systems. Clinical data were derived from electronic
health records, deidentified, and stored in the Southeast Michigan COVID-19 Consortium
Registry Database (SMCRD) using REDCap. As previously described [14], the SMCRD
consists of data of patients who were hospitalized with a polymerase chain reaction (PCR)-
confirmed SARS-CoV-2 infection. Each institution independently collected data both
concurrently and retrospectively. This study was approved by the Trinity and Henry Ford
health systems institutional review boards; the need for informed consent was waived
for the use of deidentified patient data. Model training was performed on a cohort of
patients hospitalized between 1 March and 31 December 2020, with validation performed
on a cohort of patients hospitalized between 1 January and 5 September 2021 (Figure 1).
Inclusion criteria were age ≥18 years and a positive SARS-CoV-2 PCR result. Collected
data included presenting vital signs and laboratory values, baseline demographics, and
past medical and social history abstracted using standard-text variables and International
Classification of Diseases—Tenth Revision [ICD-10] codes (Supplementary Table S1).
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Figure 1. Timeline of two study cohorts of COVID-19. Patients from March to December 2020 were
used for the training cohort, whereas patients from January to September 2021 were used for the
validation cohort. The incidence of VTE was 7.8% in the derivation cohort and 7.3% in the validation
cohort. Abbreviation: VTE, venous thromboembolism.

The model was built to predict a composite outcome of in-hospital pulmonary em-
bolism (PE) and deep vein thrombosis (DVT) as identified by standard-text variables and
ICD-10 codes. Demographic variables included age, sex, race/ethnicity, and body mass
index. Past medical history included hypertension, diabetes mellitus, hyperlipidemia,
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coronary artery disease, congestive heart failure, cerebrovascular accident, solid cancer
and hematological malignancies, autoimmune disease, liver disease, lung disease, thyroid
disease, atrial fibrillation, and prior history of DVT and PE. In social history, smoking
and alcohol use were recorded. Vital signs including heart rate, respiratory rate, oxygen
saturation, and systolic blood pressure were categorized. Laboratory values included
complete blood count—white blood cell count, absolute lymphocyte count, absolute neu-
trophil count, neutrophil to lymphocyte ratio, platelet count; comprehensive metabolic
panel—blood urea nitrogen, serum creatinine, total bilirubin, aspartate aminotransferase,
alanine transaminase, alkaline phosphatase, serum albumin, serum potassium; cardiac
disease-related biomarkers—B-type natriuretic peptide and troponin-I; and commonly
tested markers for COVID-19 infection, including D-dimer, ferritin, C-reactive protein, lac-
tate dehydrogenase, interleukin-6, lactate, and procalcitonin; the labs were also categorized
(Supplementary Table S2).

2.2. Missing Data Handling

A total of 48.5% of patients had 90% of the data, and 73.4% of patients had 80% of the
data. For demographics, social history, and vital variables, there were less than 5% missing
data. For medical history variables, there were approximately 16% missing data. For
laboratory values, the missing data rate ranged between 3.1% and 87.5%. Overall, a total of
48.5% of patients had 90% of the data, and 73.4% of patients had 80% of the data. The heat
map demonstrating the missing data is shown in Supplementary Figure S1. Multivariate
imputation by chained equations (MICE) was conducted to impute missing values for
variables. We categorized presenting vital signs first before applying MICE. However, for
laboratory values, we applied MICE first and then categorized the variables. An imputed
dataset was derived by using predictive mean matching for numeric variables, logistic
regression for binary variables, and Bayesian polytomous regression for factor variables.

2.3. Model Building

In the variable selection and model building, a total of 3531 hospitalized patients were
included. A spectrum of variables (N = 48) was included in the selection process. We tested
2 different regression models, (1) Least Absolute Shrinkage and Selection Operator (LASSO)
regression; (2) forward stepwise selection. LASSO regression was applied to handle
potential collinearity and overfitting of variables. LASSO regression added an L1-penalized
term in the conventional ordinary least square loss function argminβ(y − xβ)T(y − xβ) to
avoid excessive variables selected with a tuning parameter, which controls the degree of
penalty. The L1-penalized term λ1 ∑

p
j=1

∣∣β j
∣∣ allows weaker factors to be shrunk to zero, thus

including only the strongest predictors in the model. With the L1 penalty, LASSO not only
helps in reducing overfitting but can help in feature selection. In LASSO, cross-validation
was used to select the tuning parameter for the best model. On the other hand, in the
forward selection, the Akaike information criterion (AIC) was used as a criterion to select
the best model with the minimum AIC. After comparing three different models, the LASSO
model was chosen as the final model with better performance (area under the receiver
operating characteristic (AUROC), etc.) and interpretability.

2.4. Score Assigning

Variables chosen by LASSO regression were included in the logistic regression model.
We generated a simplified score by assigning scores based on the significance of coefficients.
Each patient with or without VTE received a score. The risk score cutoffs were then derived,
and the model accuracy was assessed by sensitivity, specificity, positive predictive value,
negative predictive value, and AUROC.

2.5. Bootstrapping and Validation

To assess the reproducibility of the model, we derived 500 bootstrap resamples from
patients admitted between 1 March and 31 December 2020. To assess the generalizability of
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the model, validation was performed on another cohort of patients hospitalized between
1 January and 5 September 2021. The validation dataset was generated by the exact same
process as the derived dataset. The risk score and its cutoff were calculated as described
above. All statistical analysis was performed using R statistical software version 4.0.4
(R Project for Statistical Computing, Boston, MA, USA), and p < 0.05 was considered
statistically significant.

3. Results
3.1. Patient Characteristics

A total of 3531 patients were included in building the scoring prediction model, and
2508 patients were used for validation. The demographic characteristics of the derivation
and validation cohorts are summarized in Table 1, and Supplementary Table S3. In the
deviation cohort, the mean age of the population was 67.4 ± 16.4 years, with 49.7% females.
Meanwhile, in the validation cohort, the mean age of the population was 60.9 ± 17.9 years,
with 52.7% females. The incidence of VTE was 7.8% in the derived cohort and 7.3% in the
validation set.

Table 1. Baseline characteristics of all COVID-19 patients.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(A) Comparison of patients in derivation cohort stratified by in-hospital venous
thromboembolism status.

Sex 0.96
Male 1777 (50.3) 138 (50.0) 1639 (50.4)
Female 1754 (49.7) 138 (50.0) 1616 (49.6)

Age (years) 0.717
18–39 230 (6.5) 14 (5.1) 216 (6.6)
40–59 808 (22.9) 65 (23.6) 743 (22.8)
60–79 1602 (45.4) 123 (44.6) 1479 (45.4)
≥80 891 (25.2) 74 (26.8) 817 (25.1)

Race/ethnicity * 0.206
Hispanic 55 (1.6) 1 (0.4) 54 (1.7)
Other 251 (7.1) 15 (5.4) 236 (7.3)
White 2034 (57.6) 159 (57.6) 1875 (57.6)
Black 1191 (33.7) 101 (36.6) 1090 (33.5)

Body mass index (kg/m2) 0.155
<18.5 81 (2.3) 7 (2.5) 74 (2.3)
18.5–24.9 678 (19.2) 67 (24.3) 611 (18.8)
25.0–29.9 1060 (30.0) 79 (28.6) 981 (30.1)
≥30.0 1712 (48.5) 123 (44.6) 1589 (48.8)

Heart rate 0.001
<100 2173 (61.5) 143 (51.8) 2030 (62.4)
≥100 1358 (38.5) 133 (48.2) 1225 (37.6)

Respiratory rate 0.211
<20 1647 (46.6) 124 (44.9) 1523 (46.8)
20–29 1576 (44.6) 120 (43.5) 1456 (44.7)
≥30 308 (8.7) 32 (11.6) 276 (8.5)

Oxygen 0.031
Normal 1516 (42.9) 101 (36.6) 1415 (43.5)
Low 2015 (57.1) 175 (63.4) 1840 (56.5)

Systolic blood pressure 0.053
Normal 938 (26.6) 92 (33.3) 846 (26.0)
Low 100 (2.8) 5 (1.8) 95 (2.9)
High 1981 (56.1) 142 (51.4) 1839 (56.5)
Very high 512 (14.5) 37 (13.4) 475 (14.6)
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Table 1. Cont.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(A) Comparison of patients in derivation cohort stratified by in-hospital venous
thromboembolism status.

Comorbidities
Hypertension 2736 (77.5) 213 (77.2) 2523 (77.5) 0.957
Diabetes mellitus 1493 (42.3) 111 (40.2) 1382 (42.5) 0.509
Hyperlipidemia 1685 (47.7) 124 (44.9) 1561 (48.0) 0.366
Coronary artery disease 709 (20.1) 52 (18.8) 657 (20.2) 0.648
Congestive heart failure 454 (12.9) 30 (10.9) 424 (13.0) 0.35
Cerebrovascular accident 455 (12.9) 30 (10.9) 425 (13.1) 0.343
Solid cancer and

hematological malignancy 609 (17.2) 61 (22.1) 548 (16.8) 0.032

Autoimmune disease 212 (6.0) 18 (6.5) 194 (6.0) 0.806
Liver disease * 29 (0.8) 5 (1.8) 24 (0.7) 0.071
Interstitial lung disease * 19 (0.5) 1 (0.4) 18 (0.6) 1
Chronic obstructive

pulmonary disease 509 (14.4) 30 (10.9) 479 (14.7) 0.097

Atrial fibrillation 371 (10.5) 22 (8.0) 349 (10.7) 0.184
Deep vein thrombosis 251 (7.1) 45 (16.3) 206 (6.3) <0.001
Pulmonary embolism 164 (4.6) 34 (12.3) 130 (4.0) <0.001
Thyroid disease 509 (14.4) 44 (15.9) 465 (14.3) 0.507

Social history
Smoker 272 (7.7) 20 (7.2) 252 (7.7) 0.858
Alcohol use 61 (1.7) 7 (2.5) 54 (1.7) 0.329

Presenting laboratory values
Leukocytes <0.001

Normal 2666 (75.5) 182 (65.9) 2484 (76.3)
Low 314 (8.9) 22 (8.0) 292 (9.0)
High 551 (15.6) 72 (26.1) 479 (14.7)

Lymphocytes * 0.163
Normal 1377 (39.0) 116 (42.0) 1261 (38.7)
Low 2110 (59.8) 154 (55.8) 1956 (60.1)
High 44 (1.3) 6 (2.2) 38 (1.2)

Neutrophils <0.001
Normal 3026 (85.7) 211 (76.4) 2815 (86.5)
Low 77 (2.2) 8 (2.9) 69 (2.1)
High 428 (12.1) 57 (20.7) 371 (11.4)

Neutrophil/Lymphocyte
ratio * 0.027

Normal 877 (24.8) 58 (21.0) 819 (25.2)
Low 34 (1.0) 3 (1.1) 31 (1.0)
Mild 1564 (44.3) 111 (40.2) 1453 (44.6)
Moderate 729 (20.7) 66 (23.9) 663 (20.4)
Severe 327 (9.3) 38 (13.8) 289 (8.9)

B-type natriuretic peptide 0.006
Normal 2221 (62.9) 152 (55.1) 2069 (63.6)
High 1310 (37.1) 124 (44.9) 1186 (36.4)

C-reactive protein 0.011
Normal 86 (2.4) 0 (0.0) 86 (2.6)
High 3445 (97.6) 276 (100.0) 3169 (97.4)

D-dimer <0.001
Normal 1458 (41.3) 40 (14.5) 1418 (43.6)
High 1707 (48.3) 152 (55.1) 1555 (47.8)
Very high 366 (10.4) 84 (30.4) 282 (8.7)

Ferritin 0.63
Normal 1475 (41.8) 111 (40.2) 1364 (41.9)
High 2056 (58.2) 165 (59.8) 1891 (58.1)
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Table 1. Cont.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(A) Comparison of patients in derivation cohort stratified by in-hospital venous
thromboembolism status.

Lactate dehydrogenase 0.001
Normal 703 (19.9) 38 (13.8) 665 (20.4)
High 2828 (80.1) 238 (86.2) 2590 (79.6)

Blood urea nitrogen 0.04
Normal 2105 (59.6) 148 (53.6) 1957 (60.1)
High 1426 (40.4) 128 (46.4) 1298 (39.9)

Creatinine 0.375
Normal 2494 (70.6) 188 (68.1) 2306 (70.8)
High 1037 (29.4) 88 (31.9) 949 (29.2)

Total bilirubin 0.108
Normal 3364 (95.3) 257 (93.1) 3107 (95.5)
High 167 (4.7) 19 (6.9) 148 (4.5)

Aspartate transaminase 0.616
Normal 1545 (43.8) 113 (40.9) 1432 (44.0)

Low 71 (2.0) 6 (2.2) 65 (2.0)
High 1915 (54.2) 157 (56.9) 1758 (54.0)

Alanine transaminase 0.065
Normal 2346 (66.4) 167 (60.5) 2179 (66.9)
Low 310 (8.8) 32 (11.6) 278 (8.5)
High 875 (24.8) 77 (27.9) 798 (24.5)

Alkaline phosphatase 0.437
Normal 3108 (88.0) 240 (87.0) 2868 (88.1)
Low 178 (5.0) 12 (4.3) 166 (5.1)
High 245 (7.0) 24 (8.7) 221 (6.8)

Albumin <0.001
Good 916 (25.9) 43 (15.6) 873 (26.8)
Low 371 (10.5) 54 (19.6) 317 (9.7)
Borderline 2244 (63.6) 179 (64.9) 2065 (63.4)

Troponin-I 0.129
Normal 2103 (59.6) 152 (55.1) 1951 (59.9)
High 1428 (40.4) 124 (44.9) 1304 (40.1)

Creatine phosphokinase 0.889
Normal 2347 (66.5) 185 (67.0) 2162 (66.4)
High 1184 (33.5) 91 (33.0) 1093 (33.6)

Interleukin-6 0.031
Normal 326 (9.2) 15 (5.4) 311 (9.6)
High 3205 (90.8) 261 (94.6) 2944 (90.4)

Lactate * 0.342
Normal 2755 (78.0) 214 (77.5) 2541 (78.1)
Low 4 (0.1) 1 (0.4) 3 (0.1)
High 772 (21.9) 61 (22.1) 711 (21.8)

Procalcitonin 0.602
Normal 2296 (65.0) 175 (63.4) 2121 (65.2)
High 1235 (35.0) 101 (36.6) 1134 (34.8)

Potassium 0.028
Normal 2644 (74.9) 197 (71.4) 2447 (75.2)
Hypokalemia 652 (18.5) 50 (18.1) 602 (18.5)
Hyperkalemia 235 (6.7) 29 (10.5) 206 (6.3)

Platelet Count <0.001
Normal 2793 (79.1) 212 (76.8) 2581 (79.3)
Low 610 (17.3) 41 (14.9) 569 (17.5)
High 128 (3.6) 23 (8.3) 105 (3.2)
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Table 1. Cont.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(B) Comparison of patients in validation cohort stratified by in-hospital venous
thromboembolism status.

Sex 0.604
Male 1187 (47.3) 90 (49.5) 1097 (47.2)
Female 1321 (52.7) 92 (50.5) 1229 (52.8)

Age (years) 0.162
18–39 369 (14.7) 18 (9.9) 351 (15.1)
40–59 734 (29.3) 51 (28.0) 683 (29.4)
60–79 989 (39.4) 76 (41.8) 913 (39.3)
≥80 416 (16.6) 37 (20.3) 379 (16.3)

Race/ethnicity * 0.324
Hispanic 63 (2.5) 4 (2.2) 59 (2.5)
Other 182 (7.3) 15 (8.2) 167 (7.2)
White 1475 (58.8) 96 (52.7) 1379 (59.3)
Black 788 (31.4) 67 (36.8) 721 (31.0)

Body mass index (kg/m2) 0.422
<18.5 72 (2.9) 8 (4.4) 64 (2.8)
18.5–24.9 448 (17.9) 28 (15.4) 420 (18.1)
25.0–29.9 708 (28.2) 56 (30.8) 652 (28.0)
≥30.0 1280 (51.0) 90 (49.5) 1190 (51.2)

Heart rate 0.034
<100 1542 (61.5) 98 (53.8) 1444 (62.1)
≥100 966 (38.5) 84 (46.2) 882 (37.9)

Respiratory rate <0.001
<20 1385 (55.2) 75 (41.2) 1310 (56.3)
20–29 1004 (40.0) 84 (46.2) 920 (39.6)
≥30 119 (4.7) 23 (12.6) 96 (4.1)

Oxygen saturation 0.001
Normal 1216 (48.5) 66 (36.3) 1150 (49.4)
Low 1292 (51.5) 116 (63.7) 1176 (50.6)

Systolic blood pressure * 0.891
Normal 690 (27.5) 49 (26.9) 641 (27.6)
Low 55 (2.2) 5 (2.7) 50 (2.1)
High 1422 (56.7) 105 (57.7) 1317 (56.6)
Very high 341 (13.6) 23 (12.6) 318 (13.7)

Comorbidities
Hypertension 1727 (68.9) 134 (73.6) 1593 (68.5) 0.174
Diabetes mellitus 991 (39.5) 70 (38.5) 921 (39.6) 0.824
Hyperlipidemia 1069 (42.6) 73 (40.1) 996 (42.8) 0.526
Coronary artery disease 386 (15.4) 27 (14.8) 359 (15.4) 0.913
Congestive heart failure 352 (14.0) 30 (16.5) 322 (13.8) 0.381
Cerebrovascular accident 318 (12.7) 23 (12.6) 295 (12.7) 1
Solid cancer and

hematological malignancy 359 (14.3) 33 (18.1) 326 (14.0) 0.156

Autoimmune disease 122 (4.9) 5 (2.7) 117 (5.0) 0.23
Liver disease * 42 (1.7) 4 (2.2) 38 (1.6) 0.542
Interstitial lung disease * 12 (0.5) 0 (0.0) 12 (0.5) 1
Chronic obstructive

pulmonary disease 307 (12.2) 23 (12.6) 284 (12.2) 0.958

Atrial fibrillation 318 (12.7) 24 (13.2) 294 (12.6) 0.922
Deep vein thrombosis 256 (10.2) 28 (15.4) 228 (9.8) 0.023
Pulmonary embolism 185 (7.4) 37 (20.3) 148 (6.4) <0.001
Thyroid disease 352 (14.0) 24 (13.2) 328 (14.1) 0.817
Social history
Smoker 265 (10.6) 12 (6.6) 253 (10.9) 0.092
Alcohol use 88 (3.5) 4 (2.2) 84 (3.6) 0.43
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Table 1. Cont.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(B) Comparison of patients in validation cohort stratified by in-hospital venous
thromboembolism status.

Presenting laboratory values
Leukocytes <0.001

Normal 1899 (75.7) 112 (61.5) 1787 (76.8)
Low 252 (10.0) 15 (8.2) 237 (10.2)
High 357 (14.2) 55 (30.2) 302 (13.0)

Lymphocytes <0.001
Normal 1405 (56.0) 80 (44.0) 1325 (57.0)
Low 732 (29.2) 56 (30.8) 676 (29.1)
High 371 (14.8) 46 (25.3) 325 (14.0)

Neutrophils * <0.001
Normal 2016 (80.4) 125 (68.7) 1891 (81.3)
Low 194 (7.7) 15 (8.2) 179 (7.7)
High 298 (11.9) 42 (23.1) 256 (11.0)

Neutrophil/Lymphocyte
ratio * 0.029

Normal 1024 (40.8) 60 (33.0) 964 (41.4)
Low 330 (13.2) 30 (16.5) 300 (12.9)
Mild 7883 (31.2) 55 (30.2) 728 (31.3)
Moderate 254 (10.1) 22 (12.1) 232 (10.0)
Severe 117 (4.7) 15 (8.2) 102 (4.4)

B-type natriuretic peptide 0.048
Normal 1341 (53.5) 84 (46.2) 1257 (54.0)
High 1167 (46.5) 98 (53.8) 1069 (46.0)

C-reactive protein 0.415
Normal 105 (4.2) 5 (2.7) 100 (4.3)
High 2403 (95.8) 177 (97.3) 2226 (95.7)

D-dimer <0.001
Normal 1276 (50.9) 34 (18.7) 1242 (53.4)
High 1058 (42.2) 99 (54.4) 959 (41.2)
Very high 174 (6.9) 49 (26.9) 125 (5.4)

Ferritin 0.101
Normal 1187 (47.3) 75 (41.2) 1112 (47.8)
High 1321 (52.7) 107 (58.8) 1214 (52.2)

Lactate dehydrogenase 0.002
Normal 452 (18.0) 17 (9.3) 435 (18.7)
High 2056 (82.0) 165 (90.7) 1891 (81.3)

Blood urea nitrogen <0.001
Normal 1685 (67.2) 99 (54.4) 1586 (68.2)
High 823 (32.8) 83 (45.6) 740 (31.8)

Creatinine 0.026
Normal 1938 (77.3) 128 (70.3) 1810 (77.8)
High 570 (22.7) 54 (29.7) 516 (22.2)

Total bilirubin 0.138
Normal 2369 (94.5) 167 (91.8) 2202 (94.7)
High 139 (5.5) 15 (8.2) 124 (5.3)

Aspartate transaminase 0.084
Normal 1410 (56.2) 88 (48.4) 1322 (56.8)
Low 73 (2.9) 6 (3.3) 67 (2.9)
High 1025 (40.9) 88 (48.4) 937 (40.3)

Alanine transaminase 0.732
Normal 2012 (80.2) 148 (81.3) 1864 (80.1)
Low 143 (5.7) 8 (4.4) 135 (5.8)
High 353 (14.1) 26 (14.3) 327 (14.1)
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Table 1. Cont.

Variable All Patients VTE (N = 276) No VTE p-Value
(N = 3531) (N = 3255)

(B) Comparison of patients in validation cohort stratified by in-hospital venous
thromboembolism status.

Alkaline phosphatase 0.793
Normal 2182 (87.0) 156 (85.7) 2026 (87.1)
Low 112 (4.5) 8 (4.4) 104 (4.5)
High 214 (8.5) 18 (9.9) 196 (8.4)

Albumin <.001
Good 748 (29.8) 32 (17.6) 716 (30.8)
Low 254 (10.1) 30 (16.5) 224 (9.6)
Borderline 1506 (60.0) 120 (65.9) 1386 (59.6)

Troponin-I 0.001
Normal 645 (25.7) 27 (14.8) 618 (26.6)
High 1863 (74.3) 155 (85.2) 1708 (73.4)

Creatine phosphokinase 0.764
Normal 1658 (66.1) 118 (64.8) 1540 (66.2)
High 850 (33.9) 64 (35.2) 786 (33.8)

Interleukin 6 0.089
Normal 165 (6.6) 6 (3.3) 159 (6.8)
High 2343 (93.4) 176 (96.7) 2167 (93.2)

Lactate * 0.636
Normal 1842 (73.4) 129 (70.9) 1713 (73.6)
Low 7 (0.3) 0 (0.0) 7 (0.3)
High 659 (26.3) 53 (29.1) 606 (26.1)

Procalcitonin 0.271
Normal 1400 (55.8) 94 (51.6) 1306 (56.1)
High 1108 (44.2) 88 (48.4) 1020 (43.9)

Potassium 0.663
Normal 1900 (75.8) 133 (73.1) 1767 (76.0)
Hypokalemia 479 (19.1) 38 (20.9) 441 (19.0)
Hyperkalemia 129 (5.1) 11 (6.0) 118 (5.1)

Platelet Count 0.247
Normal 2008 (80.1) 145 (79.7) 1863 (80.1)
Low 425 (16.9) 28 (15.4) 397 (17.1)
High 75 (3.0) 9 (4.9) 66 (2.8)

* Fisher exact tests were used for these variables; chi-square tests were used otherwise. Abbreviation: VTE,
venous thromboembolism.

3.2. Risk Assessment Model

Thirty-four variables selected from the LASSO model were analyzed in a multivariate
logistic regression model with VTE as the outcome (Supplementary Table S4). A total of
seven variables were significantly associated with VTE (Figure 2). The scores assigned for
each predictor are listed as follows: DVT History = 2; High D-Dimer (>500–2000 ng/mL) = 2;
Very High D-Dimer (>2000 ng/mL) = 5; PE History = 2; Low Albumin (<3.5 g/dL) = 1;
Tachycardia (heart rate >100 bpm) = 1; Systolic Blood Pressure (<120 mmHg) = 1, de-
noted as “3D-PAST” for COVID-19-associated VTE (Table 2). Systolic blood pressure
>120–159 mmHg was associated with lower risk for VTE (odds ratio 0.73; 95% confidence
interval (CI): 0.54–0.99). Therefore, to assign a positive score to this variable, we used the
systolic blood pressure <120 mmHg categories. The difference in risk between normal
(90–119 mmHg) and low (<90 mmHg) systolic blood pressure was not statistically different
(p = 0.06); hence, we merged normal and low into a single category (<120 mmHg) with
+1 point. Patients with scores of 0 to 2 (n = 1778) had a lower risk of VTE (2.6%), whereas
patients with a score of 3 or higher (n = 1753) had an increased risk of VTE (13.1%). The
median scores were 4 and 2 for the VTE and non-VTE groups, respectively. A total of
49% of non-VTE patients scored below 3, whereas 51% of VTE patients had scores above
3 (Figure 3). The discrimination was assessed by a confusion matrix, which showed a
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sensitivity of 0.83, specificity of 0.53, positive predictive value (PPV) of 0.13, and negative
predictive value (NPV) of 0.97. The AUROC was 0.751 (95% CI: 0.722–0.779, p < 0.05). The
calibration of the RAM was good over the range of risk (Brier score 0.064). Increasing
the cutoff of the model to 4 increased the specificity from 53% to 77% but at the cost of
sensitivity (decreased from 83% to 59%). We chose a cutoff with a higher sensitivity than
specificity (cutoff score 3) to assist the clinicians in identifying patients at increased risk of
VTE (Supplementary Table S5).
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Table 2. The 3D-PAST risk assessment model with assigned scores.

Risk Assessment Model

Variables Values Point
(Total Score: 14)

Deep vein thrombosis history Yes +2
High D-dimer on admission >500–2000 ng/mL +2
Very high D-dimer on
admission >2000 ng/mL +5

Pulmonary embolism history Yes +2

Low Albumin <3.5 g/dL +1
Systolic blood pressure <120 mmHg +1
Tachycardia >100 bpm +1

3D-PAST risk assessment mode score is delineated as DVT History = 2; High D-Dimer (>500–2000 ng/mL) = 2;
Very High D-Dimer (>2000 ng/mL) = 5; PE History = 2; Low Albumin (<3.5 g/dL) = 1; Systolic Blood Pressure
<120 mmHg = 1; Tachycardia (heart rate >100 bpm) = 1.
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Figure 3. Histogram of risk assessment model score of venous thromboembolism (VTE) and non-VTE
groups. The median score is 4 and 2 for VTE and non-VTE group, respectively. Overall, 49.7% scored
below 3, whereas 50.4% of VTE patients scored 3 and above.

3.3. Bootstrapping and Validation

In the bootstrapped sample, patients with scores of 0 to 2 (N = 237) had a VTE risk
of 2.53%, whereas patients with scores of 3–10 (N = 263) had high a VTE risk of 15.6%.
Bootstrapped sampling showed sensitivity of 0.87, specificity of 0.51, PPV of 0.16, NPV
of 0.97, and AUROC of 0.73 (95% CI: 0.66–0.79) (Supplementary Figure S2). Similarly, in
the validation data set, patients with scores of 0 to 2 (N = 1406) had a lower risk of VTE,
at 3.2%, whereas patients with a score of 3 or higher (N = 1102) had an increased risk of
VTE, at 12.4%. The validation cohort had sensitivity of 0.75, specificity of 0.59, PPV of
0.12, NPV of 0.97, and AUROC of 0.74 (95% CI: 0.70–0.77). The Brier score was 0.054 for
the bootstrapped sample and 0.056 for the validation set, showing good calibration in the
validation datasets.

3.4. Comparison to Sequential Organ Failure Assessment Score

The sequential organ failure assessment score (SOFA) score was recently shown to be
a reliable tool for identifying COVID-19 patients at high risk for DVT [15]. We compared
the SOFA score to our RAM for the risk stratification of VTE and validated it in our
patient cohort. The AUROC of the SOFA score was 0.60 (95% CI: 0.57–0.63) (0.57 (95% CI:
0.53–0.61) for the derivation cohort and 0.63 (95% CI: 0.58–0.67) for the validation cohort)
(Supplementary Figure S3). The results were inferior compared to the AUROC of 0.74 (95%
CI: 0.70–0.77) of our RAM.

4. Discussion

Venous thromboembolism is a common complication of SARS-CoV-2 infection in
hospitalized patients. However, there is a modest increase in major bleeding up to 4%
in patients receiving full-dose anticoagulation [16,17]. The high incidence and worse
outcomes associated with VTE highlight the need for a simple prediction model to identify
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individuals who are at increased risk of developing these thromboembolic events. Herein,
we present a RAM with a sensitivity of 0.75, specificity of 0.59, and AUROC 0.74 in the
validation cohort, which can be used in any clinical setting to predict the risk of acute VTE
in COVID-19 patients.

There is a lack of consensus on the optimal dosage of anticoagulation in COVID-19
patients. Our model should assist clinicians in weighing the benefits of anticoagulation
versus the risks of bleeding and help in deciding the initiation, and, more importantly, the
continuation, of full-dose anticoagulation in the setting of increasing oxygen requirement.
To the best of our knowledge, this is the first risk assessment scoring model dedicated to
the inpatient COVID-19 population, with one prior model built for the cancer population
admitted with COVID-19, with no validation on a separate dataset of patients [18]. This,
along with other VTE studies that have validated the pre-COVID RAMs, included patients
only from the early phase of pandemic [19–21].

In our large-cohort study that included a total of 6039 COVID-19 patients, we stud-
ied two waves of the COVID-19 pandemic in the state of Michigan from March 2020 to
September 2021. The model was derived from a cohort from the first COVID-19 wave from
1 March to 31 December 2020 (N = 3531) and further validated on a cohort of patients from
the second wave from 1 January and 5 September 2021 (N = 2508). We observed a similar
incidence of in-hospital VTE in the derivation cohort (7.8%, N = 276) and validation cohort
(7.3%, N = 182). Despite the evolution in COVID-19 management over the course of the
pandemic, including the use of steroids, Janus kinase inhibitors, interleukin-6 receptor
inhibitors, antiviral agents, and anticoagulation treatments, the RAM that we developed
shows acceptable discrimination and good calibration. The AUROC of our model is 0.74,
which makes the clinical value of our model moderate for the prediction of VTE. However,
the predictive performance of our RAM was superior to the SOFA score (AUROC 0.60),
which was tested on our cohort for the risk stratification of VTE in COVID-19 patients [15].

The weighted variables in the RAM included presenting heart rate, systolic blood
pressure, high and very high D-dimer, low serum albumin, history of PE, and history of
DVT, which are readily available parameters for clinicians. One of the most widely used
criteria for pulmonary embolism, Wells’ criteria, included tachycardia (HR > 100) [22];
this variable, along with D-dimer, has demonstrated a high predictive value for PE in
various studies [23,24] Moreover, systolic blood pressure ≤120 is known to be associated
with a worse prognosis in patients with VTE [25]. Hypotension in patients with VTE is
likely secondary to vasomotor reflex, causing a decrease in systemic arterial resistance
and right ventricular dysfunction, leading to a decreased cardiac output [26]. In addition,
hypotension and hypoxemia in the setting of the ventilation–perfusion mismatch and right
heart failure can lead to tachycardia in these patients [27,28]. Moreover, the systemic inflam-
matory cascade seen in SARS-CoV-2 infection can contribute to hypotension, tachycardia,
and the risk of VTE [29].

We categorized variables to address the values that were highly skewed, likely due
to active COVID-19 viral infection, superimposed bacterial infections, and resulting mul-
tiorgan failure (Supplementary Table S2). In patients with suspected PE, D-dimer levels
correlate with the probability of PE [30,31]. The meta-analysis by Kollias and colleagues
showed that the prevalence of PE in COVID-19 was higher with higher mean D-dimer
values (prevalence ratio 1.3 per 1000 ng/mL increase; 95% CI: 1.11–1.50; p = 0.002) across
the studies [4]. In COVID-19 patients, a D-dimer >3000 ng/L in combination with Wells
score >2 is shown to have high specificity in detecting VTE [32]. Here, we observed that two
cutoff values for presenting D-dimer, 500 and 2000 ng/mL, had high predictive scores in
COVID-19 patients. Serum albumin, which is a known marker of VTE risk, was associated
with a higher risk of VTE in our study. Albumin could be associated with higher fibrino-
gen and factor VIII levels, and shorter activated partial thromboplastin time, therefore
reflecting a hypercoagulable state [33]. Moreover, albumin is a known marker of systemic
inflammation, which is also seen in COVID-19 infection [7,34]. Albumin is prognostic for
hospitalized COVID-19 patients [35], and its administration might have an anticoagulant
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effect [36], although further studies are needed to explore this. Our results showed that
other biomarkers of interest, such as ferritin, interleukin-6, and lactate dehydrogenase, were
not significant predictors of VTE. Therefore, physicians may consider reducing routine
testing of these markers. We found that a history of VTE, which is known to be associated
with severe COVID-19 infection, was a strong predictor of VTE during hospitalization [37].

The efficacy of VTE prophylaxis on clinical outcomes in COVID-19 patients remains
inconclusive. Current guidelines support VTE prophylaxis in hospitalized COVID-19 pa-
tients [9–12]; therapeutic anticoagulation is recommended in non-critical patients, whereas
prophylactic anticoagulation is recommended in patients with critical illness [12,38]. More-
over, escalation to intermediate- or therapeutic-dose anticoagulation is recommended for
deteriorating clinical status, obesity, high thrombotic risk, and when diagnostic imaging is
not possible [9,12]. Some retrospective studies found that anticoagulation was associated
with decreased mortality [39,40]. The results of a combined multiplatform adaptive ran-
domized control trial by the ATTACC, ACTIV-4a, and REMAP-CAP investigators showed
that therapeutic-dose heparin did not improve survival or freedom of cardiovascular or
respiratory support than usual-care anticoagulation in critically ill patients [16] but showed
survival benefits in non-critically ill patients [17]. The benefit of therapeutic anticoagulation
in non-critically ill patients could be explained by the antithrombotic, anti-inflammatory,
and potentially antiviral mechanisms of heparin [41,42], whereas, in critically ill patients,
heparin was unable to influence the advanced stages of thrombosis, inflammation, and
organ damage [43–45]. However, other studies have found higher mortality and bleeding
in patients receiving intermediate-to-therapeutic-dose anticoagulation, which emphasizes
the need for the careful assessment of each patient’s risk profile when prescribing antico-
agulation treatment [46–48]. In our study, 42% of patients in the derivation and 28.3% of
patients in the validation cohort received prophylactic anticoagulation, whereas therapeutic
anticoagulation was given in 30.6% of patients in the derivation and 31.5% in the validation
cohort. No anticoagulation was given in 27.4% of patients in the derivation and 40.1% of
patients in the validation cohort (Supplementary Tables S6 and S7).

We acknowledge that further studies are needed for further external validation in
different healthcare settings and countries; however, our model can be useful in scenarios
where there is clinical ambiguity on the continuation of anticoagulation for a patient in
whom it has already been initiated based on the recent evidence of the beneficial effects
of anticoagulation in mild disease and futility with severe disease [16,17]. It can also be
particularly helpful for patients who are on high settings of the ventilator or on multiple
vasopressors and are not stable enough to undergo a computed tomography angiography
exam. Moreover, our prediction model can help in the early risk stratification of patients
in settings where early imaging confirmation of VTE is not possible due to isolation
precautions or when hospital resources are overwhelmed with a high burden of patients.
Furthermore, this RAM can be useful in resource-limited countries where diagnostic testing
may not be available. Physicians in such countries could utilize our model to predict VTE
based on the commonly tested variables.

Our RAM has both strengths and limitations. Strengths include the large and diverse
patient population and the multicenter nature of the study. We collected comprehensive
data on baseline demographics, comorbid conditions, social history, vital signs, and labo-
ratory values. Our model consists of variables that are simple, interpretable, and readily
available to clinicians on the arrival of patients to the hospital. The variable scores were
based on robust statistical computations. Our model can potentially limit the need for the
testing of labs, including inflammatory markers, which are often done in clinical practice to
determine the risk of VTE. The model can help to identify COVID-19 patients at risk for
VTE at the time of admission and thus facilitate better clinical management. It can guide the
early initiation of therapeutic anticoagulation for patients identified as at high risk for VTE,
especially when a definitive diagnosis cannot be made. We also provided cutoff values for
predictors, including D-dimer, albumin, presenting systolic blood pressure, and heart rate.
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Finally, the RAM showed good performance in the bootstrapped sample and validation
cohort, which gave additional strength to our analysis.

The limitations of our study include its retrospective nature, lack of time-to-event
analysis, and potential for time-dependent and competing risk bias. To overcome this,
we used the first set of parameters or baseline covariates collected at the time of the
patient’s admission. Our RAM was built using hospitalized patients; therefore, it lacks
generalizability in the outpatient setting. We did not validate our model in independent
cohorts; thereby, there is a risk of overestimation of AUROC, and further studies are needed
to see our RAM’s performance in other hospitals and countries. Although we compared our
RAM with the SOFA score, which was initially validated for DVT in COVID-19 patients [15],
we could not compare our model to other VTE models because of the lack of specific data
for such comparisons [49–51]. Moreover, anticoagulation was not included in our model, as
we did not have data on the time-to-event of VTE and the relationship between the timing
of VTE and the receipt of anticoagulation in our cohort. The effect of anticoagulation on the
risk of VTE and bleeding risk associated with anticoagulation should be explored in future
studies. The low incidence of VTE in our study cohort contributed to the low PPV of the
RAM; however, the incidence is consistent with other studies [52–54]. Lastly, our model
is at high risk of type 1 error due to a high false-positive rate, which resulted from low
specificity to accommodate for higher sensitivity for the chosen score cutoff in our RAM.

5. Conclusions

We derived a novel RAM from a large cohort of patients, using seven important
clinical variables, which could be easily applied in clinical practice. This simplified diag-
nostic approach can help clinicians to risk-stratify COVID-19 patients on admission. It
can potentially be used as an adjunct clinical decision support tool for individualizing
anticoagulation for high-VTE-risk patient populations. Further studies are needed for the
model’s validation in other cohorts and for further direct comparisons of our RAM to other
VTE scores in COVID-19 patients.
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