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Abstract
The effect of school closure on the spread of COVID-19
has been discussed intensively in the literature and the
news. To capture the interdependencies between chil-
dren and adults, we consider daily age-stratified inci-
dence data and contact patterns between age groups
which change over time to reflect social distancing
policy indicators. We fit a multivariate time-series
endemic–epidemic model to such data from the Can-
ton of Zurich, Switzerland and use the model to predict
the age-specific incidence in a counterfactual approach
(with and without school closures). The results indicate
a 17% median increase of incidence in the youngest age
group (0–14 year olds), whereas the relative increase in
the other age groups drops to values between 2% and
3%. We argue that our approach is more informative to
policy makers than summarising the effect of school clo-
sures with time-dependent effective reproduction num-
bers, which are difficult to estimate due to the sparsity
of incidence counts within the relevant age groups.
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1 INTRODUCTION

Public health legislation authorises officials to implement disease control measures such as
closing schools. The usefulness of school closures has been seen in certain infectious disease
outbreaks but not in others. School closure for infectious disease control may have additional
health and wider societal effects as school is not just education but also serves an important
social function. Determining the usefulness of school closures is therefore of great value to pol-
icy makers. We know school closures have an effect on social mixing (Luca et al., 2018), and so
are often used as a first-line approach for control of epidemics, particularly when no pharmaceu-
tical prophylaxis is available. However, it would seem this effect might not be large for the early
coronavirus disease (COVID-19) outbreaks (European Centre for Disease Prevention and Con-
trol, 2020). For this reason, we are interested in examining the alternative scenario where school
closure to combat COVID-19 was not introduced among school-aged children.

To examine true social distancing interventions implemented, we fit a multivariate
endemic–epidemic (EE) model to the observed case data from the Canton of Zurich, Switzerland
incorporating social contact patterns. This is a proof-of-concept study of the feasibility of using
time-varying contact matrices in EE modelling approaches as a means to support data-driven pol-
icy making. Our model includes an age structure which has been highlighted as important in
models focusing on school closures (Jackson et al., 2014). We then predict from the fitted model
given data until 17 March 2020 (the first day following declaration of a state of emergency) with
assumed time-varying contact weights implemented (Figure 1) and (the alternative scenario) with
time-varying contact weights ignoring changes to contacts due to school closures (see supporting
information for a visualisation). We refer to our alternative scenario as a counterfactual (where
the term is used in the philosophical meaning of the term—what has not happened or is not
the case—rather than in a counterfactual analysis of causation). The changes in the alternative
scenario affect the contacts of the youngest age group (0–14 year olds) in school; the age group
that covers both compulsory and non-compulsory education. We then investigated the difference
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F I G U R E 1 Snapshots of the time-varying contact matrix to reflect social distancing policies (this is the
basis of our fitted model and prediction scenario A). Shown is the average number of contacts per day for
individuals in the different age groups. See the supporting information for an overview of how the setting-specific
contacts change over time. [Colour figure can be viewed at wileyonlinelibrary.com]
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in the number of expected cases under the two scenarios to evaluate the usefulness of school
closures.

2 METHODS

Finkenstädt and Grenfell (2000) showcased how to formulate a time-series susceptible–
infected–recovered model through a case study of endemic measles infections and compared
their methodology with established results from compartmental modelling, linking mathemat-
ical and statistical modelling. They highlighted a need to incorporate epidemic dynamics in
statistical models; a need which was addressed by the EE modelling framework (introduced in
Held et al., 2005).

2.1 Endemic–epidemic modelling

The EE framework is a time-series analysis-based method for infectious disease surveillance data.
It can be derived from a mechanistic model of disease transmission (Bauer & Wakefield, 2018;
Höhle, 2016; Wakefield et al., 2020), linking it with other modelling approaches. The multivari-
ate formulation used in this work is the age-stratified EE model (Meyer & Held, 2017) where
COVID-19 cases Yat for age group a on day t are given by

Yat|Ya,t−1, … ,Ya,t−lmax ∼ NegBin(𝜆at, 𝜓a)

𝜆at = 𝜈atea + 𝜙at
∑

a′
ca,a′,t

lmax∑

l=1
ulYa′,t−l (1)

where 𝜆at is the mean and 𝜓a > 0 the overdispersion parameter of a negative binomial distribu-
tion, where the limiting case𝜓a → 0 represents the standard Poisson assumption. Overdispersion
is sometimes termed k in the infectious disease literature when using negative binomial distribu-
tions to examine superspreading (e.g. Endo et al., 2019; Lloyd-Smith et al., 2020).

The EE model is a two-component infectious disease model where the mean𝜆at is decomposed
additively into an endemic (𝜈) and epidemic (𝜙) component. Age-specific population fractions ea
enter as known offsets in the endemic component, whereas the epidemic component depends on
contact matrix weights ca,a′,t representing transmission between age groups a and a′ on day t (for
respiratory disease contacts are proxy for transmission events), and ul is the discrete-time serial
interval distribution (Bracher & Held, 2020). We use a shifted (normalised) Poisson distribution
with weights ul ∝ 𝜅 l−1∕(l − 1)! exp(−𝜅), 𝜅 > 0 with a maximum lag of lmax = 7, as this has shown
to be useful in other analyses of daily COVID-19 data (e.g. Grimée et al., 2022; Ssentongo et al.,
2021). The transmission weights ca,a′,t (entries of the contact matrix) are known but the serial
interval lag distribution ul (represented by the parameter 𝜅) is not.

Various models were considered for the endemic and epidemic components of the model
(see the supporting information for an overview of all models considered) and the best fitting
model was determined based on the Bayesian information criterion (BIC) and model conver-
gence. We always included information on public holidays (as contacts may differ on those days)
and daily testing rates to account for possible temporal changes in underascertainment. In addi-
tion to this, we also included daily temperature, linear time trends and sine–cosine waves (a
smooth non-linear trend not picked up by other parts of the model) as potential covariates in both
components.
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F I G U R E 2 Synthetic contact matrix compartments which make up the first matrix in Figure 1 (shown
here is the matrix before policy changes are applied). [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 Time-varying contact matrices

Total contact matrices are a weighted linear combination of setting-specific contact matrices. We
chose to use the Mistry et al. (2021) synthetic contact matrix compartments (Figure 2) in our
work as they were the only ones we found provided with uncertainty estimates in the weights.
Additionally, they were created with the European setting in mind, providing additional realism.
We create Zurich-specific policy indicators following the methodology from Hale et al. (2021). As
we are interested in reductions of contacts, we incorporate the policy indicators such that they
take values between 0 and 1, where a higher value is a situation with less social distancing pol-
icy in place (Figure 3). This ensures that no metric used to incorporate policy changes increases
contacts, thereby creating an artificially inflated baseline. While policy for households exists,
artificial contact matrices are based on data on household size rather than surveyed contacts in
the household setting and so we do not apply policy indicators to this setting, essentially apply-
ing a constant indicator of 1 to household contacts. We increase the lower bounds of workplace
and other indicators to be 0.1 rather than 0 to reflect essential workers and necessary contacts,
such as food shopping (see the supporting information for details on policy indicator construc-
tion). The results of applying these indicators to the compartments of the contact matrix and
combining using the Mistry et al. (2021) weights are showcased in Figure 1. We additionally
reduced contacts in school settings on school holidays in both versions of the time-varying con-
tact matrices (for the two scenarios) as school holidays are known to cause a drop in contacts
(Eames et al., 2012).

http://wileyonlinelibrary.com
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F I G U R E 3 Policy indicators used to adjust contacts through the effect on the four compartments:
household (not affected, takes value 1 across the entire study period (not shown here)), school (affected by school
closure (shown here) and additional school holidays (not shown here)), work (affected by remote work) and
other (affected by restrictions on gatherings). Created following Hale et al. (2021) and scaled between 0 and 1,
where a higher value is a situation with less social distancing policy in place. A slight jitter has been applied to
ease visual comparison of step functions. [Colour figure can be viewed at wileyonlinelibrary.com]

2.3 Counterfactual analysis

To examine the effect of school closures, we used a version of the time-varying contact matrix ca,a′,t
which does not have reductions applied to contacts in the school setting among the youngest age
group, only regular school holidays. We predicted the course of the epidemic under two scenar-
ios (true disease control measures as implemented; scenario A and adjusted to not have school
closure; scenario B). The predictions are obtained using the methodology described in Held et al.
(2017), Appendix A. To analyse the alternative scenario (scenario B), we adjust the transmission
weights (time-varying contact matrix) in the EE model and calculate the predictive mean vector
for the adjusted path forecast. That is, after fitting our EE model (described above), we predicted
the epidemic from 17 March 2020 with the two options for time-varying matrices. To compare the
two scenarios, we considered the absolute and relative increases in predicted cases between sce-
narios B and A. We expect both to be positive as scenario B (alternative scenario) is a deviation
from the true non-pharmaceutical measures which were implemented and has a lower level of
disease control in place, hence more contact/transmission opportunities.

2.4 Incorporating uncertainty

The importance of acknowledging uncertainty in COVID-19 modelling was highlighted by Davey
Smith et al. (2020). We take into account both external (contact matrix weights) and internal

http://wileyonlinelibrary.com
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(model coefficient estimates) parameter uncertainty in the counterfactual analysis. We used the
weights reported by Mistry et al. (2021) to estimate a set of plausible values for the different
contact matrix compartments to obtain total contacts across settings. We sampled the weights
from normal distributions with the estimated means and standard errors of the reported weights
used to create the time-varying contact matrix, allowing us to incorporate the corresponding
external uncertainty. In particular, we simulated 1000 weights and created 1000 versions of the
time-varying contact matrices.

Additionally, for each of 1000 versions of the EE model with those time-varying contact matri-
ces, we sampled all entries in Table 1 using a 40-dimensional multivariate normal distribution
based on the estimated parameter vector and the associated variance–covariance matrix. While
Figure 4 and Table 1 show the results for using the Mistry et al. (2021) weights and the parameter
estimates as given, our main results in Table 2 incorporate both external (contact matrices) and
internal (model) uncertainties.

3 RESULTS

When EE models are too complex, some of the coefficients diverge; this is seen in large stan-
dard errors. Table 1 in the supporting information lists all the BIC values for models considered
(including divergent models), but we selected the best model which had no diverging effects. We
experienced identifiability problems when including temperature in the models. The final model
has 40 parameters and log-linear predictors given by:

log(𝜈at) = 𝛽(𝜈)a1{age group a}(a) + 𝛽(𝜈)day of the week1{weekday t}(t) + 𝛽(𝜈)public holiday1{t is a public holiday}(t)
+ 𝛽(𝜈)testing rateTt + 𝛽(𝜈)sin sin(2𝜋t∕365) + 𝛽(𝜈)cos cos(2𝜋t∕365) (2)

and

log(𝜙at) = 𝛽(𝜙)a1{age group a}(a) + 𝛽(𝜙)day of the week1{weekday t}(t) + 𝛽(𝜙)public holiday1{t is a public holiday}(t)
+ 𝛽(𝜙)testing rateTt + 𝛽(𝜙)timet + 𝛽(𝜙)sin sin(2𝜋t∕365) + 𝛽(𝜙)cos cos(2𝜋t∕365) (3)

where Tt is the daily testing rate at time t. We calculate the amplitude and phase shift of each sinu-
soidal wave based on the sine/cosine coefficients (following Held & Paul, 2012), see the supporting
information for details.

The selected model has the lag distribution and fit shown in Figure 4. We see that the model
captures the patterns observed in the data well, apart from the youngest age group (0–14 year
olds), though this is likely an artefact of the low number of cases overall in that age group. The
shape of the serial interval distribution (Figure 4, left) is right-skewed with a sharp peak early on.
The peak found in this work is earlier than expected based on the literature and so we have con-
ducted a sensitivity analysis with other estimates from EE models (Grimée et al., 2022; Ssentongo
et al., 2021), see supporting information for details. The model coefficients are listed in Table 1 and
the model fit is shown in Figure 4 (right). In Table 1, 𝜈 and 𝜙 denote the endemic and epidemic
components, respectively. The coefficients (Table 1) show the expected pattern with a strong day
of the week effect. We also see a seasonal pattern in particular in the epidemic component (ampli-
tude and phase) which is counterbalanced by a positive time trend. There is considerable variation
in the endemic and epidemic intercepts between age groups. Testing rate has a positive and
significant effect in the endemic component whereas the effect on the epidemic component is
less pronounced.
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F I G U R E 4 Lag distribution ul (left) and model fit to observed case counts (right). [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E 2 Distribution of predicted cases and comparative measures. P10 and P90 denote the 10 and 90
percentiles. Values are calculated based on the corresponding samples of internal (model coefficient estimates)
and external (Mistry et al. (2021) disease weights in contact matrices) uncertainty, including the differences B-A
and the ratios B∕A

Scenario A Scenario B B-A B∕A

Age P10 Median P90 P10 Median P90 P10 Median P90 P10 Median P90

0–14 77 97 131 88 114 167 8.5 16.0 35.3 1.09 1.17 1.29

15–24 373 489 736 379 499 762 4.5 9.5 26.0 1.01 1.02 1.04

25–44 1158 1542 2331 1185 1588 2418 20.0 41.2 104.8 1.02 1.03 1.05

45–65 1150 1638 2744 1171 1684 2839 19.8 41.1 108.0 1.02 1.02 1.04

66–79 357 551 997 363 564 1022 4.6 10.8 30.8 1.01 1.02 1.04

80+ 236 432 885 240 442 907 3.5 8.8 24.9 1.01 1.02 1.04

Total
(summed) 3365 4764 7731 3438 4901 8009 62.0 127.8 329.3 1.02 1.03 1.05

The result of the counterfactual analysis is given in Table 2. The distributions of our predicted
counts are very skewed, which is why we provide median and percentiles as point and interval
estimates rather than means and standard deviations. We see that the number of cases never
increases more than 17% and—as would be expected—that most of the increase is found among
the youngest age group (0–14 year olds). The largest increase in case counts is found in the age
group 45–65, who were not considered a vulnerable group at the time. Based on the median, we
see 128 additional cases (a 3% increase) with 9 additional cases in the oldest age group (which
might be considered of most concern; those aged 80 and over). However, the 90% quantiles are
considerably larger (329 additional cases overall and 25 cases in the oldest age group, respec-
tively). Similar patterns of burden (which age groups have the highest case counts under the two
scenarios) are seen in both scenarios. The large uncertainty seen is not so surprising as the data
from Zurich is rather sparse. If we had instead applied the method to a larger population, such as
the entire federation of Switzerland, precision would be increased.

We also compared the temporal dynamic in scenario B versus A. An increase in cases is
observed in age group 0–14 already in April but only later in the other age groups. The next age

http://wileyonlinelibrary.com
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group to experience an increase in cases is 25–44; the parents of age group 0–14. Thus, the dynamic
follows the contact patterns and underlines the importance of including both age-stratified
data and contact matrices in models. See the supporting information for an illustration and
description of the patterns.

4 CONCLUSION

Understanding the effect of disease control interventions is useful for preparedness for future
epidemics. We found it possible to utilise time-varying contact information in the EE mod-
elling framework and fit an appropriate model to COVID-19 case surveillance data. We adjusted
the contact matrix based on a timeline of COVID-19 events focused on Zurich. Our focus
was school-based social distancing measures, as these might be considered a priority for pol-
icy makers when choosing exit strategies or phasing out of measures. In our counterfactual
analysis we did not assume interventions were applied equally to the entire population but
we acknowledge that changes may affect other parts of the population through contact pat-
terns between age groups and so the effects of school closure are not to be considered in
isolation.

In this work, we have assumed that the model parameters do not change when considering
scenario B (the alternative scenario). However, some natural experiments were occurring where
some schools are closed and other schools are kept open during the same time period in the
same school district, see for example Berger et al. (2020) who examined whether increased test-
ing can be used in conjunction with keeping schools open. This may allow us to re-evaluate that
assumption in the future. Vlachos et al. (2021) have estimated the effect of school closures on the
spread of SARS-CoV-2 virus (the agent causing COVID-19) among parents and teachers in Swe-
den, where lower-secondary schools (pupils aged 14–16) remained open during the first wave.
Their results indicate that keeping lower-secondary schools open had minor consequences for
the overall transmission, in line with our results.

The estimation of age- and time-dependent multiplication factors to address additional
causes of underreporting (Noufaily, 2020), such as the presence of asymptomatic COVID-19
infections are being considered in our ongoing work. We are examining the option of using
reporting rates as the basis of such multiplication factors. The rates are based on adjusting
case fatality rates for delays between hospitalisation and deaths in the vein of Nishiura et al.
(2009) and Russell et al. (2020). Such an approach allows us to address underascertainment
(i.e. capture asymptomatic cases which are not likely to be reported as well as those symp-
tomatic cases that are reported). We expect underreporting to likely be more pronounced
among children because they may have more asymptomatic cases (causing them to have fewer
cases in the data). Our model will need suitable amendments once such reporting rates are
available.

Flaxman et al. (2020) studied the effect of non-pharmaceutical interventions on COVID-19
in Europe based on overall time-varying reproduction numbers (Rt). School closures are an
intervention directly affecting only children and adolescents. Mortality in these age groups
is notably very low, so our study aimed to quantify the indirect effects of school closures
in other age groups based on age-stratified incidence data and appropriate contact informa-
tion. We argue that risk communication strategies regarding disease control initiatives for
COVID-19 should be based on age-specific (rather than overall) effective reproduction num-
bers, but those are difficult to estimate if data are sparse. This seems of particular importance if
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the interventions being considered are specific to certain groups of the population rather than
overarching.

When a single summary indicator is reported to the public, uncertainty of its estimation
should be included. For this reason, we believe our work to be particularly useful as we capture
a lot of the statistical uncertainty inherent to our work. While the effective reproduction number
is an attractive summary measure due to the threshold property (>1 indicates continued epi-
demic growth), some of the nuances behind its calculation will be lost to summarisation. These
include the fact that Rt can be approximated in different ways depending on the data at hand
and model considered. This echoes Becker (2015) and recent comments made by the European
Union’s Joint Research Centre (Annunziato & Asikainen, 2020; Gostic et al., 2020), as well as the
aforementioned comment on uncertainty by Davey Smith et al. (2020). Additional context should
be provided as setting-specific disease control challenges in which the estimate was obtained
need to be communicated as well as Rt, for example healthcare surge capacity, cases in nursing
homes compared to cases in schools, and the impact of superspreading events although commu-
nity transmission is low. We suggest other indicators, such as predicted case counts (as found
here) are used alongside Rt to provide broader context as it is not fully informative in isolation.
For additional discussion, see the supporting information.

In essence, the EE framework allowed us to examine questions of interest to policy mak-
ers with the data available at the time but remains flexible enough that in future additional
information could be included, for example the inclusion of vaccines as another model covari-
ate, underreporting through adjustments to the case counts, and mask usage could also be
included in our model as a different type of reduction to contacts as a proxy for its effect on
transmission events. In this work, we found the results are somewhat sensitive to the choice of
transmission weights. For this reason, we highlight that while the Mistry et al. (2021) weights
have school as the most important setting, this seems to be in in contrast to a recent review
by Mousa et al. (2021) which found that most contacts occur outside of school settings. As
this work is a first-order approach, further analysis will also consider sensitivity analysis of
contact matrices. In our future endeavours, we intend to construct an EE model to examine
similar questions at national (Switzerland) level, which involves further intricacy as many of
the decisions (as well as dates of holidays) are determined at cantonal level rather than federal
level.
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