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Abstract: The complex network of malfunctioning pathways occurring in the pathogenesis of neu-
rodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs
to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of
neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compro-
mising of organism’s natural defense systems and subsequently, in the instauration of deleterious
OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts
in drug discovery programs, the identification process of new therapeutic agents able to counteract
the relentless progress of neurodegenerative processes has produced low or no effective therapies.
Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occur-
ring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim
of this review is to provide an overview of the main pharmacological features of most promising
nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting
their multifaceted effects against OS and neuronal disorders.

Keywords: antioxidant; natural products; neurodegenerative diseases; oxidative stress; multitarget;
Alzheimer’s disease; drug discovery

1. Introduction

Neurodegenerative diseases (NDDs) consist of a broad class of pathological conditions
characterized by a progressive and irreversible degeneration of the nervous tissue, mainly
occurring in the elderly. As life expectancy increases, the lack of efficient treatments able
to halt or slow down neurodegenerative processes is turning NDDs into a huge socio-
economic challenge for healthcare systems. At the current trends, the global population
of those over 60 years of age is forecasted to exceed 2 billion by 2050, with a consequent
increase of NDDs, such as Alzheimer’s (AD), Parkinson (PD), Huntington’s Disease (HD),
and amyotrophic lateral sclerosis (ALS) [1]. Despite the vast heterogeneity of NDDs
clinical phenotypes, high levels of oxidative stress (OS) have been identified as a prominent
hallmark in their pathogenesis [2]. Beside lipid peroxidation products (e.g., acrolein)
that have been found in high levels in patients affected by NDDs, high levels of other
OS biomarkers such as malondialdehyde (MDA) and 4-hydroxynonenal (HME) have
been detected in PD, while high levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and
nitrotyrosine characterize HD; also, ALS tissues have shown high concentrations of of
dihydropyrimidinase-related protein 2 (DRP-2), heat shock protein 70, and α-enolase [3].

OS is well-known to play a key role in premature ageing, contributing to the pro-
gressive loss of tissue and organ function. At the same time, OS is implicated in several
age-related conditions, including cancer, cardiovascular, neurodegenerative, and inflamma-
tory diseases. This phenomenon rises from an imbalance between oxidative and reductive
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processes occurring during physiological metabolism [4,5]. In pathological conditions
reactive oxygen species (ROS) could disrupt cells’ membranes and deeply damage cellular
components through a series of peroxidative reactions (e.g., lipid peroxidation) [6]. More-
over, ROS can induce oxidative modifications of proteins and DNA damage. The central
nervous system (CNS) is particularly vulnerable to these events due to the large amount
of oxygen required for neuronal metabolism and the high concentration of lipids prone
to peroxidation that constitute neuronal membranes. Much evidence has also associated
cellular ageing to harmful oxidative events induced by metabolic waste products and their
accumulation, along with a progressive inefficiency of physiological defence and repair sys-
tems (e.g., autophagy) [7]. Furthermore, ageing is associated with gene mutations that lead
to cellular malfunctions such as mitochondrial and cellular genome variations, reduced
protein biosynthesis, and lipid accumulation [8]. Interestingly, ROS have a prominent
role in all these processes. Indeed, further studies performed in animal models reveal the
existence of strong interconnection between ROS and metallostasis alterations, protein ag-
gregation, and mitochondrial failures that characterize NDDs. Over the years, the research
of new anti-ageing and nature-based agents able to counteract cellular senescence and
neurodegeneration, has focused to the identification of small molecules with antioxidant ac-
tivity; unfortunately, their therapeutic potential seems to be limited, showing that targeting
ROS accumulation did not lead to the expected results [9]. Additionally, severe side-effects
and poor blood brain barrier permeability are few of the main limits that have undermined
their translatability in human model and consequently, their potential therapeutic applica-
tion [10]. Hence, a novel and paradigm-shifting view on NDDs seems necessary to achieve
better treatments of these conditions. Particularly, identification of treatments targeting sev-
eral pathogenic pathways—i.e., polypharmacology—has emerged as a new pharmaceutical
strategy that could propel beneficial effects counteracting the multi-faceted impairment of
NDDs. A huge contribute in designing and developing polypharmacological compounds
may come from nature. Indeed, a large number of activities—such as antioxidant, chelating,
and anti-inflammatory—have been associated to natural compounds [11]. Furthermore, re-
cent studies have proved that many natural compounds are able to regulate autophagy and
proteasomal degradation pathways and to curb protein misfolding [12,13]. On this basis,
combination of the wide-range benefits provided by natural compounds could represent
an attractive therapeutic strategy in order to obtain an effective multi-functional treatment
in preventing neurodegeneration. The aim of this review is to provide an overview of the
main pharmacological features of most promising natural antioxidants with a potential
therapeutic application in the drug discovery process against NDDs.

2. Crucial Role of ROS in Physiological and Pathological Mechanisms

High rates of oxygen metabolism, along with the abundant distribution of redox-
active metals and polyunsaturated fatty acids, are some critical points in the neuronal
microenvironment [8]. The two unpaired electrons on the O2 have high reactivity to form
a group of free radicals called ROS. These species can originate from exogenous sources
(irradiations or chemicals), although the main source of endogenous ROS remains the respi-
ratory chain of mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase enzyme (NOX). The mitochondrial electron transfer chain (ETC) consists of five
complexes able to modulate ROS production [12,13]. Besides NOX enzyme, further enzy-
matic systems and cellular organelles are involved in ROS production: xanthine oxidases
(XO) transfer electrons to O2 generating the superoxide O2

•− and H2O2; the endoplasmic
reticulum (ER) may produce ROS as by-products; and peroxisomes, containing several
oxidases enzymes, could increase the release of H2O2 in the cytosol [14]. Collectively, these
mechanisms generate O2

•− which does not directly interact with the cellular substrates,
but has a crucial role in free radicals production involved in maintaining physiological
functions, including proliferation, defense against infectious agents, signal transduction,
and gene expression [13].



Antioxidants 2021, 10, 367 3 of 25

Physiologically, low and beneficial ROS levels are preserved through the action of
several antioxidant enzymes. For example, superoxide dismutase (SOD) inactivates O2

•−

by conversion into H2O2, that can be then removed by catalases and glutathione peroxi-
dases (GPX), producing H2O and O2. Tonal levels of ROS have a wide range of significant
effects in physiological cellular signaling and survival mechanisms. For example, ROS
can activate mitogen-activated protein kinases (MAPKs) that constitute a crucial pathway
in cardiovascular system [15]. Other important pro-survival transcription factors—such
as NF-E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB)—are influenced by ROS
levels [16]. An imbalance between ROS production and antioxidant defenses contributes
to the insurgence of OS, concurring to cellular disfunctions, ageing, and neurodegener-
ation [17]. Indeed, chronic OS is a well-known pathogenic factor with a prominent role
in the etiology of several NDDs. Many peculiar cellular disfunctions and pathological
phenomena in neurodegenerative tissues are due to ROS accumulation. Additionally, ROS
can promote DNA, RNA, and protein oxidation, lipid peroxidation, mitochondrial failure,
and protein aggregation. The overwhelming production or the shortage of ROS levels are
both deleterious for cellular homeostasis and play an important role in the malfunctioning
process of mitochondria, cells and organisms [14,15]. ROS levels could also affect non-cell
autonomous effects, which contribute to the neurodegenerative process mainly through
an uncontrolled activation of inflammatory status and immune response. Both neurons’
environmental factors, such as increased OS, either endogenous factors—e.g., protein
aggregates accumulation—induce an over-activation of the innate immune cells in the
CNS, such as microglia and astrocytes. This uncontrolled inflammatory status results in the
production of neurotoxic factors that contribute to amplify the disease states and actively
participate in the pathological vicious circle [16].

2.1. ROS and Mitochondrial Dysfunctions

Under normal conditions, ROS are finely regulated, and their concentration kept
under control: only about 2% of oxygen consumption in mitochondria is converted to
ROS. Recently, Aon et al. proved that this percentage could fluctuate from 0.25% to 11%
when the endogenous antioxidant systems are disabled [17]. Basal levels of ROS initi-
ate and coordinate several pathways finely tuned with cellular demands. For example,
ROS are required for physiological regulation in cycle progression and their levels are
associated with cell differentiation, migration, and proliferation; immune response; and
apoptosis [18,19]. Hereby, oxidative homeostasis appears to be fundamental for normal
mitochondrial functions. Mitochondria are considered the energy powerhouse of cells.
Indeed, they are the main source of cellular ATP, and play important roles in ion home-
ostasis, metabolic pathways, apoptosis, and in ROS production and consumption [20].
Increased levels of oxidative damage contribute to metabolic stress and cellular injuries,
and the mitochondrial DNA (mDNA) represents a critical target for such reactive species.
The mitochondrial genome is located close to the inner membrane where the respiratory
machinery produces ROS, making mDNA a primary target of ROS and therefore highly
exposed to damage, deletion, and mutation [21]. Once mDNA is damaged, mitochondria
can raise OS and enter a vicious cycle that led to an increase of ROS production. This phe-
nomenon is called “ROS-induced ROS release” (RIRR) and results in a boosted superoxide
production contributing to metabolic OS, genome instability, and cellular lesions [22]. ROS
abundance increases genomic instability; several studies confirmed indeed that a marked
ROS accumulation is often associated with an increased rate of DNA mutations in mice [14],
rats [15], nematodes [23] and humans [24]. Besides mDNA, mitochondrial membranes are
highly exposed to ROS-induced damages. The inner membrane is the site where ETC and
phosphorylation happen; under physiological conditions its permeability is tightly regu-
lated and allows exclusively the permeation of small neutral molecules. Redox stress may
induce the opening of membrane anion channel (IMAC) and mitochondrial permeability
transition pore (mPTP), both responsible for mitochondria swelling, thus leading to the
collapse of mitochondrial bioenergetic functions and ultimately to cellular death [25]. In
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this process, ROS are involved in activating IMAC and mPTP; consequently, mitochon-
dria undergo an increase in ROS production through a positive-feedback mechanism [26].
Moreover, high levels of ROS lead to an uncontrolled peroxidation of lipids and phospho-
lipids that constitute cellular membrane, thus altering its biophysical properties, such as
fluidity and permeability. These biophysical ROS-induced alterations can also impair the
activity of various transporters and respiratory proteins within the inner membrane [27].
Oxidation of thiol moieties of the adenine nucleotide translocator located on mPTP may
also promote variations in mitochondrial permeability [28]. Finally, many other enzymes
(i.e., nicotinamide adenine dinucleotide dehydrogenase and succinate dehydrogenase)
are vulnerable to oxidative alterations of their iron-sulfur centers, and their impairment
could induce malfunctions of the ETC [29]. Alterations in membrane permeability promote
a change in mitochondrial potential linked to disruption of Ca2+ homeostasis and the
consequent overproduction of O2

•− [30]. The increased Ca2+ levels could also promote
osmotic swelling and the break of mitochondrial membrane, mPTP’s opening, and thus
apoptosis [31]. Altogether, high levels of ROS impair cellular homeostasis, leading to
harmful effects on biomolecules that ultimately contribute to cellular senescence and, more
importantly, to the pathogenesis and progression of neurodegenerative diseases [32–35].

2.2. Metal Accumulation, ROS Production, and Protein Misfolding

Along with ROS, metals play a significant role in tuning enzymes activity. Alteration
in metal homeostasis, namely metallostasis, is an additional key factor in OS insurgence,
leading to cellular ageing and NDDs. For decades metals accumulation has been stud-
ied as a prominent mechanism in neuro- and cardiotoxicity, generation of free radicals,
lipid peroxidation, and protein aggregation [36,37]. Essential biometals—like iron, cop-
per, zinc, manganese, calcium, magnesium—and non-essential metals—like aluminium,
lead, and mercury—seem to play a crucial role in the development and progression of
neurodegenerative diseases [38,39]. Indeed, multi-valence metals can support ROS cas-
cade determining an enhanced generation of toxic radicals. For example, iron, copper,
aluminium, and zinc can take part in Fenton and Haber–Weiss reactions: the first is de-
fined as the reaction between Fe2+ and H2O2 generating Fe3+ and hydroxyl radical, then
converted to O2

•−; the latter forms hydroxyl radical and hydroxyl anion from reaction
of O2

•− with H2O2 [22,40,41]. Therefore, an accumulation of metals can generate and
support ROS overproduction, overwhelming the endogenous antioxidant defence systems
and contributing to OS insurgence [42]. Additionally, metals can exert direct damages
to biostructures, such as proteins, interacting with some specific structural regions and
destabilizing their native conformation. Multivalent metals can bridge together charged
aminoacidic residues of proteins, especially when these residues are prominently exposed
like in compromised or misfolded proteins [43]. The correlation between metals and protein
aggregation has been widely studied and many evidence suggest that metals accelerate
the cytotoxicity of proteins deposition [44,45]. Accordingly, metals accumulation in brain
and altered metallostasis are both hallmarks of neurodegenerative disorders. However,
it remains unclear if metals accumulation is a leading cause in the onset of NDDs or the
result of previous dysfunctions [46]. Nevertheless, among the strategies pursued to limit
OS injury and the consequent neurodegeneration, metal chelation appears as an attrac-
tive tool to counteract metal-induced cellular damages [47]. To this end, chelating agents
have been widely studied and their therapeutic role in CNS disorders and cellular aging
continuously investigated [48].

2.3. OS and Protein Misfolding/Accumulation

Another prominent hallmark of many age-related diseases is the impairment of pro-
tein homeostasis. Proteostasis dysregulation leads to an accumulation of toxic misfolded
and abnormal protein aggregates associated with common NDDs such as AD, PD, ALS,
and frontotemporal dementia (FTD). Proteostasis is maintained by proteolytic machineries
and their regulators; all of them operate through an extensive monitoring network that
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makes use of degradation pathways to clear toxic misfolded proteins. During ageing, the ef-
ficiency of this network declines over time, leading to a progressive proteostasis imbalance.
There are strong evidence indicating that two of these protein degradation systems, the
ubiquitin–proteasome system (UPS) and the autophagy–lysosome pathway (ALP) become
progressively compromised with ageing [49]. Actually, the impairment of these degrada-
tion systems promotes an accumulation of misfolded and abnormal proteins, including
amyloid-beta (Aβ) in AD, huntingtin (HTT) in HD, superoxide dismutase-1 (SOD1) and
TAR DNA-binding protein 43 (TDP-43) in ALS, and α-synuclein in PD [50]. Proteostasis
impairment mostly occurs through irreversible oxidative modifications of different pro-
teins, mainly induced by OS [51]. Beyond the existence of a cross-talk between ALP and
UPS, recent biochemical studies suggest a direct interplay of the proteolytic machinery
with OS, thus contributing to the aetiology and the progression of neuropathogenic cellular
conditions [52]. As a matter of fact, UPS plays a key role in physiological protein turnover,
recognizing and degrading insoluble, damaged, and oxidized proteins, preventing their
cellular accumulation. OS could aggravate the ageing-related decline of misfolded pro-
teins clearance, entering a self-propagating cycle of ROS-induced protein aggregation and
malfunctioning of the proteostasis network [53]. Likewise, autophagy has been proposed
as anti-ageing mechanism as it sustains neuronal survival promoting clearance of protein
aggregates [54]. Additionally, ALP contributes to proteostasis maintenance driving the
degradation of cytotoxic aggregates and preventing their cellular accumulation. Oxidative
damage could be reduced by autophagic machinery by removal of unnecessary or damaged
organelles, or by limiting the excessive ROS activation in response to neuronal damage [55].
Protein aggregates and ROS-induced dysfunctional mitochondria can propagate damage
in surrounding cells, causing further protein aggregations, and spreading oxidative cellular
stress, ultimately leading to neurodegenerative processes. Indeed, scavenging of free
radicals by antioxidant systems cannot completely control peroxidation and protein aggre-
gation, indicating that autophagy has an essential and effective role in neuronal survival
and OS decline [56]. Recent studies revealed that OS can also impair autophagy via direct
oxidation of catalytic thiols on several proteins involved in the autophagic cascade, such as
autophagy-related (ATG) proteins ATG3 and ATG7 [57]. Therefore, protein accumulation
significantly contributes to OS and, on its turn, exacerbates the age-related production
and aggregation of misfolded proteins. This synergistic correlation affects both etiology
and progression of NDDs, representing either a potential biomarker for diagnosis and a
valuable target for the treatment of OS-related proteinopathies [58]. The most relevant
physiological and pathological roles addressed to ROS are summarized in Table 1.

Table 1. Main physiological and pathological roles of ROS.

Physiological Role of ROS Ref. Pathological Role of ROS Ref.

Signalling between mitochondria and
surrounding cells [20] mDNA damage, deletion, and mutation [21]

Regulation of cellular proliferation,
differentiation and apoptosis [18,19] Mitochondrial membrane permeability

alteration and mitochondrial failure [22,25,27,31]

Induction of MAPKs activation in cardiovascular
system. [20] Lipid peroxidation [27]

Influence on pro-survival transcription factors
(i.g. Nrf2 and NF-κB). [21] ETC enzymes malfunctions [29]

Adaption and regulation of hypoxia [20] Promotion of inflammation [16]

Regulation of immune functions [19,20] Metallostasis and metal accumulation [40,42]

Induction of autophagy [20] Proteostasis and misfolded proteins
clearance impairment [51,53]
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3. Nature-Based Compounds against Cellular Aging and Neurodegeneration

Historically, several nature-based compounds from dietary intake—including polyphe-
nols, terpenes, and organosulfur compounds—have shown beneficial effects against OS,
cellular ageing, and neurodegeneration mainly associated with their antioxidant activi-
ties [59]. Through the years, research in this field has focused on elucidating and exploring
the pharmacological profile of natural products against OS and their therapeutic appli-
cation for NDDs [60]. Beside antioxidant properties, phytonutrients such as quercetin,
resveratrol, curcumin, and genistein can propel beneficial effects through activation of dif-
ferent pathways, including autophagy [61,62]. Due to their prominent polypharmacology,
natural compounds have been widely employed in drug discovery and their chemical
scaffolds frequently used as starting points in the design of new therapeutic agents for
several pathologies [63]. More recently, and with the rise of nutraceutics and functional
food, a massive number of studies identified polyphenols as potential anti-ageing and neu-
roprotective molecules that could find application for preventing and/or treating chronic
diseases [64,65]. In the next paragraphs, we will discuss promising and attractive properties
of selected nature-based scaffolds for a possible application in drug discovery, especially
for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.

3.1. Polyamines: Spermidine and Spermine

Historically, polyamines were first discovered by van Leeuwenhoek in 1678 as crys-
talline substances in seminal plasma, but their structures were characterized only in the
20th century by Rosenheim [66]. Different concentrations of polyamines have been found
in fruits, vegetables, and food of animal origin [67]. Spermidine, spermine, and their
common diamine precursor putrescine are natural amines distributed widely in all cells,
and their biosynthesis, degradation, and membrane transport are finely tuned in mam-
malians. The first step in polyamines biosynthesis requires the conversion of arginine to
L-ornithine catalysed by the ureo-hydrolytic enzyme arginase. Putrescine is then obtained
from ornithine through decarboxylation catalyzed by ornithine decarboxylase enzyme
(ODC). Finally, spermidine and spermine synthases catalyse the biosynthesis of spermidine
and spermine, respectively, adding an aminopropyl group to putrescine or to spermidine
(Figure 1) [68].

Polyamines exert a wide range of beneficial effects against cellular aging and OS.
Endogenous levels of spermidine decrease with age but remain stable in those older than
90 years of age, suggesting that it may contribute in longevity and anti-aging protection [69].
Spermine and spermidine are well-known for their activity as direct ROS scavengers pro-
viding DNA protection from OS [70,71]. Both in vitro and in vivo studies demonstrate
that the antioxidant and anti-inflammatory properties of spermidine are associated with
decremental cellular levels of nitric oxide synthase (NOS), prostaglandins and cytokines.:
such as NOS inducible isoform (iNOS), prostaglandine E2 (PGE2), and pro-inflammatory
cytokines, like interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition,
spermidine inactivates NF-κB in macrophages influencing pro-inflammatory genes expres-
sion [72]. Autophagy has been identified as one of the main mechanisms responsible for
anti-ageing effects of spermidine, even though more pathways are affected by this molecule
such as cell proliferation and differentiation, lipid metabolism and inflammation [73]. The
polycationic nature of polyamines drives their capacity to interact with negatively charged
molecules, such as DNA, RNA, proteins, and lipids. For this reason, they are involved
in various processes, including DNA stability/repairment and proteins and nucleic acids
synthesis [74,75]. Spermidine is also correlated with both hyper- and hypo-acetylation of
proteins involved in the autophagic process [76,77]. Spermidine competitively inhibits the
acetyltransferase EP300, an autophagy inhibitor that directly acetylates and blocks several
ATG complexes and microtubule-associated protein 1A/1B-light chain 3 (LC3), providing
a stimulation of autophagic flux in mammalian cells [78]. Autophagy promotion induced
by spermidine is also mediated by its inhibitory effect on histone acetyltransferase enzyme
P/CAF leading to histone H3 hypoacetylation. Histone acetylation and DNA interaction
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seem to be involved in the synergistic mechanism by which spermidine, and likely other
polyamines, promote autophagy and influence chromatin structure [79]. Another study
showed that spermidine also prolongs lifespan and reduces OS in mice models of hepa-
tocarcinoma. These effects are due to the increased acetylation of microtubule-associated
protein 1S gene (MAP1S) and consequently autophagy promotion [80]. Moreover, spermine
showed a good potential towards clearance of misfolded proteins in prion infected cell
cultures [81]. Additionally, it increases acetylation of microtubules, thus enhancing the ret-
rograde transport of autophagic vesicles to lysosomes. Spermine offers also an epigenetic
control associated with DNA-methylation: it seems to exert anti-inflammatory protection
via DNA methyltransferase (DNMT) activation that regulates methylation of the entire
genome as well hypermethylation of Integrin Alpha L (ITGAL) gene. Hypermethylation
of ITGAL is correlated with the suppression of inflammatory status [82]. In vivo studies
revealed that spermidine exerts a neuroprotective effect in brain injured mice showing
reduction of pro-inflammatory cytokines and traumatic brain injury biomarkers. This neu-
roprotection is given also by a spermidine-driven autophagic activation. In brain samples,
after spermidine treatment, Beclin-1 and LC3 markers are upregulated, thus confirming an
increase of autophagic activity also in vivo [83]. Finally, polyamines proved to ameliorate
cognitive functions. Intrahippocampal co-administration of spermidine and arcaine (an
antagonist of polyamine binding site at NMDA receptor) in mice exerts a modulatory effect
on memory, presumably by activating NMDA receptors [84].
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Despite this plethora of effects and their chemical appeal, polyamines are quietly
unexplored as therapeutic tools in designing new multi-target drug candidates for NDDs
treatments. One of the first polyamine-based papers on this topic dealt with merging
polyamines with the 1-aminoindan scaffold, in order to improve the lipophilicity of the
new molecules and then promote the transport at the CNS through biological membranes.
Among the new compounds synthesised by Gilad et al., compound 2711 (1, Table 2) com-
pared with natural polyamines, showed to enhance the neuroprotective effect on damaged
brain tissue, proving either a potent neuroprotective effect in in vitro/in vivo experimental
models of neurotrauma and a good capability to reach the CNS [85]. Accordingly, in
2010 Melchiorre and collaborators reported memoquin as a new compound synthesized
following the multi-target ligand design (MTLD) approach [86]. Memoquin (2, Table 2)
was obtained by the combination of the 1,4-benzoquinone scaffold (a radical scavenger)
with the polyamine structure of caproctamine, an acetylcholinesterase (AChE) inhibitor
and muscarinic M2 receptor antagonist. Both in vitro and in vivo assays demonstrated that
treatment with memoquin can affect a wide range of pathogenic mechanisms involved in
AD, including Aβ aggregation, tau hyperphosphorylation, OS, and AChE and BACE-1 ac-
tivities [87]. The alkyl-2-methoxy-benzyl fragment of memoquin, which seems to play a key
role in AChE inhibitory activity, was also combined with ferulic acid (FA) using polyamine
linkers (3, Table 2). New molecules originated with this approach showed a pleiotropic
activity with an improved antioxidant profile [88]. Similarly, Zhang and colleagues merged
antioxidant isoflavonoid scaffold of genistein with various polyamines, to identify new
multifunctional anti-AD agents (4, Table 2). New designed agents were able to inhibit
AChE and butyrylcholinesterases (BuChE), and showed chelating properties towards Fe3+,
Cu2+, and Zn2+, without inducing cytotoxicity in vitro [89]. Again, Simoni et al. conju-
gated 3,5-dibenzylidenepiperidin-4-one bioactive motives with spermine to target amyloid
aggregation as a promising strategy in AD treatment (5, Table 2). Dicatecholic derivatives
showed good inhibition of Aβ42 aggregation, even though they did not show any antioxi-
dant properties in the same in vitro model [90]. Furthermore, in silico studies revealed an
additional key functional role of spermine suggesting that it is directly involved in interac-
tions between Aβ42 monomers. The discovery of dicaffeoylspermidine derivatives with
antioxidant properties from wolfberry prompted Gao et al. to design dicaffeoylspermidine
cyclized derivatives (6, Table 2). These compounds showed significant antioxidant activity
in vitro along with an improvement of memory and cognitive functions in fruit flies’ model
of senile dementia [91,92]. Taken together, these studies suggest a new and unstudied
pharmaceutical potential of polyamines in drug discovery that could be exploited to design
new pharmacological agents against NDDs.

3.2. Phenolic Acids

For decades, long-term consumption of polyphenols-rich food has been correlated
with beneficial effects in human health and protection against cancers, cardiovascular,
and neurodegenerative diseases [93]. Polyphenols are a large class of natural compounds
characterized by a chemical scaffold with multiple phenolic functionalities and endowed
of several biological activities [94,95]. Among these, phenolic acids, have attracted a
growing interest in the pharmaceutical field for their strong antioxidant nature and low
toxicity [96–98]. Their antioxidant activity is mainly provided by the high reactivity of the
phenolic moiety able to interact with free radicals which are stabilized by delocalization.
This effect induced by polyphenols results in a marked modification of radical-mediated
oxidation processes [99].
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Table 2. Polyamines derivatives and their main biological effects.

Entry Scaffolds
Combination Structure Effects Ref.

1
1-aminoindan beared

with polyamine
scaffold

Antioxidants 2021, 10, x FOR PEER REVIEW 8 of 25 
 

synthase that adds an aminopropyl group to the molecule. Finally, addition of a second aminopro-

pyl moiety to spermidine generates spermine. 

Despite this plethora of effects and their chemical appeal, polyamines are quietly un-

explored as therapeutic tools in designing new multi-target drug candidates for NDDs 

treatments. One of the first polyamine-based papers on this topic dealt with merging pol-

yamines with the 1-aminoindan scaffold, in order to improve the lipophilicity of the new 

molecules and then promote the transport at the CNS through biological membranes. 

Among the new compounds synthesised by Gilad et al., compound 2711 (1, Table 2) com-

pared with natural polyamines, showed to enhance the neuroprotective effect on dam-

aged brain tissue, proving either a potent neuroprotective effect in in vitro/in vivo exper-

imental models of neurotrauma and a good capability to reach the CNS [85]. Accordingly, 

in 2010 Melchiorre and collaborators reported memoquin as a new compound synthesized 

following the multi-target ligand design (MTLD) approach [86]. Memoquin (2, Table 2) 

was obtained by the combination of the 1,4-benzoquinone scaffold (a radical scavenger) 

with the polyamine structure of caproctamine, an acetylcholinesterase (AChE) inhibitor 

and muscarinic M2 receptor antagonist. Both in vitro and in vivo assays demonstrated that 

treatment with memoquin can affect a wide range of pathogenic mechanisms involved in 

AD, including Aβ aggregation, tau hyperphosphorylation, OS, and AChE and BACE-1 

activities [87]. The alkyl-2-methoxy-benzyl fragment of memoquin, which seems to play 

a key role in AChE inhibitory activity, was also combined with ferulic acid (FA) using 

polyamine linkers (3, Table 2). New molecules originated with this approach showed a 

pleiotropic activity with an improved antioxidant profile [88]. Similarly, Zhang and col-

leagues merged antioxidant isoflavonoid scaffold of genistein with various polyamines, 

to identify new multifunctional anti-AD agents (4, Table 2). New designed agents were 

able to inhibit AChE and butyrylcholinesterases (BuChE), and showed chelating proper-

ties towards Fe3+, Cu2+, and Zn2+, without inducing cytotoxicity in vitro [89]. Again, Simoni 

et al. conjugated 3,5-dibenzylidenepiperidin-4-one bioactive motives with spermine to 

target amyloid aggregation as a promising strategy in AD treatment (5, Table 2). Dicate-

cholic derivatives showed good inhibition of Aβ42 aggregation, even though they did not 

show any antioxidant properties in the same in vitro model [90]. Furthermore, in silico 

studies revealed an additional key functional role of spermine suggesting that it is directly 

involved in interactions between Aβ42 monomers. The discovery of dicaffeoylspermidine 

derivatives with antioxidant properties from wolfberry prompted Gao et al. to design 

dicaffeoylspermidine cyclized derivatives (6, Table 2). These compounds showed signifi-

cant antioxidant activity in vitro along with an improvement of memory and cognitive 

functions in fruit flies’ model of senile dementia [91,92]. Taken together, these studies sug-

gest a new and unstudied pharmaceutical potential of polyamines in drug discovery that 

could be exploited to design new pharmacological agents against NDDs. 

Table 2. Polyamines derivatives and their main biological effects. 

Entry Scaffolds Combination Structure Effects Ref. 

1 
1-aminoindan beared with 

polyamine scaffold 

 

Neuroprotection against NMDA 

toxicity and ischemia damages 

No neurotoxicity 

[85] 

2 

1,4-benzoquinone and 

polyamine structure of 

caproctamine  

↓Aβ aggregation 

↓tau phosphorylation 

↑antioxidant activity 

↓AChE 

↓BACE-1 

[87] 

Neuroprotection against NMDA toxicity
and ischemia damages

No neurotoxicity
[85]

2
1,4-benzoquinone and
polyamine structure of

caproctamine

Antioxidants 2021, 10, x FOR PEER REVIEW 8 of 25 
 

synthase that adds an aminopropyl group to the molecule. Finally, addition of a second aminopro-

pyl moiety to spermidine generates spermine. 

Despite this plethora of effects and their chemical appeal, polyamines are quietly un-

explored as therapeutic tools in designing new multi-target drug candidates for NDDs 

treatments. One of the first polyamine-based papers on this topic dealt with merging pol-

yamines with the 1-aminoindan scaffold, in order to improve the lipophilicity of the new 

molecules and then promote the transport at the CNS through biological membranes. 

Among the new compounds synthesised by Gilad et al., compound 2711 (1, Table 2) com-

pared with natural polyamines, showed to enhance the neuroprotective effect on dam-

aged brain tissue, proving either a potent neuroprotective effect in in vitro/in vivo exper-

imental models of neurotrauma and a good capability to reach the CNS [85]. Accordingly, 

in 2010 Melchiorre and collaborators reported memoquin as a new compound synthesized 

following the multi-target ligand design (MTLD) approach [86]. Memoquin (2, Table 2) 

was obtained by the combination of the 1,4-benzoquinone scaffold (a radical scavenger) 

with the polyamine structure of caproctamine, an acetylcholinesterase (AChE) inhibitor 

and muscarinic M2 receptor antagonist. Both in vitro and in vivo assays demonstrated that 

treatment with memoquin can affect a wide range of pathogenic mechanisms involved in 

AD, including Aβ aggregation, tau hyperphosphorylation, OS, and AChE and BACE-1 

activities [87]. The alkyl-2-methoxy-benzyl fragment of memoquin, which seems to play 

a key role in AChE inhibitory activity, was also combined with ferulic acid (FA) using 

polyamine linkers (3, Table 2). New molecules originated with this approach showed a 

pleiotropic activity with an improved antioxidant profile [88]. Similarly, Zhang and col-

leagues merged antioxidant isoflavonoid scaffold of genistein with various polyamines, 

to identify new multifunctional anti-AD agents (4, Table 2). New designed agents were 

able to inhibit AChE and butyrylcholinesterases (BuChE), and showed chelating proper-

ties towards Fe3+, Cu2+, and Zn2+, without inducing cytotoxicity in vitro [89]. Again, Simoni 

et al. conjugated 3,5-dibenzylidenepiperidin-4-one bioactive motives with spermine to 

target amyloid aggregation as a promising strategy in AD treatment (5, Table 2). Dicate-

cholic derivatives showed good inhibition of Aβ42 aggregation, even though they did not 

show any antioxidant properties in the same in vitro model [90]. Furthermore, in silico 

studies revealed an additional key functional role of spermine suggesting that it is directly 

involved in interactions between Aβ42 monomers. The discovery of dicaffeoylspermidine 

derivatives with antioxidant properties from wolfberry prompted Gao et al. to design 

dicaffeoylspermidine cyclized derivatives (6, Table 2). These compounds showed signifi-

cant antioxidant activity in vitro along with an improvement of memory and cognitive 

functions in fruit flies’ model of senile dementia [91,92]. Taken together, these studies sug-

gest a new and unstudied pharmaceutical potential of polyamines in drug discovery that 

could be exploited to design new pharmacological agents against NDDs. 

Table 2. Polyamines derivatives and their main biological effects. 

Entry Scaffolds Combination Structure Effects Ref. 

1 
1-aminoindan beared with 

polyamine scaffold 

 

Neuroprotection against NMDA 

toxicity and ischemia damages 

No neurotoxicity 

[85] 

2 

1,4-benzoquinone and 

polyamine structure of 

caproctamine  

↓Aβ aggregation 

↓tau phosphorylation 

↑antioxidant activity 

↓AChE 

↓BACE-1 

[87] 

↓Aβ aggregation
↓tau phosphorylation
↑antioxidant activity

↓AChE
↓BACE-1

[87]

3 Ferulic acid-memoquin
hybrids

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 25 
 

3 
Ferulic acid-memoquin 

hybrids  
 

↓AChE 

↓BuChE 

↓self-induced Aβ1-42 aggregation 

no cytotoxicity in SH-SY5Y cells 

good BBB predicted permeability 

[88] 

4 Genistein with polyamines 

 

↓AChE 

↓BuChE 

Fe3+/Cu2+/Zn2+ chelation 

no HepG-2 cell cytotoxicity 

[89] 

5 

3,5-

dibenzylidenepiperidin-4- 

one functionalized with 

spermine  

 

↓Aβ42 aggregation 

no antioxidant properties in T67 

cells 

neuroprotection and no cytoxicity in 

vitro 

[90] 

6 
Dicaffeoylsper-midine 

cyclized derivatives 

 

Antioxidant activity 

↑memory and learning in fruit flies 

model 

[92] 

3.2. Phenolic Acids 

For decades, long-term consumption of polyphenols-rich food has been correlated 

with beneficial effects in human health and protection against cancers, cardiovascular, 

and neurodegenerative diseases [93]. Polyphenols are a large class of natural compounds 

characterized by a chemical scaffold with multiple phenolic functionalities and endowed 

of several biological activities [94,95]. Among these, phenolic acids, have attracted a grow-

ing interest in the pharmaceutical field for their strong antioxidant nature and low toxicity 

[96–98]. Their antioxidant activity is mainly provided by the high reactivity of the phenolic 

moiety able to interact with free radicals which are stabilized by delocalization. This effect 

induced by polyphenols results in a marked modification of radical-mediated oxidation 

processes [99].  

Moreover, additional effects have been described in the last years for phenolic acids, 

like ferulic acid (FA), gallic acid (GA), and caffeic acid (CA) (Figure 2). For example, FA 

has shown marked neuroprotective effects in a mouse model of cerebral ischemia/reper-

fusion-induced injury, associated with an increase in SOD and GPH levels, and a conse-

quent reduction of ROS, O2•−, and Ca2+ accumulation. Besides the antioxidant effect, the 

neuroprotective effect has been also correlated with the downregulation of toll-like recep-

tor 4 (TRL4) and myeloid differentiation primary response 88 (MyD88), both involved in 

the activation of intracellular NF-κB signalling pathway [100]. Similarly, GA showed a 

protective role in OS-induced dopaminergic cell lines through two different mechanisms: 

activation of antioxidant enzymes (i.e., SOD, CAT, GPx, and GR) and regulation of 

AKT/Keap-1/Nrf2 defence pathway [101]. Polypharmacological profile of phenolic acids 

is also supported by several studies highlighting their metal chelating properties 

[102,103], and their ability to positively affect protein aggregation by directly interacting 

with proteins like Aβ and α-synuclein [104,105]. Additionally, phenolic acids may provide 

a protective effect regulating autophagy activation. Recent in vitro studies showed that 

↓AChE
↓BuChE

↓self-induced Aβ1-42 aggregation
no cytotoxicity in SH-SY5Y cells

good BBB predicted permeability

[88]

4 Genistein with
polyamines

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 25 
 

3 
Ferulic acid-memoquin 

hybrids  
 

↓AChE 

↓BuChE 

↓self-induced Aβ1-42 aggregation 

no cytotoxicity in SH-SY5Y cells 

good BBB predicted permeability 

[88] 

4 Genistein with polyamines 

 

↓AChE 

↓BuChE 

Fe3+/Cu2+/Zn2+ chelation 

no HepG-2 cell cytotoxicity 

[89] 

5 

3,5-

dibenzylidenepiperidin-4- 

one functionalized with 

spermine  

 

↓Aβ42 aggregation 

no antioxidant properties in T67 

cells 

neuroprotection and no cytoxicity in 

vitro 

[90] 

6 
Dicaffeoylsper-midine 

cyclized derivatives 

 

Antioxidant activity 

↑memory and learning in fruit flies 

model 

[92] 

3.2. Phenolic Acids 

For decades, long-term consumption of polyphenols-rich food has been correlated 

with beneficial effects in human health and protection against cancers, cardiovascular, 

and neurodegenerative diseases [93]. Polyphenols are a large class of natural compounds 

characterized by a chemical scaffold with multiple phenolic functionalities and endowed 

of several biological activities [94,95]. Among these, phenolic acids, have attracted a grow-

ing interest in the pharmaceutical field for their strong antioxidant nature and low toxicity 

[96–98]. Their antioxidant activity is mainly provided by the high reactivity of the phenolic 

moiety able to interact with free radicals which are stabilized by delocalization. This effect 

induced by polyphenols results in a marked modification of radical-mediated oxidation 

processes [99].  

Moreover, additional effects have been described in the last years for phenolic acids, 

like ferulic acid (FA), gallic acid (GA), and caffeic acid (CA) (Figure 2). For example, FA 

has shown marked neuroprotective effects in a mouse model of cerebral ischemia/reper-

fusion-induced injury, associated with an increase in SOD and GPH levels, and a conse-

quent reduction of ROS, O2•−, and Ca2+ accumulation. Besides the antioxidant effect, the 

neuroprotective effect has been also correlated with the downregulation of toll-like recep-

tor 4 (TRL4) and myeloid differentiation primary response 88 (MyD88), both involved in 

the activation of intracellular NF-κB signalling pathway [100]. Similarly, GA showed a 

protective role in OS-induced dopaminergic cell lines through two different mechanisms: 

activation of antioxidant enzymes (i.e., SOD, CAT, GPx, and GR) and regulation of 

AKT/Keap-1/Nrf2 defence pathway [101]. Polypharmacological profile of phenolic acids 

is also supported by several studies highlighting their metal chelating properties 

[102,103], and their ability to positively affect protein aggregation by directly interacting 

with proteins like Aβ and α-synuclein [104,105]. Additionally, phenolic acids may provide 

a protective effect regulating autophagy activation. Recent in vitro studies showed that 

↓AChE
↓BuChE

Fe3+/Cu2+/Zn2+ chelation
no HepG-2 cell cytotoxicity

[89]

5

3,5-
dibenzylidenepiperidin-

4-
one functionalized with

spermine

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 25 
 

3 
Ferulic acid-memoquin 

hybrids  
 

↓AChE 

↓BuChE 

↓self-induced Aβ1-42 aggregation 

no cytotoxicity in SH-SY5Y cells 

good BBB predicted permeability 

[88] 

4 Genistein with polyamines 

 

↓AChE 

↓BuChE 

Fe3+/Cu2+/Zn2+ chelation 

no HepG-2 cell cytotoxicity 

[89] 

5 

3,5-

dibenzylidenepiperidin-4- 

one functionalized with 

spermine  

 

↓Aβ42 aggregation 

no antioxidant properties in T67 

cells 

neuroprotection and no cytoxicity in 

vitro 

[90] 

6 
Dicaffeoylsper-midine 

cyclized derivatives 

 

Antioxidant activity 

↑memory and learning in fruit flies 

model 

[92] 

3.2. Phenolic Acids 

For decades, long-term consumption of polyphenols-rich food has been correlated 

with beneficial effects in human health and protection against cancers, cardiovascular, 

and neurodegenerative diseases [93]. Polyphenols are a large class of natural compounds 

characterized by a chemical scaffold with multiple phenolic functionalities and endowed 

of several biological activities [94,95]. Among these, phenolic acids, have attracted a grow-

ing interest in the pharmaceutical field for their strong antioxidant nature and low toxicity 

[96–98]. Their antioxidant activity is mainly provided by the high reactivity of the phenolic 

moiety able to interact with free radicals which are stabilized by delocalization. This effect 

induced by polyphenols results in a marked modification of radical-mediated oxidation 

processes [99].  

Moreover, additional effects have been described in the last years for phenolic acids, 

like ferulic acid (FA), gallic acid (GA), and caffeic acid (CA) (Figure 2). For example, FA 

has shown marked neuroprotective effects in a mouse model of cerebral ischemia/reper-

fusion-induced injury, associated with an increase in SOD and GPH levels, and a conse-

quent reduction of ROS, O2•−, and Ca2+ accumulation. Besides the antioxidant effect, the 

neuroprotective effect has been also correlated with the downregulation of toll-like recep-

tor 4 (TRL4) and myeloid differentiation primary response 88 (MyD88), both involved in 

the activation of intracellular NF-κB signalling pathway [100]. Similarly, GA showed a 

protective role in OS-induced dopaminergic cell lines through two different mechanisms: 

activation of antioxidant enzymes (i.e., SOD, CAT, GPx, and GR) and regulation of 

AKT/Keap-1/Nrf2 defence pathway [101]. Polypharmacological profile of phenolic acids 

is also supported by several studies highlighting their metal chelating properties 

[102,103], and their ability to positively affect protein aggregation by directly interacting 

with proteins like Aβ and α-synuclein [104,105]. Additionally, phenolic acids may provide 

a protective effect regulating autophagy activation. Recent in vitro studies showed that 

↓Aβ42 aggregation
no antioxidant properties in T67 cells

neuroprotection and no cytoxicity in vitro
[90]

6 Dicaffeoylsper-midine
cyclized derivatives

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 25 
 

3 
Ferulic acid-memoquin 

hybrids  
 

↓AChE 

↓BuChE 

↓self-induced Aβ1-42 aggregation 

no cytotoxicity in SH-SY5Y cells 

good BBB predicted permeability 

[88] 

4 Genistein with polyamines 

 

↓AChE 

↓BuChE 

Fe3+/Cu2+/Zn2+ chelation 

no HepG-2 cell cytotoxicity 

[89] 

5 

3,5-

dibenzylidenepiperidin-4- 

one functionalized with 

spermine  

 

↓Aβ42 aggregation 

no antioxidant properties in T67 

cells 

neuroprotection and no cytoxicity in 

vitro 

[90] 

6 
Dicaffeoylsper-midine 

cyclized derivatives 

 

Antioxidant activity 

↑memory and learning in fruit flies 

model 

[92] 

3.2. Phenolic Acids 

For decades, long-term consumption of polyphenols-rich food has been correlated 

with beneficial effects in human health and protection against cancers, cardiovascular, 

and neurodegenerative diseases [93]. Polyphenols are a large class of natural compounds 

characterized by a chemical scaffold with multiple phenolic functionalities and endowed 

of several biological activities [94,95]. Among these, phenolic acids, have attracted a grow-

ing interest in the pharmaceutical field for their strong antioxidant nature and low toxicity 

[96–98]. Their antioxidant activity is mainly provided by the high reactivity of the phenolic 

moiety able to interact with free radicals which are stabilized by delocalization. This effect 

induced by polyphenols results in a marked modification of radical-mediated oxidation 

processes [99].  

Moreover, additional effects have been described in the last years for phenolic acids, 

like ferulic acid (FA), gallic acid (GA), and caffeic acid (CA) (Figure 2). For example, FA 

has shown marked neuroprotective effects in a mouse model of cerebral ischemia/reper-

fusion-induced injury, associated with an increase in SOD and GPH levels, and a conse-

quent reduction of ROS, O2•−, and Ca2+ accumulation. Besides the antioxidant effect, the 

neuroprotective effect has been also correlated with the downregulation of toll-like recep-

tor 4 (TRL4) and myeloid differentiation primary response 88 (MyD88), both involved in 

the activation of intracellular NF-κB signalling pathway [100]. Similarly, GA showed a 

protective role in OS-induced dopaminergic cell lines through two different mechanisms: 

activation of antioxidant enzymes (i.e., SOD, CAT, GPx, and GR) and regulation of 

AKT/Keap-1/Nrf2 defence pathway [101]. Polypharmacological profile of phenolic acids 

is also supported by several studies highlighting their metal chelating properties 

[102,103], and their ability to positively affect protein aggregation by directly interacting 

with proteins like Aβ and α-synuclein [104,105]. Additionally, phenolic acids may provide 

a protective effect regulating autophagy activation. Recent in vitro studies showed that 

Antioxidant activity
↑memory and learning in fruit flies model [92]

Moreover, additional effects have been described in the last years for phenolic acids,
like ferulic acid (FA), gallic acid (GA), and caffeic acid (CA) (Figure 2). For example, FA has
shown marked neuroprotective effects in a mouse model of cerebral ischemia/reperfusion-
induced injury, associated with an increase in SOD and GPH levels, and a consequent
reduction of ROS, O2

•−, and Ca2+ accumulation. Besides the antioxidant effect, the neuro-
protective effect has been also correlated with the downregulation of toll-like receptor 4
(TRL4) and myeloid differentiation primary response 88 (MyD88), both involved in the ac-
tivation of intracellular NF-κB signalling pathway [100]. Similarly, GA showed a protective
role in OS-induced dopaminergic cell lines through two different mechanisms: activation of
antioxidant enzymes (i.e., SOD, CAT, GPx, and GR) and regulation of AKT/Keap-1/Nrf2
defence pathway [101]. Polypharmacological profile of phenolic acids is also supported
by several studies highlighting their metal chelating properties [102,103], and their ability
to positively affect protein aggregation by directly interacting with proteins like Aβ and
α-synuclein [104,105]. Additionally, phenolic acids may provide a protective effect regulat-
ing autophagy activation. Recent in vitro studies showed that CA is capable of restoring
heat shock protein 27 (Hsp27), B-cell lymphoma 2 gene (Bcl-2), and sirtuin 1 (SIRT1) expres-
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sion, upregulating autophagy, and decreasing mitochondrial ROS by enhancing expression
of antioxidant proteins such as GSH, catalase, O-1, NQO-1, and SOD [106]. FA showed
protection against vascular dementia by reversing OS state, upregulating LC3-II, and in-
ducing mitophagy in vitro [107,108]. Generally, collected data on phenolic acids underline
their cell-protective polypharmacology, suggesting phenolic acids as therapeutic tools for
several disorders.
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In order to identify new classes of drugs with enhanced neuroprotective effect and fol-
lowing the well-known multi-target designed ligands (MTDL) approach, a growing number
of studies report the combination of phenolic acid scaffold with additional pharmacophoric
moieties. Particularly, tacrine and its analogues have been widely employed to this end.
Tacrine is a well-known cholinesterase inhibitor, the first AChEI approved by FDA for AD.
Besides its primary activity, it also induces OS, due to its capability to promote ROS produc-
tion and glutathione depletion [109]. A tacrine–ferulic acid hybrid namely T6FA (7, Table 3)
was evaluated on Aβ-induced cell death in vitro and in in vivo mice model of AD. Results
showed that T6FA enhances cognitive impairment, increasing SOD activity, and limiting
AChE activity [110]. In 2018, Zhu et al. designed novel tacrine-ferulic acid hybrids protect-
ing the FA’s free phenolic group with different benzyl moieties. Among these, compound
bearing the 3,4-dimethyl benzyl scaffold (8, Table 3) showed an interesting pharmacological
profile, inhibiting both AChE and BuChE with an EC50 of 37.02 and 101.4 nM, respectively.
Moreover, it was able to inhibit Aβ1–42 self-induced aggregation in vitro and to improve
cognitive impairment in mice model of AD [111]. Similarly, other AChE inhibitors (e.g., the
marketed drugs donepezil and rivastigmine), neurotransmitters, or natural products have
been combined with FA, CA, and cinnamic acid with the aim of developing new therapeutic
tools against AD. Table 3 summarizes some examples of this approach, including effects
described within the corresponding references: serotonin (9), aromatic amides and esters
(10), donepezil and N,N-dibenzyl(N-methyl)amine (11 and 12), anilides (13), rivastigmine
(14), and diallyl sulfide (15) [112–117]. Interestingly, most of the compounds synthesised
showed a reduction of Aβ-aggregation, mainly imputable to a direct inhibition of the
aggregative process itself or to an indirect effect linked to AChE-inhibition. Coherently,
novel ferulic derivatives obtained from combination previously synthetized multitarget
ligands pharmacophoric groups showed promising results (16, Table 3) [118]. Particularly,
TM10 exhibited excellent BuChE inhibitory activity (IC50 = 8.9 nM) and high selectivity
compared with AChE (IC50 = 12.1 µM), along with good antioxidant activity. Moreover,
Sang et al. showed that TM10 inhibits Aβ1-42 aggregation and promotes disaggregation
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of Aβ1-42 fibrils and induces autophagy [118]. All together the positive results obtained
following the MTDL approach confirm that the combination of AChEI with phenolic
acids could exert neuroprotective effects by interacting with several pathways such as
OS, protein-aggregation and autophagy, all aspects which results to be compromised in
several NDDs. In particular, FA has been widely employed in multitarget ligand design
because of its polypharmacology and low toxicity even if it still presents some drawbacks
like low bioavailability and poor BBB permeability. In 2020, Tripathi et al. synthesized a
new series of compounds obtained by the combination of FA with 1,3,4-oxadiazole ring
in order to improve the interaction of new synthesised molecules with the active pocket
of target enzymes (17, Table 3). All compounds proved a remarkable inhibition of AChE,
BuChE, and BACE-1. Moreover, selected compounds were able to reduce Aβ aggregation,
exert neuroprotective effects on Aβ-induced damage SH-SY5Y cells and exhibit appreciable
BBB permeability [119].

Table 3. Phenolic acids hybrids and their main biological effects.

Entry Scaffolds Combination Structure Effects Ref.

7 Tacrine linked with
ferulic acid
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3.3. Urolithins

Ellagitannins (ET) represent another class of polyphenols, mainly found in strawber-
ries, walnuts, and pomegranates, with prominent beneficial effects on human health [120].
After dietary intake, ET are slightly absorbed and metabolized by the gut microbiota of
humans and other animals [121,122]. First, they are converted into ellagic acid (EA) that re-
tains poor bioavailability, then metabolism in the lower gastrointestinal tract convert them
in urolithins. Urolithin A (UA), urolithin B (UB), urolithin C (UC), isourolithin A (iso-UA),
and their corresponding phase II conjugate derivatives represent the main metabolites
found in tissues and plasma [123]. (Figure 3)
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EA pharmacological activities and molecular mechanism are still under investigation,
but data collected until now are particularly promising. Interestingly, most of beneficial
effects associated with EA are attributed to its active microbial metabolites: urolithins
are much better absorbed and have been proposed to be responsible of beneficial effects
of ET-rich foods [124]. Coherently, over the last decade, researchers’ interests shifted
towards urolithins in order to understand their physiological effects and to explore the
mechanisms involved. Structurally, urolithins are dibenzopyran-6-one compounds with
various hydroxyl groups substitutions, and UA, the 3,8-dihydroxy derivative, appears
to be the most abundant metabolite produced in human. UA has shown non-genotoxic
and ADME safety profile in short- and long-term oral exposure in rats [125]. Addition-
ally, it demonstrated anti-mutagenic properties in Caenorhabditis elegans (C. elegans) [126].
Pharmacodynamic studies on pomegranate juice consumption demonstrated that UA can
reach micromolar concentrations in humans, without displaying any toxic effects [127].
A prominent interest on neuroprotective effects of urolithins arose upon observation of
their scavenger activity against ROS. Recent studies showed that they inhibit intracellular
ROS production in vitro, without remarkable cytotoxic effects; interestingly, this effect has
been correlated with the number of hydroxyl groups [128]. UA showed neuroprotective
effects against H2O2, reducing ROS production, improving mitochondrial activity and
reducing ROS-induced lipid peroxidation in murine neuroblastoma cell lines (neuro-2a).
Apart from the direct radical scavenging properties, UA seems to exert its antioxidant
activity also through the modulation of antioxidant enzymes. UA increased the expression
of peroxiredoxins, a family of thiol-dependent peroxidases involved in redox signaling.
This correlation may explain the cytoprotection of UA by improving the activity of other
antioxidant defence systems, such as SOD, catalase, and glutathione reductase [129]. More-
over, urolithins showed metal-chelating properties linked to the number and position of
hydroxyl groups [102,130]. In the last years, urolithins have also earned interest as potential
autophagy modulator. Indeed, several studies indicated that UA can promote autophagy
in macrophages [131], colorectal cancer cells [132], and microglia human cell lines [133].
Again, UA showed a neuroprotective effect through autophagic activation, repressing ER
stress and attenuating neuronal injuries in mice [134]. By contrast, UB cytoprotective effects
has been associated with the modulation of the uncanonical p62/Keap1/Nrf2 pathway,
resulting in increased levels of downstream antioxidant enzymes [135]. Despite the wide
range of effects against OS and the promising results obtained from studies on biotransfor-
mation, metabolism, and physiological effects, the use of urolithins as chemical scaffolds
for drug design in the field of NDDs is still relatively unexplored. In 2014, Gulcan et al.,
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combined modified 6H-benzo[c]chromen-6-one core of urolithin with rivastigmine (18,
Table 4) and donepezil-like scaffolds (19, Table 4), obtaining a small library of derivatives
with promising polypharmacological activity. Selected compounds showed micromolar
and sub-micromolar IC50 against AChE and BuChE and exhibited comparable activity with
donepezil and rivastigmine, in a scopolamine induce passive avoidance test [136]. A few
years later, the same research group published new urolithin-based MTDL compounds,
obtained from combination of urolithin or tetrahydrourolithin with donepezil-like scaffolds
throughout a propylene linker (20, Table 4). Even if these compounds exhibited good
anticholinergic activity, they lack the structural requirements to prevent amyloid beta
aggregation inhibition, suggesting that the design of new AChEI should not be sufficient
to prevent cholinesterase induced Aβ aggregation [137].

Recently, the modulation of the casein kinase system (CK) has emerged as new thera-
peutic approach for NDDs. In particular, CK2 is a ubiquitous protein kinase that seems
to play important roles in neural functions including synaptic transmission, and synaptic
plasticity, suggesting a potential critical role also in the progression of AD [138]. Cozza et al.
proposed urolithins scaffold as a starting point for designing new and promising CK2
inhibitors. New urolithin derivatives (21, Table 4) showed highly selective sub-micromolar
activity against CK2, suggesting that they could led the basis of new approaches against
NDDs [139,140]. In 2016, Xie et al. proposed new donepezil-coumarin multi-target
hybrids, identifying tetrahydrourolithin derivatives as potential therapeutic tools for
AD (22, Table 4). Indeed, they showed good in vitro inhibition of hAChE and hBuChE
(IC50 = 1.37 µM and 1.98 µM, respectively), and MAO-B (IC50 = 2.62 µM), and no inhibi-
tion towards MAO-A. Moreover, tetrahydrourolithin derivatives showed an interesting
in vitro capacity of permeating the BBB, and no cytotoxicity in SH-5YSY and HepG2 cells
at concentrations up to 50 µM [141].

3.4. Lipoic Acid

α-Lipoic acid (LA) is a natural disulfide antioxidant compound occurring in vegeta-
bles, meat, and fruits. In cells LA is converted to dihydrolipoic acid (DHLA) and plays a
prominent role as co-factor for mitochondrial dehydrogenases—i.e., pyruvate dehydroge-
nase (PDH) and α-ketoglutarate dehydrogenase (KGDH) [142]. Since the 1950s, antioxidant
properties of LA have been investigated, identifying in this compound a beneficial mi-
cronutrient that could find potential therapeutic application against OS and NDDs [143]
(Figure 4).
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In vitro evidence observed a direct radical scavenging capacity of LA against OS [144].
However, recent in vivo studies have suggested that LA and DHLA effects are mainly due
to the improvement of antioxidant enzymes levels—such as CAT, SOD, GPx and glucose-6-
phosphate dehydrogenase (G6PD) [145]. LA restored age-declined GSH levels in rats CNS,
sustaining antioxidant defences and protecting against aging alterations [146]. Retention of
GSH basal levels and promotion of antioxidant effects were also observed in subarachnoid
hemorrhage rat model after LA administration [147]. Additionally, LA is capable of
chelating transitional metals, taking part in prooxidant Fenton reactions, and is involved
in protein aggregation. Studies employing in vitro model of iron-overload and dietary
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administration of LA in rats indicated that LA possess antioxidant and neuroprotective
effects associated with its iron-chelating properties [148]. Subsequent studies reported good
chelating properties both in vitro and in vivo models against additional metals including
manganese, aluminium [149,150], and copper [151,152]. In 2019, Bjørklund et al. reviewed
the protective chelating properties of LA and other thiol groups containing compounds,
towards mercury, cadmium, and lead accumulation [153]. LA has also shown beneficial
effects related to inhibition of lipid peroxidation: in patients affected by diabetic neuropathy
LA showed a neuroprotective action reducing oxidative stress and lipid peroxidation [154].
In two separate experiments on rats, LA showed antioxidant activity, BBB protection, and
a remarkable decrease of lipid peroxidation [147,155].

Table 4. Urolithins derivatives and their main biological effects.

Entry Scaffolds Combination Structure Effects Ref.

18 Urolithin scaffold with
rivastigmine portion
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Since 2000, LA effects on cholinergic system have been deeply studied [156]. LA
ameliorated cholinergic deficiency in vascular dementia rats model: levels of ACh and
choline acetyltransferase (ChAT) were partially restored along with a decreased AChE
activity. Chronic dietary intake of LA in aged Tg2576 mice reduced cognitive deficits
induced by amyloid precursors overexpression, recovering spatial learning and memory
retention without affecting brain Aβ levels [157]. Due to the multiple activities and the good
pharmacokinetics, LA is currently the most studied nature-based compound in clinical
trials and suggested as a new treatment option for NDDs including AD, ALS, and multiple
sclerosis [158,159]. Based on these promising results, LA has been widely investigated
as lead-structure for designing MTDL compounds. One of the first LA-based anti-AD
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multi-target compound was proposed by Rosini et al. as a combination of LA with the
tacrine scaffold (23, Table 5). Lipocrine showed in vitro inhibition of AChE, BuChE, AChE-
induced Aβ aggregation and cells protection against ROS [160]. Through the years, the
same research group designed and evaluated other LA-multi-target analogues containing
substituted tacrine, memoquin, and rivastigmine moieties with promising potential in OS
and protein aggregation treatments [161]. Similarly, Table 5 summarized some examples
of LA-multitarget ligands designed as neuroprotective and antioxidant molecules for
the treatment of AD, thus proving its promising properties for the treatment and/or
prevention of neurodegenerative disorders. For each LA-derivative, main pharmacological
effects and pharmacophoric portions are indicated: dopamine (24), AChE inhibitors (25),
hydrophobic portion of SR3677, a potent Rho-associated kinase 2 (ROCK2) and Aβ inhibitor
(26), isosorbide (27), coumarin (28), phenolic acids (29), benzodiazepine (30), melatonin
(31), niacin (32), and 3-n-butylphthalide (NBP), an anti-ischemic drug (33) [162–171].

Table 5. Lipoic acid hybrids and their main biological effects.

Entry Scaffold Combination Structure Effects Ref.

23 Lipoic acid
and tacrine
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4. Discussion

In the last 50 years, interest in bioactive natural products has increased considerably.
Indeed, extensive studies have been conducted on well-known substances (e.g., polyphe-
nols and phenolic acids), identifying a large number of previously unknown therapeutical
effects. Additionally, the impressive advancements in extractive techniques and mass spec-
trometry allowed the isolation and identification of several previously undetectable active
compounds (e.g., urolithins). In parallel, our knowledge on complex uncurable pathologies
has widely progressed towards the identification of several mechanisms (e.g., autophagy,
proteostasis) involved in their pathogenesis, leading to a paradigm-shift in our conception
of several diseases. Beside neoplastic diseases, NDDs have probably received most of the
attention of pharmaceutical researchers and drug discovery programs. The identification of
a vast tangled network of pathogenic mechanisms responsible of the onset and progression
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of NDDs has forced the academic world and pharmaceutical industries to re-think the
therapeutic approaches to pursue. As discussed above, excessive OS correlates well with
several dysfunctionalities observed in these pathologies resulting an intriguing target for
new pharmacological agents. However, the development of new drugs able to promote a
rebalance of OS still represents a difficult goal to achieve, especially since physiological
levels of OS mediators (e.g., ROS) are required for maintaining healthy conditions.

In this context, polypharmacology associated with natural products have gained
a prominent role in the drug discovery process for NDDs; intriguingly, the first drug
approved by the Chinese regulatory authority in 2019 for AD is a gut-microbiota repro-
graming agent identified in seaweeds [172]. However, most NDDs (e.g., AD, PD, ALS)
still lack a proper efficacious therapy able to halt, reduce or reverse their pathological
progression. Interestingly, last years have seen an exceptional increase in clinical trials
employing dietary enrichment with natural products (e.g., spermidine) or administration
of natural extracts in NDDs patients [73,173]. Particularly, one of the most successful and
promising cases is represented by ECGG that is currently in phase 2 as dietary supplement
for AD and phase 3 for ALS (source: www.alzforum.org) (accessed on 11 February 2021).
However, most of bioactive natural small molecules lack fundamental features required
for being successfully delivered as NDDs drugs. Low aqueous solubility, poor PK and
PD profiles, as well as high metabolic in vivo conversion, strongly hinder the progress of
most natural products through the drug discovery chain. Accordingly, the MTDL approach
could help to perfectly merge polypharmacology and natural products benefits, generating
new chemical entities with the pharmacological fingerprints of natural products and able
to simultaneously target two or more pathological mediators.

5. Conclusions

In the last years, several attempts have been made towards the development of new
naturally derived polypharmacological agents and many new multitarget drugs with
improved pharmacological features and optimized PK/PD profile have been synthesized.
In this review, we summarized a large number of nature-based multitarget drugs developed
in the last 10 years. Particularly, we focused on polyphenols and polyamines that share
a prominent antioxidant effect. This feature could play a key role in developing new
therapies for multifactorial diseases like NDDs, but not only. Indeed, we widely discussed
how their therapeutical potential goes beyond the known antioxidant effects, playing a key
role in defending the organism from excessive OS and having demonstrated a plethora
of beneficial effects, including decreasing Aβ aggregation, promoting autophagy, and
reducing metal accumulation. However, few issues have yet to be addressed. To the
best of our knowledge, none of the nature-based multitarget molecules presented in this
review has progressed through the drug discovery chain to successfully reach the market.
The promising activity showed in vitro and even in preclinical studies still required to be
validated in human subjects affected by NDDs. Nevertheless, the overview provided by the
polypharmacology associated with natural compounds—and their synthetic derivatives—
suggests that nature-based templates could represent a valuable tool for the drug design in
the effort to realize new valuable drugs for NDDs.
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