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A Commentary on

Studies in Zebrafish Demonstrate That CNNM2 and NT5C2 Are Most Likely the Causal Genes

at the Blood Pressure-Associated Locus on Human Chromosome 10q24.32

by Vishnolia, K. K., Celine, H., Tarhbalouti, K., Revenstorff, J., Aherrahrou, Z., and Erdmann, J.
(2020). Front. Cardiovasc. Med. 7:135. doi: 10.3389/fcvm.2020.00135

INTRODUCTION

Hypertension is a critical health issue (1). The magnitude of the epidemiology of this condition
is such that one third of the world population is affected by, with a high risk of developing
cardiovascular complications, main cause of death (2). The pathogenetic mechanisms that trigger
such condition are not completely understood due to the complex multifactorial etiology. Sex, age,
ethnicity, an unbalanced diet (high salt, sugar, fat/cholesterol and alcohol intake, low potassium
intake), environmental inputs (sedentary lifestyle, smoking, and chronic stress), comorbidities
such as diabetes can predispose to essential hypertension. From a clinical point of view, the large
variability in hypertensive phenotypes requires a thorough assessment of the patient in order to
tailor personalized therapy. An important role is to be ascribed to the impact of genetic background,
as testified by pivotal studies in twins and families (3, 4). Several putative hypertension-related
genes have been identified, mainly affecting the renin-angiotensin-aldosterone system (5, 6).
However, functional studies show that some of them have only mild or even no effects on the
hypertensive phenotype (7). Recently, new bioinformatic tools and the Genome-wide association
studies (GWAS) allowed a more accurate study of the genetic architecture of hypertension,
identifying the associations between single nucleotide polymorphisms (SNPs) and specific
hypertensive phenotypes (8–10). However, pre-clinical studies on the functional link between the
identified genes and the development of hypertension are limited. Modeling in animals the genetics
observed in humans represent an important step toward the proof of concepts of associative studies
by GWAS.
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HISTORICAL POINT OF VIEW

Since 1974, when Jaenisch and Mintz performed the first genetic
manipulation in mice (11), these little mammals have become
the unique tool to study human diseases. Similarities in the
physiology and genetics of mice and humans have contributed
to the popularity of this model. The real boost in mouse
modeling derives from the seminal work of Mario Capecchi,
Oliver Smithies and sir Martin Evans, awarded Nobel Prize
in 2007 for their discoveries of specific gene manipulations in
mice by the use of embryonic stem cells; since then, a fast and
furious quest of technology has been able to perfect genetic
engineering to generate novel phenotypes by inserting or deleting
genes in specific tissues (12–14). In the last decades, the mouse
models have been essential to increase the knowledge about the
pathogenesis of several diseases and to identify novel targets for
therapeutic purposes (15–21). Gene targeting in mice lead to
several findings with important clinical implications, such as the
protective role of bradykinin in diabetic nephropathy (22) and
the dysfunction of CFTR gene in cystic fibrosis (23).

The deletion or overexpression of genes to understand
relatively rare human genetic diseases that are caused by
homozygous loss of gene function has become of routine
use. Rather, modeling the much more common multifactorial
diseases that have strong genetic and environmental causes is less
easy (24).

NEW MODELING

In this issue of Frontiers in Cardiovascular Medicine, Vishnolia
et al. (25) provide an intriguing insight in validation of the
results of a GWAS study in hypertension by performing a
functional study in model that is novel to cardiovascular
researchers: the zebrafish. This may appear very far from the
commonly known pre-clinical models. This model has several
advantages over the mouse in terms of maintenance, genetic
manipulability, and the ability for high-throughput screening.
In particular, zebrafish has become a recent new tool in the
cardiovascular field (26–28) with promising implications in
future translational studies. This model is particularly useful
for cardiac studies thanks to the optical clarity of embryos that
allows non-invasive in vivo imaging of fluorescently labeled
cardiac genes during cardiac development without affecting the
physiological setting of the disease. The transparent embryos also
favors genetic manipulations through several techniques such as
morpholino antisense oligonucleotide and CRISPR-Cas9 system
(29–32). Furthermore, the zebrafish embryonic heart rate is much
closer to the human heart rate than the mouse’ (33). Using
the zebrafish model, it has been demonstrated that MEIS2 is
critical for proper heart tube formation and subsequent cardiac
looping (34). The interaction of the genetic background with
the environment can be facilitated by adding the appropriate
perturbing agent to the water of the tank, which guarantee a
uniform exposure of all individuals. Such aspect is essential to
studymultifactorial diseases, such as hypertension: gene targeting
can identify modifiers genes that are turned on in response to
environmental stimuli.

DISCUSSION

In their paper, Vishnolia et al. exploited the possibilities of
this model to highlight that two genes, CNNM2 and NT5C2,
identified by GWAS at the human 10q24.32 locus, among
other putative genes (CYP17A1, BORCS7, AS3MT, CNNM2,
and NT5C2), predispose to hypertension (25). They show that
all genes encompassed in the human chromosome 10q24.32,
CAD, and BP locus are highly conserved between zebrafish and
humans. Using zebrafish morpholino-dependent knock-down
and specific knock-out, they demonstrate that higher blood
flow, increased arterial pulse, and elevated linear velocity
are observed in larvae with genetic removal of CNNM2
and NT5C2. In this condition, ramipril, a commonly used
antihypertensive drug, failed to increase blood flow. These data
not only confirm the involvement of CNNM2 and NT5C2
genes in the development of hypertension but also propose the
zebrafish model as a potential tool for anti-hypertensive drug
screening, allowing to associate drugs treatment with a specific
genetic mutation.

An interesting finding of this study is also the reciprocal
regulation of these genes since the Authors show that NT5C2
knock-out induces downregulation of CNNM2 and conversely
CNNM2 knock-out leads to a reduction of NT5C2 expression.
Besides supporting the triggering role of these genes in
hypertension, these findings also suggest a negative feedback
regulation of hypertension-related genes that could, in part,
explain a large amount of identified genetic variants without a
strong association with the hypertensive phenotype.

The Authors also show that the knock-out models were
associated with impaired renal function, high levels of
renin, and significantly increased expression of the ren gene,
suggesting that defects in the renin-angiotensin-aldosterone
signaling pathway could be the culprit of NT5C2 and
CNNM2 dependent increase of blood flow parameters.
These findings are in line with the literature showing that
impaired activation of the renin-angiotensin-aldosterone
system (RAAS) is associated with hypertension (35, 36).
Furthermore, they validate the use of this model that is also able
to recapitulate in principle the target organ damage observed
in hypertension.

Overall, this study has great translational relevance
in the management of hypertensive phenotype by
identifying two specific genes whose modulation is strongly
associated and proposing a novel tool for anti-hypertensive
drug screening.

The future direction for the use of this model let us
envisage a new era of therapeutics for hypertension, that could
take advantage of gene targeting. Of mice, zebrafishes and
men is going to be the tale for hypertension research in the
immediate future.
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