
Swap errors in visual working memory are fully explained by 
cue-feature variability

Jessica MV McMaster*,

Ivan Tomić,

Sebastian Schneegans,

Paul M Bays

Department of Psychology, University of Cambridge, Cambridge, UK

Abstract

In cue-based recall from working memory, incorrectly reporting features of an uncued item may 

be referred to as a “swap” error. One account of these errors ascribes them to variability in 

memory for the cue features leading to erroneous selection of a non-target item, especially if it 

is similar to the target in the cue-feature dimension. However, alternative accounts of swap errors 

include cue-independent misbinding, and strategic guessing when the cued item is not in memory. 

Here we investigated the cause of swap errors by manipulating the variability with which either 

cue or report features (orientations in Exp 1; motion directions in Exp 2) were encoded. We found 

that swap errors increased with increasing variability in memory for the cue features, and their 

changing frequency could be quantitatively predicted based on recall variability when the same 

feature was used for report. These results are inconsistent with the hypothesis that swaps are a 

strategic response to forgotten items, and suggest that swap errors could be wholly accounted 

for by confusions due to cue-dimension variability. In a third experiment we examined whether 

spatial configuration of memory arrays in tasks with spatial cueing has an influence on swap 

error frequency. We observed a specific tendency to make swap errors to non-targets located 

precisely opposite to the cued location, suggesting that stimulus positions are partially encoded in 

a non-metric format.
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1 Introduction

Short-term memory for a visual scene typically comprises the storage of multiple items, 

each defined by a combination of visual features such as colour, shape and orientation. 

Beyond storing these individual features, the memory system must also be capable of 

maintaining the specific conjunctions between the features that belong to the same item. 

The mechanism of feature binding in visual working memory (VWM) continues to be an 

area of active research, and various aspects of it remain contentious (for a recent review, see 

Schneegans & Bays, 2019).

One central question that is still a topic of debate is whether VWM representations 

inherently contain binding information, or whether bindings are stored independently 

of memory for individual features. The latter view was supported by the results of 

various change detection tasks. In a study by Stefurak and Boynton (1986), participants’ 

performance was worse when they had to decide whether a single test stimulus matched a 

specific color-shape combination seen in a memory array, compared to a task condition in 

which they only needed to detect a change to a novel color or shape (see also Treisman, 

Sykes, & Gelade, 1977). Based on observed change detection performance across various 

task conditions, Wheeler and Treisman (2002) proposed that binding is selectively stored 

if task-relevant, but that its storage is dependent on sustained attention, and that joint 

object representations break down into their constituent features if attention is withdrawn. 

However, the comparison of different change detection tasks does not reveal at which point 

response errors arise, and the observed performance differences may also be explained as 

a consequence of the additional computations required in tasks that involve comparisons of 

feature conjunctions.

The application of cued recall tasks and continuous measures of recall errors in VWM 

studies has led to significant advancements in our understanding of feature binding. Cued 

recall tasks usually involve the presentation of an array of visual items, each combining two 

or more features, e.g. a colour and a location. After a delay, a cue is presented consisting of 

one feature of one item (the target), and participants are instructed to report a second feature 

of that item on a continuous scale (examples in Fig. 1). Tasks involving analogue responses, 

rather than the binary outcomes of change detection tasks, allow for the estimation of error 

distributions along the reported feature dimension. This has led to an increased appreciation 

that the quality or precision of working memory representations can vary substantially, 

beyond the binary distinction between memorized and forgotten items (Ma, Husain, & Bays, 

2014).

Importantly, cued recall tasks also inherently test memory for feature binding, since the 

presented response cue must be used to retrieve the associated report feature of the same 

item. This creates multiple opportunities for errors both in memory for the cue feature and 

memory for the report feature to affect the response. It has been observed in previous studies 

that response values are not only dispersed around the report feature of the target item, but 

are often also clustered around the feature values of other, non-target items from the memory 

array (Bays, Catalao, & Husain, 2009; Oberauer & Lin, 2017; Schneegans & Bays, 2017). 

Reporting the feature value of a non-target item is often referred to as a “swap” error, as 
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the feature of a non-target item is “swapped” in for the target feature. Furthermore, as swap 

errors reflect a failure in retrieving the correct item from memory when cued with one of the 

item’s features, the mechanisms underlying swap errors may provide important insight into 

feature binding.

A number of models of VWM have incorporated feature binding within memory for 

single features to explain error distributions in cued recall tasks (Oberauer & Lin, 2017; 

Schneegans & Bays, 2017; Swan & Wyble, 2014). Both the neural binding model of 

Schneegans and Bays (2017) and the interference model of Oberauer and Lin (2017) 

successfully reproduce swap errors seen in the behavioral data on the basis of imprecise 

memory for the cue features of the sample items. Due to this imprecision, the given retrieval 

cue cannot unambiguously identify the target item, and the report feature of a non-target 

item may be reported, especially if the target and non-target item have similar cue feature 

values. We will refer to this as the feature variability account of swap errors. Importantly, 

in this account, the incorrect item is retrieved from memory despite the bindings between 

features of each item remaining intact.

The feature variability account is supported by the finding that the proportion of swap errors 

in a cued recall task depends on which feature is used as the memory cue, with swap errors 

being more frequent when location is reported using a color cue compared to when color is 

reported using a location cue (Rajsic, Swan, Wilson, & Pratt, 2017; Rajsic & Wilson, 2014). 

If swap errors were caused only by the loss of binding information, then the proportion of 

swap errors should be equal irrespective of the feature used as the cue. The link between 

swap errors and the cue-feature dimension is further supported by studies using spatial cues 

that have found that non-target items more similar to the cue are more likely to be the 

subject of swap errors than those with more dissimilar cue features (Bays, 2016a; Emrich & 

Ferber, 2012; Rerko, Oberauer, & Lin, 2014; Souza, Rerko, Lin, & Oberauer, 2014).

While these results strongly support cue-feature variability as one cause of swap errors, it 

has been debated whether it is the only or even the principal cause. The neural binding 

model (Schneegans & Bays, 2017) assumes that the feature combinations of all sample items 

are encoded in a conjunctive population code. At retrieval, cue and report features of all 

items are decoded from the noisy neural activity, the item whose decoded cue feature value 

is closest to the retrieval cue is selected, and the corresponding report feature produced as 

a response. Due to imprecision in decoding, the cue feature of a non-target item may be 

judged to be closest to the given cue, leading to a swap error. This process is consistent 

with the feature variability account, and is the sole source of swap errors within the neural 

binding model.

The interference model (Oberauer & Lin, 2017) similarly assumes a cue-dependent source 

of swap errors, in which the retrieval cue activates the report feature value of non-target 

items to a certain degree due to imprecision in memory for the cue features. However, 

this model additionally assumes a cue-independent source of swap errors. These cue-

independent swaps are attributed to uniform background noise in the cue feature space that 

provides equal activation to all features in memory. Parameter estimates obtained by fitting 

this model to data have indicated the cue-independent source makes a non-zero contribution 
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to swap frequency in both cued recall (Oberauer & Lin, 2017) and change detection tasks 

(Lin & Oberauer, 2022).

Swap errors have also been ascribed by some authors to an informed guessing strategy 

(Huang, 2019; Pratte, 2019). For example, Pratte (2019) proposed that, in addition to 

swaps caused by cue-feature variability, participants might sometimes be presented with 

a cue corresponding to an item that was not in memory at all, and that in this case a 

viable strategy could be to respond with the report feature of a different item that was in 

memory. Depending on how this item was chosen, this mechanism could also be a source of 

cue-independent swaps.

In addition to these proposals, any swap errors caused by loss of binding information, 

separately from memory for the individual features, would also be expected to occur 

independently of cue similarity. On the other hand, if swap errors can be fully accounted 

for by variability in the cue-feature dimension, this could be considered evidence against 

separate memory storage of feature binding, on the assumption that such storage would 

sometimes fail.

The main aims of the present study were: first, to provide a direct test of the hypothesized 

causal connection between error in recall of cue-features and swap frequency, by 

manipulating memory variability in the cue-feature dimension; and second, to determine 

whether cue-feature variability provides a sufficient explanation for swap errors, or if 

there is some proportion of swaps that cannot be explained by this mechanism. We 

used cued recall tasks in which spatial location acted either as the cue or report feature 

dimension, while we manipulated variability in the other feature dimension. Because angular 

location memory has natively high precision (Schneegans & Bays, 2017), we reasoned 

that in combination with large minimum separations between items, it could be used as a 

reliable cue, resulting in vanishingly rare swap errors. In contrast, manipulation of memory 

variability for the other feature was expected to affect the utility of that feature as a retrieval 

cue, resulting in a gradient of swap errors consistent with induced memory variability. In 

Experiment 1, variability in memory for orientation was manipulated using ellipse stimuli 

with differing elongations. In Experiment 2, memory variability for motion direction was 

altered using random dot kinematogram (RDK) stimuli with varying motion coherences. 

Similar stimulus manipulations have been used in previous VWM studies for different but 

related purposes (Ester, Ho, Brown, & Serences, 2014; Keshvari, van den Berg, & Ma, 

2012).

Across both experiments we found an increase in swap errors as variability in memory 

for the cue feature was increased, as predicted by the feature variability account. To test 

whether the increase in memory variability could fully account for the observed pattern of 

swap errors, we employed a Monte Carlo simulation. Based on the observed recall errors 

for the non-spatial feature when cued with location, this simulation accurately predicted 

how frequently a non-target location would be selected for report when the same non-spatial 

feature was used as a cue. These results indicate that swap errors can be fully explained by 

confusions in identifying the cued item due to variability in the cue-feature dimension.
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The results of the non-parametric simulation provide the strongest test of our main 

hypothesis, that the feature variability account can fully explain swap errors. However, to 

also assess a concrete implementation of the feature variability account that makes detailed 

predictions for error distributions, we fit the behavioral data with a version of the neural 

binding model of Schneegans and Bays (2017). This model allows for stochastic variation 

in memory precision including the possibility that features are retrieved with zero precision, 

but does not implement any form of strategic guessing. The fit of the neural binding model 

was compared with two variants of the interference model (Oberauer & Lin, 2017), the 

full model and a partial model with the cue-independent activation parameter fixed at zero. 

The neural binding model was consistently a better fit to the data than both variants of the 

interference model. Furthermore, the neural binding model produced close quantitative fits 

to the pattern of swap errors on all trials, across changes in ellipse elongation and RDK 

coherence. It also made a prediction of lower subjective confidence in swap than non-swap 

responses that is consistent with previous observations.

One methodological difference that has been highlighted as a potential influence on swap 

errors (Brady & Störmer, 2020; Schurgin, Wixted, & Brady, 2020) is between tasks in which 

locations of items are selected randomly from a continuous range, as in our Experiments 

1 and 2, and experiments where they were selected from a fixed set of locations, as was 

the case in the experiments providing evidence for the cue-independent source of swap 

errors within the interference model (Oberauer & Lin, 2017). In Experiment 3 we directly 

compared these designs. While the results did not support a cue-independent source of swap 

errors or an effect of design on overall swap frequency, they did reveal a specific tendency to 

make swap errors to items located diametrically opposite to the cued location in the circular 

array. We argue that these errors could result from item positions being encoded in a partly 

non-metric format, in which diametrically opposing positions (180° separation) were more 

confusable than other distant locations (e.g. 120° apart).

2 Experiment 1

Experiment 1 was a cued recall task designed to determine whether changes in memory 

variability for the cue feature resulted in corresponding changes in swap error frequency. 

Participants were presented with arrays of ellipse stimuli with different locations and 

orientations. The precision with which orientations were encoded was manipulated by 

varying the elongation of the ellipses across trials. Recall was tested either for the orientation 

of an item corresponding to a cued location, or the location of an item indicated by a cued 

orientation.

2.1 Methods

2.1.1 Experimental protocol—Ten participants (aged 21–31 years; six male, four 

female) completed a cued recall task testing their memory for orientation and location. 

The study was approved by the Cambridge Psychology Research Ethics Committee. All 

participants reported normal or corrected-to-normal visual acuity and gave informed consent 

in accordance with the Declaration of Helsinki. Stimuli were presented on a 27-inch LCD 

monitor (ASUS PG279) with a refresh rate of 144 Hz. Participants sat with their head 
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supported by a forehead and chin rest and viewed the monitor at a distance of 60 cm. Eye 

position was monitored on-line at 1000 Hz using an infrared eye tracker (Eyelink 1000 Plus, 

SR Research).

Each trial of the task (illustrated in Fig. 1A) began with the presentation of a dark grey 

central fixation dot (diameter, 0.25° of visual angle) against a lighter grey background. Once 

a stable fixation was recorded within 3° of the dot, a memory array consisting of six ellipses 

was presented for 2 s. The elongation (eccentricity) of the ellipses was constant within a 

trial but varied between trials. Three eccentricities were used: 0.71, 0.86 and 0.97 (hereafter 

referred to as low, medium and high elongation, respectively), defined as 1 − b2

a2 , where a 

and b specify the ellipse’s semi-major axis and semi-minor axis. The area of the ellipses 

was held constant at 1.6 squared degrees of visual angle across changes in elongation, with 

the major axis of the ellipse varying from 1.7° of visual angle (low elongation) to 3° (high 

elongation). The center of each ellipse was positioned on an invisible circle with a radius of 

6° centered on the fixation dot. The location of each ellipse was chosen at random, with a 

minimum separation between ellipse centers of 30° on the circle. The ellipses’ orientations 

were also chosen at random, with a minimum separation of 15° between the orientations of 

different ellipses (considering the space of unique ellipse orientations covers only 180°, a 

15° separation was chosen to match the 30° used for location).

After the presentation of the memory array, the fixation dot was shown for a further 1 s 

followed by the cue display. In the orientation-report condition, the cue was a dark grey 

dot (diameter, 0.25° of visual angle) presented at a location corresponding to one of the six 

ellipses in the previous display that was randomly selected as the target item. Participants 

were instructed to begin turning a response dial (PowerMate USB Multimedia Controller, 

Griffin Technology) once they were ready to respond with the orientation of the target 

ellipse. Once participants began their response, the cue display was replaced with a central 

dark grey line (length 2°, width 0.25°) which participants freely rotated using the dial 

until it matched the remembered orientation of the target. Responses were not timed, and 

participants were instructed to be as precise as possible. In the location-report condition, 

participants were cued with a central line stimulus (as described above) with orientation 

matching the ellipse randomly selected as the target, and used the response dial to move a 

dot (as described above) around the invisible circle until it matched the remembered location 

of the target. Any trial on which gaze deviated > 3° from the central dot, before the cue 

display, was aborted and restarted with new feature values. Each participant completed 12 

blocks (8 in the location-report condition, 4 orientation-report, in a randomized order), with 

each block consisting of 12 trials in each of the three elongation conditions, randomly 

interleaved. The 12 blocks were completed across two one-hour testing sessions. We 

dedicated a larger proportion of blocks to the location-report condition because this was 

the critical condition for testing our main hypothesis.

2.2 Analysis

2.2.1 Response error distributions—Stimulus and response values in each feature 

dimension were analyzed and are reported with respect to a circular space (−π to π radians) 
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spanning the full range of possible feature values. This range corresponded to 360° of 

angular location, and 180° of orientation. Recall error was calculated, for each trial, as 

the angular deviation between the participant’s response and the target feature value. The 

circular standard deviation (Fisher, 1995) of the response error was used as a measure of 

recall variability. Statistical hypothesis testing was based on Bayesian (using JASP, 2019) 

and frequentist t-tests.

In order to evaluate the influence of non-targets on recall estimates, we calculated the 

deviation of each response from the report feature values of each of the non-target items 

in the memory array, and generated histogram estimates based on pooling these deviations 

over trials and non-targets. Due to the minimum feature separation imposed when generating 

the memory arrays, the distribution of deviations expected in the absence of swap errors 

and any other effects of non-target items is not uniform. To see this, consider a case in 

which all responses are tightly clustered around the true target value. If there is a minimum 

separation between target and non-target feature values, all responses will also have nearly 

the same separation from the non-target feature values, resulting in a central dip in the 

distribution of response deviations from non-target values. A minimum separation between 

the feature values of different non-target items within a trial will further modulate the 

expected distribution.

We estimated the expected distribution in the absence of non-target effects using a 

randomization method. We removed the report feature value of a single non-target item 

from each trial, and replaced it with another randomly-selected value that still respected the 

minimum separation constraints for that particular feature dimension. Then we calculated 

the response deviation from the newly inserted non-target feature value (which cannot have 

influenced the actual response), and repeated this over 1000 iterations for each trial to obtain 

an expected histogram of non-target deviations. This expected histogram was subtracted 

from the observed histogram of response deviations to produce plots in which values 

consistently different from zero could be interpreted as evidence for an influence of non-

targets. The same method was also used to determine an expected mean absolute deviation 

(MAD) of responses from non-target features, which we compared with the observed values.

2.2.2 Estimating swap frequencies—Non-target responses were of particular interest 

in the location-report condition, where we expected the manipulation of ellipse elongation to 

affect the proportion of swap errors. To obtain a non-parametric estimate of swap frequency 

in this condition, we classified a response as a swap error if the reported location was closer 

to the location of one non-target item than to the true target location. Given the relatively 

large minimum separation between items and the precision of location memory observed 

in comparable previous studies (Schneegans & Bays, 2017), we expected that this simple 

heuristic can produce reliable estimates of swap error frequencies.

We further validated the estimates obtained from the nearest-item heuristic by comparison 

with two established methods of estimating swap frequencies: the mixture model method 

(Bays et al., 2009) and the resultant vector method of Bays (2016a). The mixture model 

method describes the distribution of responses as a probabilistic mixture of von Mises 

(circular normal) distributions centered on the target and non-target features, and a uniform 
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distribution. This method uses maximum likelihood optimisation to estimate the mixing 

weights of each component distribution. Importantly, the accuracy of this method’s estimates 

depends on the correct specification of the response error distribution. In contrast, the 

resultant vector method is a non-parametric method that does not make assumptions about 

the form of the response error distribution. Instead, it utilizes the concept of the mean 

resultant vector of a circular distribution, whose direction reflects the circular mean and 

whose length is related to the distribution’s concentration, with a uniform distribution having 

a resultant length of zero. Critically, the resultant for a mixture of distributions is equal to the 

weighted sum of the resultants for the component distributions (e.g., target and non-target 

errors). This allows for the estimation of mixture weights without a fitting procedure, simply 

by calculating the ratios of the individual resultant lengths to the resultant length of the 

entire response distribution. The resultant vector method was modified from that in Bays 

(2016a) to take into account the minimum feature separations, with a correction analogous 

to the one described above for histogram estimates. This method requires more data than 

parametric methods to achieve a given level of variability, so we estimated swap frequencies 

based on pooled group-level data instead of participant by participant.

2.2.3 Predicting swap frequencies from cue-feature variability—To test whether 

the observed swap frequencies in the location-report condition could be explained as 

an effect of memory variability for the cue feature (ellipse orientation), we employed 

a parameter-free Monte Carlo simulation (Fig. 2). This simulation aimed to predict the 

proportion of swap errors in the location-report condition directly from the observed report 

errors in the orientation-report condition, and was implemented as follows: For each trial of 

the location-report task, six orientation error values (deviations from the target orientation) 

were randomly selected with replacement from the full set of responses made by the same 

participant with the same ellipse elongation in the orientation-report condition. These errors 

were added to the orientation feature values of the six items in the location-report trial, 

simulating variability in memory for these features. Then the circular distance of each 

resulting orientation from the cue orientation was determined. If the nearest orientation to 

the cue belonged to one of the non-target items, the simulated trial was considered to have 

produced a swap error. This process was repeated 1000 times for each trial, separately in 

each elongation condition, and the mean proportion of swap errors was calculated. We then 

compared these predicted proportions of swap errors to the values that were estimated from 

the empirical responses in the location-report condition using the nearest-item heuristic.

2.2.4 Model comparison—Three alternative models of VWM were fit to each 

participant’s data using the Nelder-Mead simplex method (function fminsearch in Matlab) 

to produce maximum likelihood estimates of the model parameters (additional model fitting 

details provided in the Appendix). These were the neural binding model, the interference 

model and a variant of the interference model with the context-independent activation 

(Aa) parameter fixed at zero. Model fit was evaluated using Akaike Information Criterion 

(AIC) and Bayesian information criterion (BIC) based on each model’s maximum likelihood 

estimation. Each model is described below, however full details for each model are provided 

elsewhere (neural binding model: Appendix; interference model: Oberauer & Lin, 2017).
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2.2.5 Neural binding model—We fit the neural binding model of Schneegans and Bays 

(2017) to the data of each participant. This model assumes that the conjunction of features 

that describes each stimulus (orientation-location in Exp. 1) is encoded in a population of 

idealized neurons. More specifically, each neuron’s mean firing rate is based on an item’s 

feature values (cue and report) and the neuron’s preferred value and associated tuning 

function over the two feature dimensions. Discrete spikes are generated based on this firing 

rate via a Poisson process. Recall is then modelled as maximum likelihood decoding of 

the memorized feature values from the noisy neural activity. The item whose decoded cue 

feature value is closest to the cue in a given trial is selected, and its decoded report feature 

value is produced as response. This model has three free parameters, namely the tuning 

curve widths in the two feature dimensions relevant for each task, and the mean total firing 

rate in the neural population.

We adapted the model described in Schneegans & Bays (2017) to capture the effect of 

varying the ellipse elongation on memory for orientation. Specifically, we assumed that 

only a subset of the spikes generated by the neural population carried information about 

stimulus orientation, while all spikes contributed to the decoding of memorized locations 

(see also Lugtmeijer et al., 2021). This reflects the fact that all stimuli provided clear and 

unambiguous location information, but the strength of the orientation signal was reduced. 

The strength of this effect was captured by an additional conjunction coding parameter, 

that varied between zero (complete absence of orientation information) and one (all spikes 

contributing equally to the decoding of all features). Depending on whether the affected 

feature was used as cue or report feature in each task condition, a low value of this 

parameter would either lead to impaired selection of the cued target item, or to reduced 

recall precision in reporting the feature of the selected item.

Maximum likelihood fits of the model were obtained for the data of each participant, at 

each level of ellipse elongation. The model applied six free parameters: the widths of the 

von Mises tuning curves for orientation, and location, the mean total spike rate in the 

neural population and the conjunction coding parameter which was allowed to vary as a free 

parameter between the different elongation levels, but was fixed across the two conditions 

within each level. All other free parameters were held fixed across all conditions.

In the model, precision is jointly determined by the tuning curve widths and gain parameter. 

We generated mean precision estimates based on the best fitting model for each participant, 

with precision expressed as Fisher Information (van den Berg, Shin, Chou, George, & Ma, 

2012). Precision estimates were made for all features of the target, or selected non-target, 

comparing trials where the target item was correctly selected with trials where a swap error 

occurred. Because estimation is based on a discrete sample of spikes in this model, there is 

a probability of having zero spikes with which to recover one or both of an item’s features. 

We assessed the conditional probability across trials that there were no spikes reflecting the 

features of the target, or selected non-target, again comparing swap and non-swap trials (see 

Appendix for further details).

2.2.6 Interference model—In order to further evaluate the feature variability account 

of swap errors, we also fit two variants of the interference model of working memory 
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(Oberauer & Lin, 2017) to the data. This model proposes that representations of feature 

conjunctions in working memory can be conceptualized as distributions of binding strength 

in a binding space, spanned by the report-feature dimension and the cue- (or context-) 

feature dimension. In cued recall, the retrieval cue is fed as an activation pattern into the 

cue-feature dimension of the binding space. It projects to the report-feature dimension via 

the pattern of binding strengths reflecting the current memory content, and the response is 

drawn from the resultant activation pattern over the space of possible report-feature values.

The resulting distribution of response values in this model can be described as a mixture 

of multiple components. The first component reflects cue-based retrieval, in which each 

memory item is selected with a probability based on the similarity of its cue-feature to 

the given retrieval cue (determined via an exponential function of feature distance). The 

response is then drawn from a von Mises distribution with fixed precision, centered on 

the chosen item’s report-feature. A second component reflects cue-independent retrieval, in 

which each item is selected with equal probability, and its report-feature likewise reported 

with fixed precision. The third component is a uniform distribution, reflecting set-size 

dependent background noise in the working memory representations. Additionally, the 

model assumes that in each trial, a single sample item is held in the focus of attention. 

If this item is the target, it is more likely to be selected in the cue-based retrieval and its 

report feature value is reproduced with higher precision.

The interference model thus implements two sources of swap errors, one based on cue-

feature similarity and one that is cue-independent. To test whether this second source of 

swap errors is needed, we fit the data both with the full interference model and with a 

model variant without the cue-independent retrieval. The full interference model has six free 

parameters, namely the two memory precision parameters for items within and outside of 

the focus of attention (κf and κ), the weights of the cue-independent retrieval component 

(Aa) and of the background noise (Ab; the weight of the cue-based retrieval, Ac, was fixed 

to one, as in Oberauer and Lin (2017)), the width of the exponential function that determines 

item selection in the cue-based retrieval (s), and finally the proportional reduction of weights 

Aa and Ab when the target item is in the focus of attention (r). For the model variant without 

cue-independent retrieval, the weight Aa was fixed to zero.

Unlike the neural binding model, the interference model does not make any predictions 

about the relationship between recall variability in the report of a feature and the frequency 

of swap errors when that same feature is used as retrieval cue. Therefore, the model was fit 

to each report feature condition independently.

2.2.7 Toolbox—A MATLAB toolbox implementing the mixture model and resultant 

vector methods of estimating swaps is available to download from https://bayslab.com/

toolbox.

2.3 Results

Participants viewed six oriented ellipses and in separate blocks were either cued with 

the location of one ellipse and had to report its orientation, or they were cued with the 

orientation of one ellipse and had to report its location. To determine to what degree 
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swap errors are caused by noise in the memory representation of the cue feature, we 

manipulated the fidelity of the orientation representation by varying the elongation of the 

ellipse stimuli from trial to trial. Based on the feature-variability account, we expected 

that this manipulation would affect response variability, but not swap probability, when 

participants reported stimulus orientation. In contrast, when orientation was used as a cue 

for reporting stimulus location, we expected to see an effect specifically on the frequency of 

swap errors.

Fig. 3A displays the distributions of errors (response deviations from the target) for the 

three ellipse elongation conditions when recalling orientation. As expected, error variability 

decreased with increasing elongation (mean circular standard deviation reported as M ± SE, 

low: 1.18 ± 0.12, medium: 1.07 ± 0.16, high: 0.95 ± 0.19). There was a significant decrease 

in variability between the medium and high (t9 = 3.59, p = 0.006, BF10 = 9.54) and between 

the low and high (t9 = 3.04, p = 0.014, BF10 = 4.75) elongation conditions, though the 

difference between the low and medium conditions was not significant (t9 = 2.08, p = 0.067, 

BF10 = 1.41). These results indicate that the manipulation of elongation of the ellipses was 

successful in modulating the variability in the memory representation for orientations.

The distribution of responses relative to the orientations of non-target items are shown 

in Fig. 3B, for each elongation condition. Fig. 3C displays the same distributions with a 

correction for minimum feature separations (see Methods). The distribution expected in the 

absence of swap errors (Fig. 3B, black dashed lines), based on the distribution of non-targets 

relative to targets, has been subtracted. The absence of a central tendency in these plots 

indicates that there is little to no evidence for swap errors in the orientation-report condition. 

To quantify this, we compared the observed MAD between the reported orientation and the 

non-target orientations to the value expected if non-targets had no influence on responses. 

There was no significant difference between observed and expected deviation in the medium 

(1.68 ± 0.03, expected: 1.60 ± 0.03, t9 = 2.20, p = 0.056, BF10 = 1.63) and high (1.69 

± 0.03, expected: 1.62 ± 0.02, t9 = 2.15, p = 0.060, BF10 = 1.54) elongation conditions. 

In the low elongation condition the observed deviation was significantly different from the 

expected one (1.64 ± 0.02, expected: 1.61 ± 0.02, t9 = 2.89, p = 0.018, BF10 = 3.92), but the 

difference was small and in the opposite direction to that which would be produced by swap 

errors.

Fig. 3D displays the distributions of errors in the location-report condition for each of the 

three ellipse elongations. Overall error variability as assessed by circular standard deviation 

was again influenced by elongation (low: 1.59 ± 0.09, medium: 1.46 ± 0.15, high: 1.19 ± 

0.09), with significant differences between medium and high (t9 = 3.33, p = 0.009, BF10 

= 6.84), low and high (t9 = 7.57, p < 0.001, BF10 = 715.98) but not low and medium 

conditions (t9 = 1.44, p = 0.183, BF10 = 0.69). In this case, however, we found evidence 

that these changes reflected differences in the frequency of reporting non-targets rather than 

variability in memory for location itself.

The response distributions centered on the locations of non-target items, corrected for the 

effects of minimum separation, are shown in Fig. 3F. They display a clear central tendency 

suggesting the presence of swap errors when reporting location. Supporting this, the MAD 
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between the reported location and the non-target locations was significantly lower than the 

value expected in the absence of swap errors for every elongation condition (low: 1.59 ± 

0.02, expected: 1.68 ± 0.01, t9 = 5.23, p < 0.001, BF10 = 68.54; medium: 1.60 ± 0.02, 

expected: 1.71 ± 0.01, t9 = 7.43, p < 0.001, BF10 = 627.91; high: 1.64 ± 0.02, expected: 1.70 

± 0.01, t9 = 3.64, p = 0.005, BF10 = 10.24).

2.3.1 Comparison with simulated swap frequencies—Qualitatively, the pattern of 

results in Figs. 3D, E & F suggests that the manipulation of orientation variability affected 

the frequency of swap errors when orientation was the feature used to cue which item 

to report. To quantify this effect, we calculated a non-parametric estimate of swap error 

frequency in the location-report condition based on a nearest-item heuristic (see Methods). 

This estimate ranged from 48% ± 5% of trials with high elongation to 65% ± 3% with low 

elongation, with the estimated frequency increasing as ellipse elongation decreased (Fig. 

4A). There was a significant increase in swap error frequency between the low and medium 

(t9 = 2.49, p = 0.034, BF10 = 2.35), medium and high (t9 = 4.46, p = 0.002, BF10 = 28.08), 

and low and high (t9 = 5.24, p < 0.001, BF10 = 68.66) elongation conditions.

The key question we aim to answer in the present study is whether the observed changes in 

the frequency of swap errors when reporting location can be explained in full by differences 

in memory variability for orientation. To address this question, we employed a Monte Carlo 

simulation that predicts swap frequency in the location-report condition from response errors 

in the orientation-report condition. This simulation is based on three assumptions: first, 

that the response errors in the orientation-report condition for a given ellipse elongation 

accurately reflect memory variability for orientation; second, that this memory variability 

will be the same independent of whether orientation is used as cue or report feature; and 

third, that to make a response, participants will compare the given cue with the (imprecise) 

cue feature values of all items retrieved from memory, choose the item that is closest to 

the given cue, and report its retrieved response feature value (compare Schneegans & Bays, 

2017). Note that the first assumption would be violated if a considerable amount of swap 

errors occurred in the report-orientation condition (because then the response errors in this 

condition would not reflect purely memory variability for orientation), but our analysis of 

orientation report errors showed that this was not the case.

Based on these assumptions, we simulated the occurrence of swap errors in the location-

report condition as illustrated in Fig. 2. We added observed recall errors from the orientation 

report condition to the actual orientation features of each location-report trial, separately for 

each participant and elongation condition, and determined how often this would lead to a 

non-target item being selected as the most likely target (because its retrieved orientation was 

closest to the given cue; see Methods for details). As shown in Fig. 4A, the frequency of 

swap errors predicted by the simulation (blue) closely approximated the swap frequencies 

observed in the data (red) at each elongation level, with no significant difference in the low 

(t9 = 1.32, p = 0.22, BF10 = 0.61) and the high (t9 = 0.63, p = 0.55, BF10 = 0.37) elongation 

conditions (Fig. 4A). There was a borderline significant difference in the medium elongation 

condition according to the frequentist t-test, but the Bayes factor indicated only very weak 

evidence for a difference (t9 = 2.3, p = 0.047, BF10 = 1.85).
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2.3.2 Validating swap estimates—To facilitate comparison with the simulation, the 

empirical swap estimates above were based on a simple nearest-item heuristic. To confirm 

their validity we compared these estimates to those produced using two established methods: 

the three-component mixture model (Bays et al., 2009) and the resultant vector method 

outlined in Bays (2016a).

Based on fitting the mixture model, the mean probability of swap errors (non-target 

responses) in the orientation-report condition was low and did not change significantly 

with ellipse elongation (low elongation = 15% ± 5%, medium elongation = 16% ± 9%, 

high elongation = 6% ± 4%). Conversely, the estimated probability of swap errors in the 

location-report condition was overall quite high, and decreased with increasing elongation 

(low = 57% ± 4%, medium = 53% ± 5%, high = 39% ± 5%), with significant differences 

between the low and high (t9 = 2.72, p = 0.024, BF10 = 3.14) and medium and high 

conditions (t9 = 5.89, p < 0.001, BF10 = 139.95), though the difference between the low and 

medium conditions was not significant (t9 = 0.57, p = 0.583, BF10 = 0.35).

Based on the resultant vector method, which was applied to pooled data, in the orientation-

report condition the swap error estimates decreased from 39% in the low elongation 

condition to 14% and 10% in the medium and high elongation conditions respectively. 

Similarly, in the location-report condition a high proportion of swap errors was estimated in 

the low elongation condition (57%) which decreased to 54% and 36% in the medium and 

high elongation conditions.

Overall, the estimates obtained with both methods for the location-report condition follow 

a similar pattern to those based on the nearest-item heuristic, in that we found an increase 

in swap errors as ellipse elongation decreased. Furthermore, swap frequencies from both 

methods for the orientation-report condition were mostly low which is congruent with the 

distributions of response errors in Fig. 3C. The one notable disagreement is in the low 

elongation condition where the resultant vector swap estimate was higher than the mixture 

model estimate. Estimates of swap frequency become more variable as report-dimension 

variability increases, because of the increasing overlap of response probability distributions 

for swap and non-swap responses. This may explain the discrepancy occurring in the low 

elongation condition where orientation report variability was greatest.

2.3.3 Model comparison—To further explore the mechanisms underlying swap errors, 

the behavioural data from each participant were fit with three parametric models of VWM. 

This included the neural binding model that represents feature binding through conjunctive 

coding. Recall is captured as decoding of memorized feature values from noisy neural 

activity. Specifically, the item whose decoded cue feature value is most similar to the cue is 

selected and its decoded report feature value is output as the response.

Swap errors in the model occur when, due to decoding errors, the cue feature of a non-target 

item is deemed more similar to the cue than the target (which exactly matches the cue). In 

order to capture the effect of varying ellipse elongation on orientation estimates, we included 

a free parameter for each level of elongation that changed how much information about 
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orientation was encoded in the spiking activity, while leaving the information about location 

unchanged (see Methods for details).

Each participant’s behavioural data was also fit with full and partial versions of the 

interference model. Within the full model, recall involves using the context feature to 

retrieve a bound report (content) feature. Use of the context feature as a cue leads to re-

activation of target and non-target features and the most highly activated feature is likely to 

be retrieved. Swap errors in this model can be caused either by context-dependent activation 

which closely follows the feature variability account or by context-independent activation 

which is not predicted by the feature variability account. The partial interference model fixes 

context-independent activation at zero to investigate the ability of cue-dependent processes 

to fully account for swap errors in the current task.

Both the neural binding model and interference model successfully reproduced the 

distributions of response errors across all elongations in both orientation and location report 

conditions. However, quantitative comparisons using AIC and BIC demonstrated that the 

neural binding model consistently provided a better fit to the data (Table. 1). Furthermore, 

the fit of the partial interference model improved upon the full model by on average 10.61 

and 35.02 per participant for AIC and BIC respectively.

Summaries of the estimated parameters are provided for the neural binding model and both 

versions of the interference model in the Appendix. Of note is the parameter representing 

context-independent activation (Aa) which remains close to zero across conditions.

As the best fitting model, the predictions of the neural binding model are explored in more 

detail below. Predictions of the model, with best fitting parameters for each participant are 

also shown by solid lines in Fig. 3.

2.3.4 Neural binding model—The neural model does not implement any explicit 

guessing strategy that would produce swap errors specifically when the cued item is not 

held in memory, nor does it implement an upper limit on the number of items or features 

stored. However, due to the assumed stochasticity of neural activity, it is possible that 

no spikes contribute to the decoding of one or both of the individual feature values, in 

which case the decoded feature value is drawn from a uniform distribution. We assessed 

how these zero-spike cases contributed to the occurrence of swap errors in the model. In 

consideration of our main hypothesis, we focus here on the representation of the cue feature 

in the location-report condition, the condition where we predominantly observe swap errors. 

Results for the other conditions are reported in the Appendix.

Based on the neural model with best fitting parameters for each participant, group median 

conditional frequency with which the target received zero spikes in the cue dimension given 

that a swap error occurred was 31% (IQR: 11%-56%) in the low elongation condition, 13% 

(IQR: 5%-48%) in the medium elongation and 3% (IQR: 0%-29%) in the high elongation 

condition. Using the same method, we also determined the median probability on swap 

trials that the reported non-target item received zero spikes in the cue dimension: this 

was comparable to the results for the target item (low: 26%, IQR = 10%-51%; medium: 
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11%, IQR = 4%-44%; high: 2%, IQR = 0%-24%). In comparison, the median conditional 

probability that the target item received zero spikes in the cue dimension if the target item 

was correctly selected remained low across conditions, decreasing as elongation increased 

(low: 8%, IQR = 4%-27%; medium: 3%, IQR = 1%-21%; high: 0%, IQR = 0%-9%). All 

estimated probabilities were significantly different within levels of elongation as determined 

using a Wilcoxon signed-rank test (all p < 0.01, BF10 > 23.32).

These results suggest that a majority of swap errors occurred in cases where information 

about the target’s cue feature was available. To examine whether there was a relationship 

with the quality of this representation, we used the fitted neural model to calculate the mean 

precision (expressed in terms of Fisher Information) for items in swap and non-swap trials. 

This analysis showed that the mean cue-feature precision for target items was higher on 

trials where the target item was correctly selected for report (low: 1.59 ± 0.33, medium: 2.23 

± 0.45, high: 3.21 ± 0.60) than on swap trials (low: 1.09 ± 0.22, medium: 1.69 ± 0.35, high: 

2.61 ± 0.49). On swap trials, mean precision for selected non-target items (low: 1.20 ± 0.25, 

medium: 1.82 ± 0.38, high: 2.78 ± 0.53) was marginally higher than for target items. The 

mean precision estimates were all significantly different within levels of elongation (all p < 

0.03, BF10 > 2.57).

2.4 Discussion

In Experiment 1, the elongation of ellipse stimuli was varied with the purpose of 

manipulating memory variability for their orientations. The results of the orientation report 

condition indicated that this manipulation was successful, as demonstrated by increases 

in response variability with decreasing ellipse elongation. In the location report condition, 

where orientation was used as the cue feature, we observed an increased concentration of 

responses around non-target locations as ellipse elongation decreased.

This pattern of results is consistent with the feature-variability account of swap errors, 

whereby increased variability in recall of item orientations, when orientation is used to 

indicate which item to report, results in an increasing probability of erroneously reporting 

a non-target item. In order to determine whether swap errors could be explained in their 

entirety by this mechanism, we simulated responses in the location report condition based 

on the errors observed in the orientation report condition, using a nearest-item heuristic to 

estimate swap frequency. The predicted swap frequencies very closely matched the observed 

frequencies (Fig. 4) including the changes induced by varying ellipse elongation.

A model comparison of parametric models favoured the neural binding model over full 

and partial versions of the interference model. The cause of swap errors in the neural 

binding model closely follows the feature variability account, whereas the interference 

model includes an additional cue-independent source of swap errors. In the full model, the 

estimated parameter representing cue-independent activation remained close to zero across 

conditions. Moreover, the partial model with this parameter fixed at zero was a better fit than 

the full model. Overall, this provides further support for the hypothesis that swap errors can 

be fully accounted for by variability in memory for the cue feature.
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Additional analysis was carried out based on the neural binding model to explore how 

often swap errors occurred when zero spikes contributed to the decoding of one or both 

of the feature values. Results from the location-report condition indicated that the majority 

of swap errors occurred in cases where information about the target’s cue feature was 

available. Furthermore, swap errors were more likely to occur when memory precision for 

both the target and non-target’s cue feature was low suggesting that these responses may be 

associated with low confidence ratings. This is explored further in the General Discussion. 

Overall, the results of Experiment 1 support the hypothesis that variability in the cue-feature 

dimension is sufficient to fully explain swap errors in cued recall.

3 Experiment 2

In order to determine whether the effect of orientation cue variability on swap errors could 

be replicated in another feature dimension, in Experiment 2 motion direction took the place 

of orientation. Participants were shown four motion stimuli at different locations and asked 

to report one item’s direction of motion or location after being cued with the alternate 

feature. The variability of the motion direction representation was manipulated via motion 

coherence, which was varied across trials.

3.1 Methods

3.1.1 Experimental protocol—Ten participants, reporting normal or corrected-to-

normal visual acuity, took part in the second experiment (aged 18–29 years; three male, 

seven female). The task (illustrated in Fig. 1B) was identical to Experiment 1 with the 

following exceptions. Instead of ellipses, each memory array consisted of four motion 

stimuli (random dot kinematograms, RDK). Each RDK consisted of 45 dark grey dots 

(diameter, 0.1° of visual angle) moving at a constant speed of 5°/s within a circular aperture 

(diameter, 2° of visual angle) bounded by an annulus of the same colour. Dot lifetime 

was unlimited and dots reaching the boundary of the circle were repositioned at the same 

point on the opposite side, maintaining a constant dot density. Instead of ellipse elongation, 

RDKs varied from trial to trial between three levels of motion coherence: 30%, 60% or 

100% (low, medium or high coherence) defined as the proportion of dots moving in the 

same direction (dots that were not coherent were assigned random directions). The coherent 

motion direction for each RDK was chosen at random, with a minimum separation of 60° 

between the directions of different RDKs within a trial. The locations of the stimuli were 

also chosen at random with a minimum separation between the centers of each RDK of 

60° on the circle, matching the motion separation. Locations were cued and reported in the 

same way as in Experiment 1. Motion directions were cued and reported with a centrally 

presented dark grey arrow (length 3°, width 0.1°).

3.2 Analysis

The analysis for Experiment 2 was equivalent to the analysis conducted for Experiment 1, 

with motion direction and motion coherence in place of orientation and ellipse elongation.
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3.3 Results

Fig. 5A displays the error distributions when reporting direction across the three RDK 

coherence conditions in Experiment 2. There was a significant decrease in variability (mean 

circular standard deviation, low: 1.63 ± 0.05, medium: 1.22 ± 0.18, high: 0.80 ± 0.16) 

between the low and medium (t9 = 2.57, p = 0.03, BF10 = 2.58), medium and high (t9 = 

8.46, p < 0.001, BF10 = 1540.56), and low and high (t9 = 5.54, p < 0.001, BF10 = 96.29) 

coherence conditions.

The error distributions centred on the motion directions of non-target items are shown in 

Fig. 5B). The undulating patterns, with peaks in the response distribution at approximately 

±π/2 (±90°) and ±π (±180°) relative to the non-target, are a consequence of the relatively 

large minimum distance (60°) enforced between the stimulus directions on a trial, which in 

combination with the set size of four resulted in a higher probability of target and non-target 

directions differing by these angles. Confirming this interpretation, the same pattern was 

present in the distribution expected in the absence of swap errors (dashed black line in Fig. 

5B). Subtracting the expected distribution left an approximately uniform function without 

central tendency (Fig. 5C), indicating few to no swap errors occurred when reporting motion 

direction. The MAD between the reported motion direction and the non-target directions 

was not significantly different from the value expected in the absence of swap errors for any 

coherence condition (low: 1.68 ± 0.01, expected: 1.67 ± 0.02, t9 = 0.37, p = 0.72, BF10 = 

0.33; medium: 1.77 ± 0.04, expected: 1.77 ± 0.03, t9 = 0.27, p = 0.79, BF10 = 0.32; high: 

1.84 ± 0.04, expected: 1.87 ± 0.03, t9 = 1.64, p = 0.14, BF10 = 0.85).

Fig. 5D displays the error distribution when reporting location across the three RDK 

coherence conditions. There was a significant decrease in overall variability (mean circular 

standard deviation, low: 1.60 ± 0.10, medium: 1.25 ± 0.15, high: 0.81 ± 0.16) between the 

low and medium (t9 = 4.05, p = 0.003, BF10 = 17.03), medium and high (t9 = 7.36, p < 

0.001, BF10 = 590.84), and low and high (t9 = 9.02, p < 0.001, BF10 = 2416.41) coherence 

conditions. Like the equivalent changes observed in Experiment 1, we found evidence that 

this result is due to changes in swap frequency rather than an actual difference in variability 

of memory for location information across conditions.

The error distributions centred on the locations of non-target items all displayed clear 

central tendencies after correcting for the effects of minimum feature separation (Fig. 5F), 

suggesting the presence of swap errors when reporting location. The MAD between the 

reported location and the non-target locations was significantly different from the expected 

value in the low (1.63 ± 0.02, expected: 1.71 ± 0.02, t9 = 6.10, p < 0.001, BF10 = 173.93), 

medium (1.74 ± 0.03, expected: 1.78 ± 0.03, t9 = 3.79, p = 0.004, BF10 = 12.37) and high 

coherence conditions (1.84 ± 0.04, expected: 1.87 ± 0.03, t9 = 3.29, p = 0.009, BF10 = 6.52).

3.3.1 Comparison with simulated swap frequencies—We expected that 

manipulating coherence would elicit greater changes in variability than produced by ellipse 

elongation in Experiment 1, resulting in even stronger effects on swap error frequency, 

and this was indeed the case. Swap error frequency in location report, as estimated by the 

nearest-item heuristic, decreased strongly with increasing motion coherence (low: 55% ± 

3%, medium: 42% ± 5%, high: 24% ± 6%; all p < 0.005, BF10 > 12.6; Fig. 4B).
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As in Experiment 1, we used a Monte Carlo simulation based on the cue-feature variability 

account to predict the swap frequencies in the location-report condition from response errors 

in the direction-report condition. Consistent with the estimates obtained from the nearest-

item heuristic, predicted swap frequencies decreased significantly as motion coherence 

increased (low: 55% ± 3%, medium: 36% ± 6%, high: 22% ± 7%; all p < 0.002, BF10 

> 28.3). Critically, the predicted swap frequencies closely matched the estimated values, 

showing no significant difference between estimate and prediction at any coherence level (all 

p > 0.15, BF10 < 0.77).

3.3.2 Validating swap estimates—The mean probability of swap errors (non-target 

responses) estimated using the mixture model (Bays et al., 2009) in the direction-report 

condition was low and did not change significantly with variation in the motion coherence 

(low coherence = 4% ± 2%, medium coherence = 6% ± 2%, high coherence = 12% ± 

7%). Conversely, the estimated probability of swap errors in the location-report condition 

increased with decreases in coherence with significant differences between the low and high 

(low = 51% ± 2%, high = 19% ± 6%, t9 = 5.25, p < 0.001, BF10 = 70.01), medium and high 

(medium = 38% ± 5%, t9 = 5.98, p < 0.001, BF10 = 152.99) and low and medium conditions 

(t9 = 2.98, p = 0.016, BF10 = 4.36).

In the direction-report condition, the swap error estimates produced from the pooled group 

data using the resultant vector method (Bays, 2016a) remained predominantly low ranging 

from −5% in the low coherence condition to 2% and 21% in the medium and high coherence 

conditions respectively (note that a negative estimate of swap frequency obtained by this 

method can be interpreted as strongly favouring no swaps in the data). In contrast, in 

the location-report condition a high proportion of swap errors was estimated in the low 

coherence condition (55%) which decreased to 32% and 26% in the medium and high 

coherence conditions, respectively.

Overall, similarly to Experiment 1, all estimation methods consistently indicated that 

swap errors in the location-report condition increased as motion coherence decreased. 

Additionally, when reporting direction the estimated swap errors remained low with 

no evident link to the motion coherence condition which is congruent with the error 

distributions in Fig. 5C.

3.3.3 Model comparison—The behavioural data from each participant were again fit 

with three models of VWM. This included the neural binding model as well as the full and 

partial interference models.

Both the neural binding model and interference model successfully reproduced the 

distributions of response errors across all levels of coherence in both direction and location 

report conditions. However, quantitative comparisons using AIC and BIC indicated that the 

neural binding model consistently provided a better fit to the data for all but one participant 

whose data was fit better by the full interference model based on AIC values only (Table. 2). 

The comparison of full and partial interference models produced mixed findings with AIC 

indicating that the full model was a better fit, while BIC, which more heavily penalizes free 

parameters, favoured the partial model.
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Summaries of the estimated parameters are provided for the neural binding model and both 

versions of the interference model in the Appendix. In contrast to the results of Experiment 

1, the parameter representing context-independent activation (Aa) deviated substantially 

from zero in some levels of coherence in the location-report condition.

The predictions of the neural binding model are explored in more detail below. Predictions 

of the model, with best fitting parameters for each participant are also shown by solid lines 

in Fig. 5.

3.3.4 Neural binding model—The neural binding model was again used to explore 

how often swap errors occurred in the location-report condition when the target item 

was attributed zero samples in the cue dimension (motion direction). The group median 

conditional probability that the target received zero samples in the cue dimension if a 

swap error occurred was 89% (IQR: 88%-91%) in the low coherence condition, 83% (IQR: 

80%-88%) in the medium coherence and 75% (IQR: 67%-76%) in the high coherence 

condition.

The group median conditional probability that the selected non-target item received zero 

samples in the cue dimension if a swap error occurred was consistently lower than the 

result for the target item (low: 82%, IQR = 79%-83%; medium: 70%, IQR = 60%-77%; 

high: 39%, IQR = 36%-51%). Furthermore, the group median conditional probability that 

the target item received zero samples in the cue dimension if the target item was correctly 

selected was lower still across conditions (low: 44%, IQR = 43%-51%; medium: 28%, IQR 

= 18%-34%; high: 7%, IQR = 5%-12%), though substantially higher than the probabilities 

observed in Experiment 1. Furthermore, all estimated probabilities were again significantly 

different within levels of coherence as determined using a Wilcoxon signed-rank test (all p < 

0.002, BF10 > 31.82).

The group mean cue-feature precision was again higher for target items in trials where the 

target item was correctly selected for retrieval (low: 4.02 ± 0.64, medium: 6.67 ± 0.99, 

high: 11.96 ± 2.01) than both target items (low: 0.70 ± 0.11, medium: 1.40 ± 0.23, high: 

2.72 ± 0.42) and selected non-target items (low: 1.24 ± 0.22, medium: 2.90 ± 0.56, high: 

7.37 ± 1.49) in swap error trials. Furthermore, the mean precision estimates were again all 

significantly different within levels of coherence (all p < 0.003, BF10 > 20.67).

3.4 Discussion

In Experiment 2, we aimed to determine whether the effect of orientation cue variability on 

swap errors could be replicated with a different feature dimension. Instead of orientation, 

this experiment manipulated the memory variability for motion direction through changes in 

motion coherence. The results closely replicated those of Experiment 1, including increases 

in response error when reporting direction with decreasing motion coherence, and an 

increased concentration of responses around non-target locations when cueing with motion 

direction.

Furthermore, predicted swap frequencies based on simulated location responses once again 

closely matched the observed frequencies across levels of motion coherence. This was 
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despite the range of swap error frequencies covered by the manipulation of coherence being 

substantially larger than in Experiment 1.

The model comparison replicated the result of Experiment 1 favouring the neural binding 

model over full and partial versions of the interference model. However, the comparison of 

the full and partial interference model was less consistent than Experiment 1 and the best 

fitting model changed dependent on the criterion used. Furthermore, the cue-independent 

activation parameter (Aa) was substantially above zero in some levels of coherence in the 

location-report condition. One difference between the two experiments is the minimum 

feature separation which was greater in this experiment (60°) than Experiment 1 (30°). 

The increased distance between each item’s cue-feature may increase the likelihood that 

swap errors are attributed to cue-independent processes. However, the neural binding model 

remained the best fitting model overall, consistent with the hypothesis that swap errors can 

be fully accounted for by variability in memory for the cue feature.

Unlike Experiment 1, analysis using the neural binding model showed that in the location-

report condition a substantial proportion of swap errors occurred in cases where information 

about the target’s cue feature was not available. The model accounted for errors on these 

trials according to the same mechanism as trials where target information was available. 

Furthermore, swap errors were again more likely to occur when memory precision for both 

the target and non-target’s cue feature was low suggesting that these responses may be 

associated with low confidence ratings. Overall, the results of Experiment 2 provide further 

support for the proposal that variability in memory for the cue feature can fully explain swap 

errors.

4 Experiment 3

The results of Exps. 1 and 2 indicated that swap error frequencies on the location-report 

tasks were fully accounted for by variability in the cue feature, as estimated in a separate 

task. This suggests that cue-independent swaps, of the kind predicted by failures of feature 

binding independent of individual features, did not occur in these tasks. Superficially, this 

finding seems in conflict with a previous study by Oberauer and Lin (2017) which found 

evidence in fitted model parameters for cue-independent as well as cue-dependent swaps. 

One difference between this and the previous study is that we chose stimulus features, 

including location, randomly from a uniform distribution on the circle, whereas stimulus 

locations in the previous study were chosen from a fixed set of evenly-spaced points on the 

circle that stayed the same from trial to trial. Such predictability in spatial configuration has 

also been raised by other authors as a possible influence on swap errors (Brady & Störmer, 

2020; Schurgin et al., 2020).

To test this, Experiment 3 comprised an orientation report task with a spatial cue (Fig 6A) 

and three between-participant experimental conditions (illustrated in Fig 6B). Participants 

were shown memory arrays of six oriented Gabor patches, where the locations of the six 

Gabors were either evenly distributed around an invisible circle and fixed for all trials, 

evenly distributed but with a different random rotation of the whole array on each trial, or 

randomly distributed on every trial.
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4.1 Methods

4.1.1 Experimental protocol—254 online participants carried out a cued recall task 

testing their memory for orientation and location. All participants were recruited using 

Prolific (https://www.prolific.co), reported normal or corrected-to-normal visual acuity and 

gave informed consent in accordance with the Declaration of Helsinki. Eleven participants 

were excluded from the analysis for one of the following reasons: they completed a high 

number of trials without adjusting the orientation to make their response (two participants); 

they did not complete all trials (six participants); they performed at chance level in both 

experimental and catch trials (two participants); inattention was indicated by the extended 

duration of their testing session (one participant). 243 participants (aged 18–36 years; 106 

male, 129 female, 1 transgender, 7 not specified) were therefore included in the analysis.

Each trial of the task (illustrated in Fig. 6A) began with the presentation of a dark grey 

central fixation circle (diameter, 10 pixels; online experiment stimuli are described in pixels 

rather than degrees of visual angle due to varying displays) against a mid-grey background. 

Participants were instructed to keep looking at the fixation circle throughout each trial. 

After 0.75 s, a memory array consisting of six Gabor patches (width and height, 126 pixels; 

wavelength of sinusoid, 38 pixels/cycle; s.d. of Gaussian envelope, 20 pixels) was presented 

for 1 s, outlined by light grey circles which served as placeholders for the patches. The 

center of each Gabor was positioned on an invisible circle with a radius of 250 pixels 

centered on the fixation circle. The Gabors’ orientations were chosen at random (without 

minimum separations). Participants were randomly assigned into one of three conditions 

(see Fig. 6B). These were the fixed, rotated and random location conditions. In the fixed 

location condition, the six Gabor patches were presented in the same six locations on every 

trial, equally distributed around the circle (arc length of 60° between patch centers). In 

the rotated location condition, the Gabor patches were again equally distributed around the 

circle but the whole array was randomly rotated on each trial. In the random location 

condition, each Gabor’s location on each trial was randomly chosen from a uniform 

distribution on the circle, with a minimum separation (arc length) of 36° between patch 

centers.

After the presentation of the memory array, the fixation circle was shown for a further 

1 s followed by the cue display. The circle outlines reappeared in the locations of the 

previously presented Gabor patches. One of the outlines was a darker grey to cue the 

location of the randomly selected target item for that trial. Participants were instructed to 

begin moving their cursor once they were ready to respond with the orientation of the target 

Gabor. Once participants moved their cursor, a Gabor patch was presented centrally and 

participants freely rotated it using their cursor until it matched the remembered orientation 

of the target. Each participant completed approximately 109 trials. The trials were split into 

two blocks separated by a one minute minimum break, with the complete testing session 

lasting approximately 15 minutes.

4.2 Analysis

As in previous experiments, orientation values were scaled up to cover the same range 

as location (−π to π) for easier comparison of results across features. To examine the 
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pattern of swap errors in each condition, the MAD of reported orientations from non-target 

orientations was calculated and plotted as a function of the non-target’s angular distance 

from the cued location. Deviations were compared with the value expected in the absence 

of swap errors (π/2) using Bayesian (using JASP, 2019) and frequentist one-sample t-tests. 

Since the orientation of each item was generated at random, it was not necessary to account 

for minimum separations when calculating the expected MAD (as was done for Experiments 

1 and 2). MADs significantly below the expected level indicate biases towards non-target 

orientation values indicative of swap errors.

Similarly to Experiments 1 and 2, swap error frequencies were estimated for each condition 

using the mixture model method (Bays et al., 2009) applied to subject-level data and the 

resultant vector method of Bays (2016a) applied to pooled group-level data.

4.3 Results

To assess effects of cue similarity, Fig. 6C displays the MAD of reported orientations from 

non-target orientations, plotted as a function of the non-target’s angular distance from the 

cued location. Deviations below the value expected in the absence of swap errors (π/2; 

dashed line) in these plots indicate biases towards non-target orientation values indicative of 

swap errors.

For the fixed-location and rotated-location conditions, non-targets were located at one of 

three possible angular distances from the cue: 60°, 120° and 180°. In both conditions, the 

pattern of MADs (Fig. 6C, left and middle) suggested an approximately equal probability of 

swaps to the 60° (nearest) and 180° (diametrically opposite) non-target orientations, with no 

evidence for swaps to the intermediate non-targets at 120° from the cue.

The MAD in the fixed-location condition was significantly lower than expected for the 

non-targets at 60° from the target (MAD = 1.55 ± 0.01, t80 = 3.10, p = 0.003, BF10 = 10.02) 

and for non-targets positioned precisely opposite to the target (180°; MAD = 1.53 ± 0.01, 

t80 = 3.81, p < 0.001, BF10 = 77.85). The MAD for the non-target items two positions away 

(120°) was not significantly different from the expected value (MAD = 1.57 ± 0.01, t80 = 

0.36, p = 0.723, BF10 = 0.13).

In the rotated location condition (Fig. 6C middle), the MAD was once again significantly 

lower than expected for non-targets at 60° (MAD = 1.52 ± 0.01, t80 = 6.42, p < 0.001, BF10 

= 1,274,140) and 180° (MAD = 1.53 ± 0.01, t80 = 3.93, p < 0.001, BF10 = 115.90), but not 

120° (MAD = 1.57 ± 0.01, t80 = 0.15, p = 0.882, BF10 = 0.12).

In the random location condition (Fig. 6C right), for purposes of analysis we discretized 

the distance between non-targets and cue into seven bins of equal interval. The MAD for 

non-target items in the two bins closest to the cued location (Distance bin 1 = 34°-55°, MAD 

= 1.48 ± 0.01, t80 = 7.65, p < 0.001, BF10 = 238,478,000; Distance bin 2 = 55°-76°, MAD 

= 1.50 ± 0.01, t80 = 4.57, p < 0.001, BF10 = 1009.32) and the furthest bin, which included 

non-targets located diametrically opposite to the cue (Distance bin 7 = 159°- 180°, MAD = 

1.54 ± 0.01, t80 = 2.37, p = 0.020, BF10 = 1.70) were significantly lower than the expected 

value. None of the intermediate bins differed significantly from the expected MAD.
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We further estimated swap error frequencies using the mixture model (fixed: 13% ± 

2%, rotated: 18% ± 2%, random: 17% ± 2%) and the resultant vector method, which 

was applied to pooled data (fixed: 21%, rotated: 32%, random: 32%). Though the swap 

frequencies varied between methods of estimation, the mixture model estimates did not vary 

significantly between conditions (all p > 0.13, BF10 < 0.49).

4.4 Discussion

In Experiment 3 we aimed to determine whether methodological differences between 

previous studies in the predictability of spatial locations across trials could have influenced 

the frequency of swap errors, when location was used as a cue.

For fixed, rotated and random configurations, we found evidence for swap errors involving 

those non-target items closest to the cue location, but not for those at intermediate distances. 

This is consistent with results from the present and previous studies using random spatial 

configurations, and with the cue-feature variability account of swap errors more generally. 

We did not find any consistent effect of spatial predictability on swap frequency.

Additionally, in all three conditions we found that responses were on average significantly 

closer than expected to non-targets located precisely opposite to the cued location, 

suggesting a specific prevalence of confusions involving these items. This could be evidence 

for a non-metric representation of stimulus locations in memory, a topic we consider further 

in the General Discussion.

5 General Discussion

In cued recall tasks, observers often report features belonging to display items other than the 

one indicated by the cue. These erroneous responses, termed swap errors, are more likely to 

reflect items that are similar to the target in the cue-feature dimension (Bays, 2016a; Emrich 

& Ferber, 2012; Oberauer & Lin, 2017; Rerko et al., 2014; Sahan, Dalmaijer, Verguts, 

Husain, & Fias, 2019; Schneegans & Bays, 2017; Souza et al., 2014).

Observations analogous to swap errors have also been made in serial recall tasks commonly 

used in the fields of verbal and spatial short-term memory, in which participants have 

to recall memory items in the order they were presented. So-called transposition errors 

occur when participants report the correct sample items, but in an incorrect order, and 

most commonly take the form of swapping temporally proximate items (see Hurlstone, 

Hitch, & Baddeley, 2014 for review). Similarly, transposition errors are reliably observed in 

both immediate and delayed free recall tasks typically used to investigate memory search 

(Zaromb et al., 2006).

The VWM literature suggests that swap errors may be instances of a broader phenomenon 

reflecting the mechanism of binding items in working memory to different cue or context 

dimensions (Oberauer & Lin, 2017; Schneegans, McMaster, & Bays, 2022). This is 

consistent with broader memory literature in which transposition errors are assumed to 

arise from confusing contextual cues associated with each item. For example, computational 

models of serial recall can explicitly account for gradients of transposition errors by 
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assuming items are bound to an evolving context built from fading records of previously 

encoded or retrieved items (Logan, 2021; see also Howard & Kahana, 2002). In addition, 

noisy coding theories (e.g., Estes, 1997) propose that transposition errors in serial recall 

reflect place changes between adjacent items due to the noise-driven perturbations arising 

from the recall of previously learned items or the study of new items. Together, in recent 

decades different lines of work investigating memory processes found converging empirical 

evidence on swap and transposition errors, as well as on the mechanistic accounts of how 

these errors arise.

The feature variability account proposes that swap errors are the result of confusions in 

identifying which item is indicated by the cue (Bays et al., 2009; Schneegans & Bays, 2017). 

However, some proportion of swap errors have also been ascribed to an informed guessing 

strategy on trials where the probed item was not in memory (Huang, 2019; Pratte, 2019), and 

more generally it has been suggested that at least some swap errors arise from a mechanism 

unrelated to cue-feature similarity (Oberauer & Lin, 2017).

To address these alternative accounts, we first assessed whether changes in variability in the 

cue-feature dimension induced matching changes in swap error frequency. In Experiment 1, 

we parametrically manipulated the precision with which stimulus orientations were encoded 

by varying elongation, and in Experiment 2 we manipulated encoding of stimulus motion 

directions by varying coherence. In each case, we tested recall performance when orientation 

(direction in Experiment 2) of one item was reported based on a cued location, and when 

location was reported based on a cued orientation (direction). Both forms of encoding 

manipulation were successful, as demonstrated by monotonic increases in error dispersion 

with decreasing elongation (coherence) when features from the manipulated dimension were 

reported, and an increasing concentration of responses around non-target locations when the 

manipulated feature dimension was used as a cue.

This latter result suggested that increasing variability in recall of orientation (direction) 

resulted in an increasing probability of erroneously reporting a non-target item. To assess 

what proportion of swap errors could be explained by this feature-variability account, we 

simulated responses on the location report tasks of Exps. 1 and 2 based on the errors 

observed on the orientation (direction) report tasks in the same experiment, using a nearest-

item heuristic to estimate swap frequency. The predicted frequencies very closely matched 

the observed frequencies in both experiments (Fig. 4), accurately reproducing the effects 

of the encoding manipulations on swap frequency. This close correspondence was observed 

over conditions exhibiting a broad range of swap frequencies, from approximately 20% of 

responses in the high coherence condition of Experiment 2 to about 65% of responses in the 

low elongation condition of Experiment 1. These results provide evidence that variability in 

the cue-feature dimension is sufficient to explain swap errors in their entirety, and may be 

the only significant mechanism for their generation.

5.1 Cue-independent mechanisms

According to the feature-variability account, an erroneous report of a non-target item occurs 

when its cue-dimension feature retrieved from memory is more similar to the cue than the 

cue-dimension feature retrieved for the target. This account predicts that non-targets whose 
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actual cue-features more closely resemble the cue (and so the target) should be reported 

more frequently than those less similar: a prediction that has been supported empirically 

(see above). However, previous work conducted by Oberauer and Lin (2017) identified a 

component of swap errors seemingly unrelated to cue-feature similarity. Their interference 

model of working memory can produce erroneous reports of non-target features through 

two routes. First, similar to our feature variability account, coactivation of closely located 

items by spatial cues may result in a non-target item being erroneously recalled. Second, 

background noise in the ‘context space’ can feed through to the ‘binding space’ during 

the delay period of the task, reactivating the report-feature representations of all items 

independent of their cue-feature value. The fitted parameters of their model implied that 

both cue-dependent and cue-independent swaps were present in their data, which came 

primarily from colour report tasks using a spatial cue. Furthermore, in a recently published 

study using the interference model, they propose that swap errors in a change-detection task 

were predominantly produced by cue-independent processes (Lin & Oberauer, 2022).

It is important to note that there is no simple criterion to determine whether an individual 

swap error was the result of confusability between a non-target item’s memorized cue 

feature and the given cue, or arose in a cue-independent manner. If memory precision for 

the cue feature is low, as is typically the case at high set sizes, then even very distant values 

in feature space may be confusable. The interference model makes parametric assumptions 

about how cue-dependent swaps are generated (specifically, a double exponential function 

was chosen in that model to describe the spread of activation to items similar to the cue) 

in order to estimate frequencies of cue-dependent and cue-independent swaps. Critically, 

if the parametric function chosen to describe the effect of cue-similarity is not precisely 

matched to the underlying generative process, swap errors that are not well-described by this 

distribution may instead be captured by a non-zero value for the cue-independent parameter.

In a comparison of the neural binding model with both the full interference model and 

a partial interference model with cue-independent activation fixed at zero, we found that 

the neural binding model was a consistently better fit of the data from Experiment 1 

and 2. Furthermore, in Experiment 1 the partial interference model was a better fit than 

the full interference model which estimated cue-independent activation to be close to 

zero across conditions. For Experiment 2, the estimated cue-independent activation was 

substantially above zero in some levels of coherence in the location-report condition. The 

large feature separations in this experiment may increase the likelihood of the interference 

model attributing swap errors to cue-independent processes. However, the neural binding 

model remained the best fitting model overall, consistent with the feature variability account.

The neural binding model is also limited by the validity of the parametric function chosen to 

describe the effect of cue-similarity. While this function is to some extent validated on the 

basis that it is the same as the one used for report-feature variability, it could nonetheless 

be contested on similar grounds to the interference model. This is why we employed a 

non-parametric, simulation-based approach as the primary basis of our conclusions. In 

this approach, we only assumed that errors in memory for a feature would be distributed 

identically whether that feature was used as a cue or for report. Coupled with a simple 

cue-dependent mechanism in which the item remembered as most similar to the cue is 
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selected for report, this proved sufficient to accurately predict the frequency of swap errors 

across different cue feature dimensions and reliabilities. This provides the strongest evidence 

against a separate cue-independent route to swap generation, because swaps generated by 

such a process would not be predicted on the basis of our cue-dependent method and so we 

would expect to observe them as a consistent underestimation of empirical swap frequency 

by the simulation.

We note that the relationship between cue- and report-dimension errors described above is 

a central assumption of the neural binding model Schneegans and Bays (2017), which is 

fit successfully in the current study to the data from multiple conditions simultaneously. 

The same assumption is not present in the interference model, which makes no particular 

predictions about the relationship between recall variability for a reported feature and swap 

errors when that same feature is used as a cue. Consequently, it was necessary to fit the 

interference model to each report and elongation/coherence condition separately requiring 

a greater number of free parameters. This is one of a number of significant differences 

between the models that limit the the conclusions we can draw from model comparison. 

A systematic factorial comparison between models may be a valuable direction for future 

research.

5.2 Effects of spatial configuration

One difference between the task designs of our Exps 1 and 2 and some previous studies, 

including Oberauer and Lin (2017), is that our item locations were drawn randomly and 

uniformly on the circle (with a minimum distance constraint), whereas in their experiments 

item locations were selected from a fixed set of equidistant points. It has been suggested that 

using a consistent fixed set of locations may reduce location noise and, as a result, influence 

swap frequency (Brady & Störmer, 2020; Schurgin et al., 2020). Our Experiment 3 was 

intended to assess this possibility.

Contrary to the proposal that using a consistent set of locations would inhibit swap errors, 

we found clear evidence for swaps and no significant differences in overall swap frequency 

when recalling stimulus arrays with fixed equidistant locations, equidistant but randomly 

rotated locations, or random locations. Consistent with our previous experiments, there was 

evidence for swap errors in Experiment 3 for non-targets closest in location to the target, 

in every spatial configuration (Fig. 6C). However, in each condition, we also observed 

a substantial dip below expected levels in the deviation of responses from non-targets 

positioned diametrically opposite the target, suggesting that swap errors involving these 

particular items were more frequent than would be predicted based on their physical 

(angular or Euclidean) distance from the cue.

These results could be explained by encoding of item locations in a non-metric or qualitative 

format (Landau & Jackendoff, 1993), in which diametrically opposing positions (180° 

separation on the circle) were more easily confused than some positions that were physically 

closer together (e.g. 120° separation). An intuitive hypothesis would be that categorical 

encoding would be encouraged by using a fixed set of locations across trials. However, 

we observed an effect of similar magnitude in the condition where locations varied from 

trial to trial while maintaining a regular equidistant arrangement, and of only slightly lesser 
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magnitude in the condition where locations were generated randomly. This suggests that the 

opposite-item effect does not require a predictable spatial arrangement, however the effect 

appears confined to a narrow enough window around 180° that swaps to opposite items 

would be expected to occur rarely when locations are drawn at random.

We note that, despite their strict dependence on the cue, we would expect opposite-item 

swaps to be poorly captured by any parametric model that assumes spatial confusability 

declines monotonically with physical distance (e.g. Oberauer and Lin 2017; Schneegans and 

Bays 2017), and indeed could be mistakenly identified as having a cue-independent source.

5.3 Strategic accounts of swap errors

Several previous studies have argued that swap errors reflect a form of strategic behaviour, 

rather than a consequence of noise (Huang, 2019; Pratte, 2019; Utochkin & Brady, 2020). In 

particular, Pratte (2019) proposed that, when participants are instructed to recall the location 

of an item for which they have no memory, they may adopt a strategy of reporting a location 

close to where other items had been presented, rather than producing a random response. 

On this basis, the study concluded that the frequency of ‘guessing’ (i.e. non-target reports 

interpreted as guesses) in location report tasks is similar to estimates for other report feature 

dimensions and consistent with slot-based accounts of working memory (Cowan, 2001; 

Luck & Vogel, 1997; Zhang & Luck, 2008).

The hypothesis that swap errors occur when the target item is not in memory makes the clear 

prediction that their frequency will not depend on which feature is used as the cue. Contrary 

to this, and consistent with previous results of Rajsic and Wilson (2014), we observed 

substantially lower swap frequencies when location was the cue feature compared to when it 

was the report feature. Furthermore, we found that varying the reliability of the non-spatial 

feature (orientation or motion direction) strongly modulated swap frequencies when it was 

used for cueing, but had minimal effect on swap frequency when it was the reported feature. 

If the reliability manipulations had caused some proportion of items not to be stored, this 

frequency would not depend on which feature was subsequently cued for report.

The strategic guessing acount assumes a dichotomy between items that are held in memory, 

and those that are not, with different decision processes associated with each case. Whether 

this conceptualization of working memory is accurate has been a point of contention 

in the long-standing debate of slot versus resource models, with the latter viewing zero-

information states merely as one end of a continuum of memory precisions (van den Berg et 

al., 2012) and recall estimates generated by a single decision process.

The feature variability account as employed here is agnostic with respect to the format 

and granularity of memory representations, and merely posits that the same limitations that 

give rise to response variability in the spatial cue condition also underlie swap errors when 

location is reported.

Whether a particular feature is remembered with very low precision or with zero precision 

makes no meaningful difference to the predictions of this account, as these cases are treated 

identically. Indeed, the strategy described in Pratte (2019) for guesses in spatial working 
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memory tasks, i.e. reporting the location of whichever item’s representation in memory most 

closely resembles the cue, is identical to the mechanism assumed to underlie all responses 

in the feature variability account (Bays, 2016a; Schneegans & Bays, 2017). The difference 

between these proposals does not lie in the selection strategy, therefore, but in the claim 

that a majority of swap errors occur when the target item is not in memory. As a corollary, 

the previous study’s finding that participants reported non-target items when cued with a 

feature that wasn’t in the memory array is equally consistent with either account, and does 

not provide evidence for the claim that swaps are strategic guesses.

It is also worth noting that a strategy of reporting a non-target location when the cue does 

not match any item in memory would be highly suboptimal under a slot-based account in 

which only whole items can be encoded into and lost from WM: in fact, one should choose 

any location except those of items in memory, as those are the locations one can be certain 

the target did not occupy.

The neural correlates of swap errors in VWM were investigated in a recent study which 

found that swap error responses were preceded by active maintenance of the swapped 

item (Mallett, Lorenc, & Lewis-Peacock, 2022). This suggests that swap errors are 

not spontaneously produced random guesses at the response stage but rather memory 

representations for incorrect items that are maintained in VWM. Although this finding 

cannot rule out strategic guessing which may take place once the cue is presented but prior 

to the response stage, participants subjectively reported that they had a degree of confidence 

in their response rather than guessing.

5.4 Implementing the feature variability account

While not consistent with accounts in which items or slots are lost as whole units, our 

results could potentially be explained by accounts in which different features of an item are 

subject to independent variability (Bays, Wu, & Husain, 2011; Fougnie & Alvarez, 2011). 

To investigate this possibility, we fit the data with multiple models of VWM. Consistently 

the best fitting model was a previously-proposed implementation of working memory based 

on population coding (Schneegans & Bays, 2017). This “neural binding” model assumes 

that the features of stimuli are encoded in an idealized conjunctive neural code and recalled 

via maximum likelihood decoding from noisy neural activity. Within the model, swap errors 

occur when a non-target item is erroneously deemed more similar to the cue than the target 

(which matches the cue exactly). This process is consistent with the feature variability 

account of swap errors outlined previously.

The model was adapted to capture the effects of manipulating the ellipse elongation and 

RDK coherence by incorporating a new conjunction coding parameter. This addition to 

the model specifies a proportion of spikes that carry orientation (direction) information, 

in addition to the location information carried by all spikes. This reflects the expectation 

that stimuli with lower elongation (coherence) provide reduced orientation (direction) 

information, without a reduction in location information. The spiking activity resembles 

that of a mixed population code (Matthey, Bays, & Dayan, 2015), in which all neurons are 

spatially selective but only some are sensitive to orientation (direction), the activation of this 

latter group depending on visual discriminability of the angular feature.
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The best fitting conjunction coding parameter (proportion of spikes available for orientation/

direction decoding) increased significantly with increasing ellipse elongation and RDK 

motion coherence. The model provided a quantitatively precise account of empirical 

response distributions that was also parsimonious, using just six free parameters to capture 

full response distributions relative to both targets and non-targets across all six conditions of 

each experiment (i.e. all panels in Figure 3).

This idealized neural population model has a simple mathematical interpretation in terms of 

sampling, with each individual spike representing one noisy sample of a memorized feature 

value (or a combination of feature values). In this interpretation, it is intuitive that recall 

precision is determined by the number of spikes, or samples, that contribute to the estimation 

of a memorized feature. This number varies randomly and independently between items, 

following a Poisson process, and this stochasticity – rather than discreteness of the samples 

– has been shown to be critical for explaining human recall errors (Schneegans, Taylor, & 

Bays, 2020).

In particular, this implementation of the neural population model allows for the possibility 

that no samples are available for the decoding of one or more of an item’s features. 

Importantly this case is not dealt with differently than cases with samples available, but 

merely constitutes one extreme in the probabilistic distribution of recall precision (van 

den Berg et al., 2012). While states of strictly-zero information are not a feature of more 

biologically realistic population models, they have near-equivalents in states of very low 

precision. We tested the extent to which the zero-sample case contributed to swap errors in 

the model fit to the present behavioral results. While the target item had zero samples for 

decoding of its cue feature on a significant minority of swap trials, this proportion varied 

substantially between experiments and conditions. Crucially, the reported non-target item 

on swap trials was almost equally likely to have zero samples. This result would not be 

expected if observers adopted a heuristic strategy of choosing a remembered non-target 

when no information about the target item’s cue feature is available, but is consistent with a 

feature variability account in which zero-samples is simply a state of maximal variability.

More generally, the number of samples available for an individual item determines the 

reliability (likelihood or posterior width) of an estimate: this has been proposed as a basis 

for confidence judgments, accounting for trial-by-trial correlations between recall error 

and subjective confidence (Bays, 2016b; Fougnie, Suchow, & Alvarez, 2012; Rademaker, 

Tredway, & Tong, 2012; van den Berg, Yoo, & Ma, 2017). Here, we found that swap errors 

were more likely to occur when recall precision was low for the cue feature of both the 

target item and the selected non-target item. The model therefore predicts that swap trials 

should be associated with lower confidence ratings, explaining an empirical observation that 

was previously interpreted as evidence for a strategic guessing account (Pratte, 2019).

5.4.1 Spatial binding and recall of multiple features—The tasks used in the 

present study required observers either to retrieve a non-spatial feature corresponding to 

a cued location, or one location associated with a cued non-spatial feature. Several previous 

studies have examined swap errors in contexts where one non-spatial feature is used to 

cue another non-spatial feature for recall (Gorgoraptis, Catalao, Bays, & Husain, 2011; 
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Pertzov & Husain, 2014; Pertzov, Manohar, & Husain, 2017; Rajsic et al., 2017), or 

where observers are cued with one feature of an object to report multiple other feature 

dimensions (Fougnie & Alvarez, 2011; Fougnie, Cormiea, & Alvarez, 2013; Schneegans 

& Bays, 2017). Bays et al. (2011) found that when observers were asked to report two 

non-spatial features of an object on the basis of a location cue, swap errors occurred 

largely independently in the two reported features. This was initially interpreted as evidence 

against a feature variability account of swap errors, on the assumption that if variability 

in memory for location caused the wrong item to be identified as matching the cue, 

both non-spatial features of that item would be selected for report. However, subsequent 

investigation led to an alternative explanation for those results, compatible with the feature 

variability account, in which independent representations exist for the conjunction of each 

non-spatial feature dimension with spatial location. Because feature variability in these 

different representations is independent, a swap error in retrieving one non-spatial feature 

of an item can be accompanied by correct retrieval of a second non-spatial feature based 

on the same location cue. This spatial-binding model successfully accounts for the earlier 

results as well as a range of other tasks in which spatial and non-spatial features are used in 

different combinations for cueing and report (Kovacs & Harris, 2019; Schneegans & Bays, 

2017, 2019).

5.5 Conclusion

We showed in two experiments that manipulating the reliability of a non-spatial feature 

in cued recall tasks produces consistent effects on recall precision (when the feature is 

reported) and swap probability (when the feature is used as cue). The effect on swap 

probability was explained in full by a feature variability account of swap errors, attributing 

them to variability in decoding memorized cue features, and did not require alternative 

explanations such as guessing strategies. In a third experiment using spatial cues, we 

observed a specific tendency to swap features of diametrically opposite items. While 

compatible with the feature variability account, this finding is not predicted by feature 

variability based models that assume a monotonic decrease in confusability with physical 

separation in space, and may contribute to discrepant findings regarding the sources of swap 

errors in different cued recall experiments.
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Figure 1. Experimental tasks.
(A) In Experiment 1, a stimulus array was presented on each trial consisting of six oriented 

ellipses with one of three levels of elongation (top to bottom: low, medium and high). After a 

delay, participants were cued with the location or orientation of one item from the preceding 

array, and used a response dial to report the other feature of the same item. (B) The task in 

Experiment 2 was similar except that each memory array consisted of four motion stimuli 

with different directions of motion, at one of three levels of motion coherence. The location 

or motion direction of one item was subsequently cued and participants reported the other 

feature of the same item. Displays are not to scale.
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Figure 2. Monte Carlo simulation of swap errors in Experiment 1.
(A & B) Each trial in the location-report condition (A) is represented by six orientation-

location pairs, one for each item, along with the cued orientation (B). (C & D) For each 

such trial, six response errors were drawn at random from trials in the corresponding 

orientation-report condition (C) and added to the six item orientations on the location-report 

trial (D). (E) If, after the addition of simulated error, the closest orientation to the cued 

value now belonged to one of the non-targets, the trial was categorised as a swap error. This 

process was repeated 1000 times for each location-report trial to obtain a predicted mean 

swap frequency.
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Figure 3. Distributions of responses in Experiment 1.
(A–C) Orientation recall, based on a location cue. Response distributions are plotted (A) 
relative to the target orientation, (B) relative to non-target orientations and (C) relative to 

non-target orientations with the expected distribution in the absence of swap errors (black 

dashed line in B) subtracted (see Methods), for each elongation condition. (D–F) Location 

recall, based on an orientation cue. Response distributions (D) relative to target location, 

(E) relative to non-target locations and (F) relative to non-target locations with expected 

distribution subtracted. In all plots, data points display the behavioural results (error bars 
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indicate ±1 SE) whereas the solid lines indicate the mean results from the fitted neural 

binding model (shading indicates ±1 SE). Black dashed lines (B and E) indicate the expected 

distribution in the absence of swap errors applied to the results from the fitted neural binding 

model. Orientation values are scaled up to the range (−π to π) to allow easier comparison 

between features.
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Figure 4. Swap error estimates.
(A) Experiment 1. The proportion of trials in which a swap error occurred estimated from 

the data (red) or the simulation (blue) across the three different levels of ellipse elongation. 

(B) Experiment 2. The proportion of trials in which a swap error occurred estimated from 

the data (red) or the simulation (blue) across the three different levels of RDK coherence. 

Coloured lines show estimates for individual participants. The error bars indicate the ±1 SE.
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Figure 5. Distributions of responses in Experiment 2.
(A–C) Direction recall, based on a location cue. Response distributions are plotted (A) 
relative to the target direction, (B) relative to non-target directions and (C) relative to non-

target directions with expected distribution in the absence of swap errors (black dashed line) 

subtracted (see Methods), for each coherence condition. (D–F) Location recall, based on a 

direction cue. Response distributions (D) relative to target location, (E) relative to non-target 

locations and (F) relative to non-target locations with expected distribution subtracted. In 

all plots, data points display the behavioural results (error bars indicate ±1 SE) whereas the 
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solid lines indicate the mean results from the fitted neural binding model (shading indicates 

±1 SE). Black dashed lines (B and E) indicate the expected distribution in the absence of 

swap errors applied to the results from the fitted neural binding model.

McMaster et al. Page 40

Cogn Psychol. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. Experiment 3.
(A) Experiment design. A stimulus array was presented on each trial consisting of six 

Gabor patches. After a delay, participants were cued with the location of one patch from 

the preceding array, and used their cursor to report the orientation. Displays are not to 

scale. (B) Memory array examples. The locations of the Gabor patches were either fixed 

for all trials and evenly spaced (Left), evenly spaced but rotated each trial (Middle) or 

randomly generated each trial with a minimum separation (Right). (C) The MAD of 

orientation responses from each non-target orientation as a function of spatial (angular) 

distance between the target and the non-target. (Left) For the fixed location condition; 

(Middle) for the rotated location condition. (Right) for the random location condition. 

Orientation values are scaled up to the range (−π to π). Error bars indicate ±1 SE. Asterisks 

indicate significant differences from expected level (marked by dashed line): * p < 0.05, ** p 

< 0.001.
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Table 1

Model fit statistics for Experiment 1. N (Param) displays the number of free parameters within each model. Δ 

indicates the difference in model fit statistic (AIC or BIC), averaged across participants, between each model 

and the best fitting model. N (Subj) indicates for how many participants each model was the best fitting model, 

as determined using AIC and BIC respectively.

AIC BIC

Model N (Param) Δ N (Subj) Δ N (Subj)

Neural binding model 6 0.00 10 0.00 10

Interference model (IM) 36 53.75 0 175.80 0

IM (Aa fixed at zero) 30 43.14 0 140.78 0
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Table 2

Model fit statistics for Experiment 2. N (Param) displays the number of free parameters within each model. Δ 

indicates the difference in model fit statistic (AIC or BIC), averaged across participants, between each model 

and the best fitting model. N (Subj) indicates for how many participants each model was the best fitting model, 

as determined using AIC and BIC respectively.

AIC BIC

Model N (Param) Δ N (Subj) Δ N (Subj)

Neural binding model 6 0.52 9 0.00 10

Interference model (IM) 36 20.28 1 141.82 0

IM (Aa fixed at zero) 30 36.65 0 133.77 0
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