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Abstract: The application of internal standards in quantitative and qualitative bioanalysis is a
commonly used procedure. They are usually isotopically labeled analogs of the analyte, used in
quantitative LC-MS analysis. Usually, 2H, 13C, 15N and 18O isotopes are used. The synthesis of
deuterated isotopologues is relatively inexpensive, however, due to the isotopic effect of deuterium
and the lack of isotopologue co-elution, usually they are not considered as good internal standards for
LC-MS quantification. On the other hand, the preparation of 13C, 15N and 18O containing standards
of drugs and their metabolites requires a complicated multistep de novo synthesis, starting from the
isotopically labeled substrates, which are usually expensive. Therefore, there is a strong need for the
development of low-cost methods for isotope-labeled standard preparations for quantitative analysis
by LC-MS. The presented review concentrates on the preparation of deuterium-labeled standards by
hydrogen−deuterium exchange reactions at the carbon centers. Recent advances in the development
of the methods of isotopologues preparation and their application in quantitative analysis by LC-MS
are evaluated.

Keywords: hydrogen−deuterium exchange; liquid chromatography-mass spectrometry; N-methylated
amino acids; quantitative LC-MS analysis

1. Introduction

Hydrogen−deuterium exchange (HDX) is a process involving the substitution of a
hydrogen atom by a deuterium atom in a molecule of a chemical compound, in the pres-
ence of a deuterating agent, e.g., deuterium oxide (D2O), or another source of dissociating
deuterons [1,2]. Labile hydrogens in the backbone and side-chain functional groups of
chemical compounds undergo exchange with protons of the solvent within a few min-
utes [1]. Due to the basic mechanism of the H/D exchange reaction, including acid-base
catalysis, the degree of the reaction depends strongly on the pH of the solution [2]. The
decimal logarithm of the reaction rate constant versus pH curve takes a V-shape with a
characteristic minimum between pH 2 and 3, where the average half-time of the exchange
at 0◦ C is tens of minutes. The rate of H/D exchange increases significantly with increasing
pH. The rate of the H/D exchange reaction depends also on the acidity of the hydrogens
bounded with heteroatoms, which is a consequence of the electronegativity differences
between these atoms. For this reason, hydrogens from carboxyl or hydroxyl groups un-
dergo the H/D exchange reaction much more easily than amide ones. The role of the
inductive effects of the individual functional groups present in the vicinity of the hydrogen
undergoing H/D exchange, and of steric hindrance, hindering the access of the acid or
basic catalyst to the exchangeable proton is also described [1,2].

The influence of the molecular structure of the compound on the isotope exchange has
also been observed, especially in the case of peptides and proteins. It was found that amide
hydrogens participating in intramolecular hydrogen bonds were much less susceptible
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to isotopic exchange reactions. Therefore, the H/D exchange was found as a tool in the
conformation analysis of biologically active compounds. Additionally, the isotope exchange
reactions enabled the analysis of the mechanisms of chemical processes [3]. The compelling
advantage of mass spectrometric analysis of the H/D exchange of peptides and proteins
is the high sensitivity of the method, the low concentrations of the analyte which can be
used and the ability to simultaneously analyze individual components of the complex
mixtures [4].

In contrast to the hydrogens attached to heteroatoms, the hydrogen atoms bound to
the carbon atoms are usually not exchangeable, however, the specific reaction conditions,
including pH-dependent and metal-dependent catalysis, may promote the replacement
of carbon-attached protons by deuterons (Figure 1) [5–8]. Such compounds may serve as
internal standards in quantitative LC-MS analysis. Therefore, the exchange of hydrogen
attached to the carbon by its heavier isotopes are of interest for mechanistic, product-
orientated research and quantitative analysis [3]. The existing methods of isotope exchange
on the α-carbon atoms of amino acids are expensive and time-consuming, because they
require multistep de novo synthesis with the application of isotopically labeled substrates.
Usually preparation of such deuterated derivatives by hydrogen−deuterium exchange is
easier and more cost effective than by classical de novo synthesis [7]. Therefore, the devel-
opment of new, ‘gentle’ methods of isotope exchange on the α-C carbon atoms of amino
acid residues in peptides seems to be an important issue. At present, isotopically labeled
compounds at the carbon atoms are of interest, especially due to their application as internal
standards in quantitative mass spectrometry in the analysis of fragmentation mechanisms.
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Figure 1. Hydrogen−deuterium exchange catalyzed by base, acid or metal catalyst.

Liquid chromatography-mass spectrometry (LC-MS) quantification frequently is per-
formed in the presence of isotopically labeled standards which in most cases have to be
synthesized de novo [9,10]. There are certain requirements for these standards: isotopo-
logues should be characterized by identical chromatographic behavior, the mass difference
between isotopologues should be at least 2 Daltons and the introduced isotopes cannot
undergo back exchange during LC-MS separation conditions [11]. Quantification is per-
formed by MS analysis, by comparing the extracted ion chromatograms (peak area) of
the isotope-labeled and nonlabeled compounds. Although various stable isotope-labeled
quantification reagents have been described containing 2H, 13C, 15N and 18O isotopes, due
to their complicated and expensive chemical synthesis, there is still a strong need to develop
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a method of preparation of new isotopically-labeled standards. Usually, the preparation of
deuterated standards is relatively inexpensive, however, the possibility of isotope effect
affecting their co-elution during LC-MS would limit their possible application in LC-MS
quantification [12,13]. It was found that the isotope effect on the chromatographic behavior
of deuterated and nondeuterated isotopologues depends on the number and place of the
introduced deuterons [14,15]. Additionally, deuterium-labeled compounds cannot be used
for in vivo studies due to the possible loss of deuterium or different metabolism pathways.
Therefore, there is a strong need for low-cost methods for isotope-labeled standard prepara-
tion for quantitative analysis by LC-MS. Although, the incorporation of deuterium into the
target molecules may present some drawbacks, nevertheless the most important advantage
of such a procedure is its low cost and simplicity of preparation.

In this review, we present the methods of deuterium incorporation into the molecules
of compounds by exchange reactions and the possible application of deuterated standards
in quantitative analysis by LC-MS.

2. Hydrogen−Deuterium Exchange at Carbon Centers
2.1. Acid- and Base-Catalyzed HDX

The pH-dependent hydrogen−deuterium exchange reactions are the first reported
methods in the presented field [16]. The acid and base-catalyzed HDX process involves
enolization which makes the H/D exchange at activated carbon centers possible in the
presence of a source of deuterium, including deuterated Brønsted acids or bases. The back
exchange of introduced deuterons is of course possible, therefore further deactivation of
the analyzed compound is required.

In most cases, acid-catalyzed H/D-exchange reactions are used to incorporate the
deuterium into the aromatic molecules. In these cases, strong deuterated Brønsted or
Lewis acids, in the presence of a deuterium source are commonly used. The application of
Lewis acids, including AlBr3 or MoCl5 is mostly restricted to the nonpolar arenes. In acid-
catalyzed HDX, the incorporation of the 2H isotope to the aromatic compounds exhibits
limited regioselectivity. The effect of the aromatic ring substituents on the deuteration
regioselectivity was analyzed in the acid-catalyzed HDX on ferrocenes. It was found
that the electrophilic aromatic deuteration of the cyclopentadienyl rings was favored by
alkyl groups whereas enolization of the carbonyl group in ketones led to the selective and
complete H−D exchange of all three hydrogens of the acyl residue [17].

Base-catalyzed HDX is also a facile method for deuterium incorporation by means
of keto–enol equilibria. Due to the higher acidity of carbon-bound hydrogen atoms in
carbonyl compounds, including ketones [18], aldehydes [19], esters [20] and carboxylic
acids [21], they undergo H/D exchange with high selectivity (>90% D) and yield. The
γ hydrogens in α,β-unsaturated carbonyl compounds are also able to exchange through
conjugation, as presented on the steroid framework of androstenedione, testosterone, and
cortisone [22].

The deuteration of the methyl group in aryl methyl ketones and aryl methyl sulfones
under basic conditions was presented by Berthelette and Scheigetz [23]. It was found that
the reaction efficiency and rate depended on the base, the substrate and the solvent nature.
Whereas 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was found as a base allowing high
deuteration efficiency, N,N,N-triethylamine (TEA) was less effective in the corresponding
HDX processes (Figure 2). TEA was found as a base allowing methyl group deuteration in
the base-sensitive ketones without decomposition.
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The base-catalyzed HDX reaction is a simple method for the acidic hydrogen exchange
for deuterium by keto-enol equilibria [16]. The carbon-bound acidic hydrogens in carbonyl
compounds, including N-substituted acetamides or diketopiperazines are usually highly
exchanged [5]. The presented H/D exchange involved the application of acetone-d6,
N,N,N-triethylamine (TEA) or a stronger base in the form of diazabicycloundec-7-ene
(DBU) and incubation at higher temperatures (35 ◦C to 50 ◦C). The acidity of α-carbon
hydrogens of amino acids and peptides is of interest because the corresponding enolates
play an important role in nonenzymatic racemization during peptide synthesis and enzyme-
catalyzed racemization in different biochemical transformations [5,24]. Till now only a few
quantitative investigations on their stability in water have been published. Their formation
rate constants have been analyzed and determined in studies of α-hydrogen exchange
or racemization reactions of amino acids and peptides at high temperatures [25,26] for
the development of base-catalyzed methods for the preparation of α-C-deuterated amino
acids is an important research task [8,27]. Generally, synthetic methods are based on the
glycine derivatives application, which are subjected to a basic HDX and the stereoselective
insertion of the desired side chain.

The acidity of α-C hydrogens of various amino acids and their derivatives have been
extensively investigated. Ho et al. informed that α-C hydrogens in N-methylated analogs
of cyclic dipeptides are more acidic than those in nonmethylated compounds [5,28]. It
was also confirmed that the substitution of the amino group with electron-withdrawing
substituents, such as the acetyl group, facilitated the HDX of α-C hydrogens. It was
found by Rios and co-workers that the acidity of the α-C hydrogens depended on the
ionization state of the amino acid, additionally the exhaustive methylation of α amino
group also affected the pKa of the presented hydrogens [29,30]. Up to now, several different
compounds containing N-methylated amino acids in their chemical structure have been
described. These compounds belongs to the group of important drugs and natural tissue
metabolites or substances commonly used in industry and households. In many cases there
is a need to quantify them.

Moozeh and co-workers presented the stereoinversion of L-alanine to α-C deuterated
D-alanine by base catalysis [31]. In the presence of salicylaldehyde and a chiral base,
87% deuterium incorporation at α-C of L-alanine and an inversion to D-alanine, was
obtained. The enantiomeric excess (ee) was 67% (Figure 3). The developed method was
also successfully applied for the deuteration of another 11 natural amino acids (threonine,
tryptophan, phenylalanine, methionine, glutamic acid, glycine, glutamine, asparagine,
serine, lysine and leucine). Stereoinversion for the presented examples was not reported.
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Mitulovi and co-workers [32] presented the method of acid-catalyzed deuteration of α-
amino acids (i.e., alanine, leucine, phenylalanine). In the presence of [D1]acetic acid (excess)
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and catalytic amounts of aldehyde, the reaction is characterized by good yield and the
deuterium incorporation at the level of 95% via the corresponding Schiff’s base formation
(Figure 4). The obtained compound was converted into the tertbutoxycarbonyl (Boc)
protected derivative and the resulting enantiomeric mixture was separated by preparative
high-performance liquid chromatography on a chiral stationary phase.
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Figure 4. Deuteration of amino acids under acidic conditions [16].

The methods for the preparation of enantiomerically pure α-C-deuterated amino acids
in the presence of a base are based on the application of glycine or its derivatives, which
are subjected to a basic HDX. Finally, the side chain is inserted stereoselectively with the
aid of chiral auxiliaries [6–8].

Lankiewicz and co-workers [7], described the method of the preparation of deuterated
glycine derivative in the mixture of MeOD/D2O and the presence of catalytic amounts
of Na2CO3 as a base. After three reaction steps of reaction the obtained derivative was
characterized by a deuterium content greater than 98%. Then the reaction with the Oppolzer
sultam provide an intermediate for the subsequent stereoselective alkylation [33]. After
removal of the auxiliary, the chiral Boc-protected amino acid (glycine, alanine, leucine,
phenylalanine, O-benzyltyrosine) was isolated almost enantiomerically pure (>99% ee) in
high yield (Figure 5).
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Rose and et al. [8], inspired by the bislactim ether method developed by Schöllkopf
and co-workers [34], described a base-catalyzed method of C6-position deuteration of the
dihydropyrazine in boiling mixture of MeOD/D2O (Figure 6). No hydrogen−deuterium
exchange was observed at the C3-position due to the steric hindrance of the isopropyl group
in the transition state. The obtained [6-D2]isotopologue was stereoselectively alkylated at
the C6-position, thereby giving access to a series of α-C-deuterated amino acids (serine,
phenylalanine, allylglycine, aspartic acid) in good yields, high degrees of deuteration and
enantiomeric excesses (>95%) [8].
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A further enantioselective synthesis of α-C-deuterated (Figure 7) proceeds by asym-
metric alkylation of the activated glycine in the presence of the chiral phase-transfer catalyst.
The HDX in the presence of KOD in D2O and the introduction of the side chain were per-
formed in a single reaction step. After imine hydrolysis the amino acid tert-butyl esters
were isolated in good yields and with high deuterium incorporation of more than 90% [6].
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In addition to hydrogen−deuterium exchange based on the keto-enol tautomerism,
the deuterolysis of an organometallic compound is also the chemical tool used for the
synthesis of deuterated derivatives. In this reaction, the intermediate organometallic com-
pound is formed by deprotonation in the presence of strong bases (i.e., Grignard reagent
or alkyl–lithium compound), and subsequently deuterated with electrophiles in the form
of D2O, MeOD, or AcOD; which formally correspond to the H/D exchange [35]. Using
this approach complete ortho-deuteration of aromatic amides and aromatic carbamates
was achieved. Moreover, due to the large kinetic isotope effect (KIE), incorporated deu-
terium served as a protecting group for the carbon center, allowing the control of the
regioselectivity of the subsequent lithiation.

Hydrogen−deuterium exchange reactions can also be performed without the addition
of acids and bases. Such transformations are characteristic for the acidic CH centers
which may be deuterated simply by the incubation of compound in deuterium oxide. The
autoprotolysis equilibrium of D2O, makes it possible to act as either an acid or a base.
For example, the synthesis of [1,1,3,3-D4]2-indanone was achieved by the heating of the
compound of interest in the D2O [36]. Other reactions, depending on the compound, which
were suspected to be HDX, required sometimes drastic reaction conditions which cannot
be applied for most organic molecules.

A simple strategy was presented by Pacchioni et al. [37]. It was found that the forma-
tion of N,N,N-trinitroso derivative of the 1,4,7-triazacyclononane made the α-methylene
hydrogen atoms more acidic allowing HDX in the presence of base.
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A variant of acid-catalyzed HDX, which uses only D2O during the deuteration process
and is accelerated by microwave irradiation, was presented by Barthez et al. [38]. The
developed strategy was also successfully applied to aminopyridine derivative prepara-
tion [39]. In order to avoid any proton sources, the labile hydrogen atoms bound to the
nitrogen were exchanged to deuterons in the presence of D2O. The applied strategy allowed
complete deuteration within a few minutes and a high deuterium content at the ortho and
para positions in the amino group.

Very recently, the application of microwaves in HDX processes significantly increased,
especially due to the higher degree of deuteration, shorter reaction times as compared to
the classical heating conditions. Based on this technique several MS standards of bleomycin
A2 for quantitative MS analysis were successfully prepared in D2O after a two-minute
heating at 165 ◦C [40]. Additionally, some physicochemical reports have been published in
which the kinetics of noncatalyzed HDX and energetic investigations were described [41].

It was previously reported that the base-catalyzed hydrogen−deuterium exchange
at the carbon centers of aldehydes and ketones, thioesters and oxygen esters or amides
occurred via a stepwise mechanism involving the enolate intermediate formation when the
enolate was sufficiently stable to exist for the time of a bond vibration [30].

N-methylglycine, also called sarcosine, represents a natural, achiral compound with a
methylated amino group which plays an important role in biological systems [42]. This
amino acid residue is present in cyclosporine A, a cyclic nonribosomal peptide, commonly
used as immunosuppressant [43]. Methods for the quantitative analysis of cyclosporine A
and its metabolites have been developed [44] however, due to the necessity of preparation of
its isotopically labeled standards for MS quantification, the costs of such analysis were very
high. Joining the mainstream of the base-catalyzed HDX, previously, we developed several
methods of preparation of deuterated standards of compounds containing N-substituted
glycine derivative in their chemical structure, including denatonium benzoate, peptomers,
cyclosporin A and creatinine. Additionally, the applicability of the obtained deuterated
standards were tested in the quantitative analysis of these compounds by LC-MS.

In our previous work, the base-catalyzed HDX of α-C hydrogens in sarcosine residue
and specific hydrogen scrambling in such peptides were investigated [45]. We found the
unusual hydrogen−deuterium exchange at the α-carbon in N-methy- and N-benzylglycine
residues in the presence of 1% solution of N,N,N-triethylamine in D2O (Figure 8). We
found that the observed HDX proceeded at a much slower rate as compared to the
hydrogen−deuterium exchange of hydrogens present in amines or amides. Moreover,
we observed the hydrogen scrambling during the collision-induced dissociation exper-
iment which suggested the lability of such hydrogens. The presented work opened a
wider possibility of application of the presented HDX reaction in peptide chemistry and
mass spectrometry.
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Figure 8. Schematic presentation of H/D exchange reaction at the α carbon in N-methylglycine
moiety [45]. TEA-N,N,N-triethylamine.

Our investigation on compounds containing sarcosine residue revealed its presence
in cyclosporin A molecule. The analysis of the possibility of the α-C deuteration of cy-
closporine A (CsA) in N-methylated amino acid residues was performed [46]. The pro-
posed reaction is based on the method previously reported by us [45], proceeds under basic
conditions in the presence of TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) or MTBD (7-methyl-
1,5,7-triazabicyclo[4.4.0]dec-5-ene) at pH 13.4 (Figure 9). The obtained results revealed that
there is a possibility of three deuteron incorporation, two at the α-C of N-methylglycine and
one at the α-C of 2-N-methyl-(R)-((E)-2-butenyl)-4-methyl-L-threonine (MeBmt) residue.
The prepared isotopologues were stable (did not undergo back exchange) under neutral
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and acidic conditions. Additionally, the deuterated and nondeuterated derivatives revealed
co-elution, which make their application for the quantitative analysis by using isotope dilu-
tion strategy possible. The developed strategy of the CsA deuteration is rapid, cost-efficient
and does not require special reaction conditions, other reagents or further purification [46].
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Figure 9. Preparation of deuterated analogs of cyclosporin A as described by Bąchor et al. [46].

The synthesis of the α-C deuterium-labeled N-substituted glycine residues in
peptomers—oligomers composed of both α-amino acids and N-substituted glycine
monomers—at basic conditions at room temperature was also analyzed by Bąchor et al. [47].
The developed method covered the deuterium labeling of peptomers at the α-C atom of N-
substituted glycine residues by using simple HDX. The proposed labeling procedure is easy,
inexpensive, and does not require any derivatization reagents or further purification. The
introduced deuterons do not undergo a back-exchange under neutral and acidic conditions
during LC-MS separation. The LC-MS analysis of an isotopologue mixture showed their
co-elution. Therefore the developed strategy may be applied in the quantitative isotope
dilution analysis of peptoids and other derivatives of N-substituted glycines.

Very recently we developed a method of deuterium-labeled standard preparation
of creatinine, a breakdown product of creatine phosphate in muscle and a molecular
biomarker of renal function [48]. The N-methylated glycine moiety was also presented
within the creatinine molecule. The performed investigation allowed the doubly deuterated
Cre analogue to be obtained, even after 60 min incubation in 1% TEA/D2O solution
at room temperature (Figure 10). We found that the introduced deuterons were stable
under acidic and neutral conditions and any back exchange was observed. The obtained
results suggest that the obtained deuterated Cre analogue may serve as a good internal
standard for quantitative analysis by ESI-MS by using the isotope dilution method. The
proposed methodology is a new, inexpensive and simple way for creatinine quantification.
Additionally the performed quantification in the presence of the obtained deuterated Cre
standard correlates with the Jaffe test method.
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In 2015, the method of denatonium benzoate (Bitrex) deuteration via HDX of α-carbon
hydrogens located in the CH2 group, situated between carbonyl carbon and quaternary nitro-
gen atom (Figure 11) [49]. The reaction proceeded at room temperature and the deuteration
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was completed after 1 h of sample incubation in 1% TEA/D2O mixture. We found that the
introduced deuterons did not undergo back exchange under acidic and neutral conditions.
We also found that the isotopologues—deuterated and nondeuterated—denatonium cation
co-elute during the chromatographic separation. The applicability of the obtained deuter-
ated denatonium cation as the internal standard for quantitative analysis of Bitrex was
confirmed by the LC-MS analysis of various Bitrex-containing household products. The
proposed strategy is a new and simple solution for sensitive Bitrex quantification by LC-MS
method. We found that the presence of a quaternary nitrogen atom connected with the α-C
atom facilitated the H/D exchange. Based on this observation, we focused our attention on
the compounds containing quaternary ammonium groups in the form of N-substituted
glycine derivatives. We reported the influence of the quaternary ammonium group on
HDX at the α-C of sarcosine and N-methylalanine in peptides [50–52]. The significant
acceleration of the HDX in sarcosine residue caused by the presence of a fixed charge tag
was found. The effect depended on the distance between the sarcosine residue and the
quaternary nitrogen atom. The deuterium atoms introduced at the α-C, did not undergo
back-exchange under acidic aqueous solution. The tandem mass spectrometry analysis of
the deuterated analogs of quaternary ammonium-tagged oligosarcosine peptides without
mobile hydrogen showed the mobilization of the hydrogens localized at α-C atom of
sarcosine residue.
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It was presented previously that the racemization and hydrogen−deuterium exchange
at the α-amino carbon atoms in dipeptides may proceed via the reversible diketopiperazine
intermediate formation [53,54]. It was also assumed by Rios and co-workers that the
exchange of hydrogens into deuterons at the α carbon atom in amino acid residues occurs
via a stepwise mechanism catalyzed by DO- anion where the enolate intermediate is
formed [30]. The most important advantage of the acid or base catalyzed HDX is their
simplicity of preparation, relatively low costs to perform, and mostly high efficiency. It
should be also be pointed out that sometimes the hard reaction conditions, including high
or low pH values, may lead to the compound decomposition.

2.2. Metal-Catalyzed HDX Adjacent to Oxygen Atom

The first example of H/D exchange adjacent to oxygen was discovered in 1974 by
Regen. In this study, the deuteration of 1-butanol at the α carbon atom was performed in
the presence of a catalyst in the form of (tris(triphenylphosphine) ruthenium dichloride
[RuCl2(PPh3)3] [55]. In the proposed method 1-butanol was incubated at 200 ◦C for one
hour in the presence of a catalyst, which allowed the exchange of hydrogen at the α

carbon position by deuterium bonded to the oxygen atom (Figure 12). The proposed
reaction conditions were also applied to other deuterated alcohols at the α-C atom. The
obtained results also revealed that the addition of D2O to the reaction mixture significantly
increased the deuteration efficiency and that the degree of deuteration depended on the
D2O/alcohol ratio.
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Ishibashi et al. presented the efficient deuteration of compounds containing electron
donors in the form of double bonds, hydroxyl groups, in the presence of ruthenium catalyst.
It was found that alkenols were efficiently deuterated in D2O by the migration of the double
bond and isomerization to ketones in the presence of ruthenium catalyst (Figure 13) [56]. It
was found that primary alcohols were oxidated to aldehydes on the selective way in the
presence of RuCl2(PPh3)3 catalyst which was hampered in the presence of small amounts
of water. The reaction temperature around 150 ◦C in microwave synthesizer, allowed
an efficient HDX at the α carbon atom of the primary alcohols with small epimerization
observed in the case of chiral compounds. Under lower temperatures around 100 ◦C the
epimerization was sufficiently suppressed [57].
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In 2011, Bossi and co-authors presented a method for selective deuteration of alcohols
at the α position in the presence of ruthenium and osmium pincer catalysts [58]. In the pres-
ence of isopropanol-d8 as a source of deuterium, Bossi was able to obtain high deuterium
incorporation at the C1 carbon atom of primary and secondary alcohols, and within the
case of secondary alcohols also the deuteration at the C2 position was observed. In 2013,
Khaskin and Milstein proposed another ruthenium pincer catalyst allowing deuteration at
the carbon centers in the presence of D2O and with a lower catalyst loading [59]. Other
substrates, including secondary alcohols also presented the possibility for β deuteration,
which was frequent, with deuterium incorporation up to 97%.

In 2015, Bai et al. [60] proposed a selective α and β deuteration method of alcohols in
the presence of D2O as a deuterating agent. The reaction optimization process revealed that
octahedral ruthenium complexes with the amine ligand presented higher activity in HDX
promotion (Figure 14). It was also found that the (η6-cymene) ruthenium complex allowed
deuteration only at the β position. The mechanism of this process involves oxidation of the
alcohol to an aldehyde followed by base-mediated β deuteration. The formed aldehyde is
then reduced to an alcohol by means of the deuterated ruthenium complex which results
in the formation of α,β-deuterated derivative.
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In the same year, Chatterje et al. presented the method of selective α and α,β deutera-
tion of alcohols in the presence of a low-loading and commercially available ruthenium
pincer catalyst (Ru-MACHO), the base in the form of potassium tert-butoxide and D2O as
the deuterating agent (Figure 15) [61]. The proposed reaction condition optimization on
aromatic benzylic alcohols revealed that mild heating (60–100 ◦C) was sufficient to obtain
95% of deuterium incorporation. It was also presented, that in this method linear primary
alcohols were also able to undergo β deuteration at 10–20%, while in the case of secondary
alcohols, deuteration at the β carbon was higher. The mechanism of this reaction involves
the oxidation and reduction of the alcohol. Based on this, the authors proposed that the
intermediate, in the form of ketones, was a more long-living species than the aldehydes
and therefore, β deuteration proceeded at a higher rate in the case of secondary alcohols.
What is interesting, in the case of diols, only the deuteration at the α position was observed.
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Similarly to Khaskin [59], in 2016 Gauvin and co-workers focused their attention
on the application of ruthenium pincer complexes in the transformation of alcohols to
carboxylic acids. They performed the reaction in a closed vessel to displace the reaction
equilibrium toward the substrate (alcohol), thus allowing deuteration in the presence of
D2O [62]. They also decided to optimize the catalyst by switching from the Ru-MACHO to
its analog containing cyclohexyl substituents, resulting in the higher activity and selectivity
in α carbon deuteration.
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Using a similar strategy to Regen’s method, Koch and Stuart found that there was a
possibility for primary and secondary alcohol deuteration at the α carbon by refluxing the
alcohol in the presence of D2O and Raney nickel as the catalyst [63]. The proposed strategy
was successfully applied in the preparation of deuterated nonreducing carbohydrates.
Additionally, it was proposed that the alcohol should undergo a redox process in the
presence of Raney nickel as hydrogen-transfer catalyst. The observed retention of the
configuration was explained by the polyhydric cyclic structure of the carbohydrate [64].
The isomerization of methyl α-D-mannopyranoside and methyl β-D-galactopyranoside to
corresponding D-gluco isomers was also found after several days of reaction.

As described by Cioffi and co-workers, the activation of Raney nickel by sonication
allowed a microwave-assisted deuteration of nonreducing carbohydrates without racem-
ization [65]. The 1-O-methyl-β-d-galactopyranoside, used as a model compound, was
heated in 15-s intervals up to 36 times, using a microwave oven. It was found that the
deuterium was incorporated without epimerization or compound decomposition. Further
optimization of the Stuart’s method may be achieved by application of sonication which
makes a higher level of deuterium incorporation possible (Figure 16) [66]. Microwave
irradiation may also improve the deuteration however in this case the epimerization and
substrate degradation was observed [65]. In the proposed solution deuteration was regios-
elective and occurred at the C2, C3 and C4 positions at the carbon atoms connected with
hydroxyl group which was necessary for the HDX [67].
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Figure 16. Methyl α-D-glucopyranoside deuteration catalyzed by Raney nickel under sonication as
presented by Cioffi and co-workers [66].

Vert and co-workers applied the HSCIE (high-temperature solid-state catalytic iso-
tope exchange) technique to obtain the selectively deuterated lactide [68] and glycolide
derivatives [69], which were applied as substrates for the synthesis of isotopically labeled
biocompatible absorbable poly-α-hydroxy acids. It was found that the optimal reaction
temperature was close to the melting point of the substrate. The hydrogen−deuterium
exchange of L-lactide at 120 ◦C in the presence of the Pd/CaCO3 catalyst resulted in
incomplete deuterium incorporation (Figure 17), but occurred without epimerization.
Additionally, the reaction conditions were suitable for the tritium incorporation [70].
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In 1990, Möbius and Schaaf [71] developed a method for the preparation of deuterated
aliphatic hydrocarbons by metal-catalyzed HDX at higher temperatures (up to 290 ◦C). The
reaction was performed in an autoclave, where a wire basket with the catalyst was placed
above the substrate to be deuterated. The D2/D2O atmosphere was used to obtained
deuterated derivatives under the pressure of around 25 Mpa. Under these conditions,
water dissociates much more rapidly than at room temperature [72] and therefore Pd0 is
able to insert oxidatively into the H-OH bond with the formation of a Pd(II) derivative [73].

Based on the method developed by Matsubara and co-workers [74], complete deutera-
tion of aromatic or aliphatic hydrocarbons was achieved by decarboxylation of carboxylic
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acids under hydrothermal reaction conditions. In this method, the model lactone molecule
in D2O allowed the formation of the phenol derivative with a high yield in the presence of
10% Pd/C (5 mol %) at 250 ◦C and a pressure of 4–5 Mpa (Figure 18).
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Previous studies by Sajiki and co-workers [75] on 5-phenylvaleric acid revealed the
influence of reaction temperatures on the regioselectivity and deuteration. It was found that
the benzylic hydrogen atoms were selectively exchanged to deuterons at room temperature,
whereas at the higher temperature (160 ◦C), the deuteration in less reactive positions was
also found, resulting in the formation of multideuterated derivatives. The proposed reac-
tion conditions were compatible with compounds containing different functional groups in
the form of carboxy, keto or hydroxyl groups, but the described reaction was characteristic
for those with aryl-linked side chains. The proposed Pd/C–H2/D2O system may be also
applied for the preparative formation of the phenylalanine selectively deuterated at the
β carbon atom which takes place at 110 ◦C (6 h, 96% D) without racemization [76]. It was
also found that at 160 ◦C the α position is also able for HDX, but these reaction conditions
promote racemization (17% ee).

In 2005, Proszenyák et al. [77] developed a method allowing higher efficiency of HDX
for the benzylic hydrogen atoms of the piperidine derivative in the presence of Pd/C–H2–
D2O, deuterated alcohols and DCl. Earlier, in 1986, Stock and Ofosu-Asante [78] presented
a method for selective benzylic deuteration of the tetrahydronaphthalene carboxylic acid
in the presence of a Pd/C catalyst under D2 atmosphere and deuterated acetic acid as the
deuterating agent (Figure 19).

Molecules 2021, 26, x FOR PEER REVIEW 13 of 26 
 

In 1990, Möbius and Schaaf [71] developed a method for the preparation of deuter-
ated aliphatic hydrocarbons by metal-catalyzed HDX at higher temperatures (up to 290 
°C). The reaction was performed in an autoclave, where a wire basket with the catalyst 
was placed above the substrate to be deuterated. The D2/D2O atmosphere was used to 
obtained deuterated derivatives under the pressure of around 25 Mpa. Under these con-
ditions, water dissociates much more rapidly than at room temperature [72] and therefore 
Pd0 is able to insert oxidatively into the H-OH bond with the formation of a Pd(II) deriv-
ative [73]. 

Based on the method developed by Matsubara and co-workers [74], complete deu-
teration of aromatic or aliphatic hydrocarbons was achieved by decarboxylation of car-
boxylic acids under hydrothermal reaction conditions. In this method, the model lactone 
molecule in D2O allowed the formation of the phenol derivative with a high yield in the 
presence of 10% Pd/C (5 mol%) at 250 °C and a pressure of 4–5 Mpa (Figure 18). 

 
Figure 18. Lactone deuteration as presented by Matsubara et al. [74]. 

Previous studies by Sajiki and co-workers [75] on 5-phenylvaleric acid revealed the 
influence of reaction temperatures on the regioselectivity and deuteration. It was found 
that the benzylic hydrogen atoms were selectively exchanged to deuterons at room tem-
perature, whereas at the higher temperature (160 °C), the deuteration in less reactive po-
sitions was also found, resulting in the formation of multideuterated derivatives. The pro-
posed reaction conditions were compatible with compounds containing different func-
tional groups in the form of carboxy, keto or hydroxyl groups, but the described reaction 
was characteristic for those with aryl-linked side chains. The proposed Pd/C–H2/D2O sys-
tem may be also applied for the preparative formation of the phenylalanine selectively 
deuterated at the β carbon atom which takes place at 110 °C (6 h, 96% D) without racemi-
zation [76]. It was also found that at 160 °C the α position is also able for HDX, but these 
reaction conditions promote racemization (17% ee). 

In 2005, Proszenyák et al. [77] developed a method allowing higher efficiency of HDX 
for the benzylic hydrogen atoms of the piperidine derivative in the presence of Pd/C–H2–
D2O, deuterated alcohols and DCl. Earlier, in 1986, Stock and Ofosu-Asante [78] presented 
a method for selective benzylic deuteration of the tetrahydronaphthalene carboxylic acid 
in the presence of a Pd/C catalyst under D2 atmosphere and deuterated acetic acid as the 
deuterating agent (Figure 19). 

 
Figure 19. HDX reaction at the carbon center of piperidine derivative as presented by Proszenyák 
et al. [77]. 

Figure 19. HDX reaction at the carbon center of piperidine derivative as presented by Proszenyák et al. [77].

In 2005, Sajiki and co-workers [79] revealed that platinum catalysts present a higher
tendency towards the deuteration of aromatic positions, whereas palladium catalysts prefer
mostly aliphatic ones (Figure 20). Using this method, the efficient deuteration of phenol was
obtained in the presence of 5% Pt/C at room temperature, whereas the palladium-catalyzed
reaction needed a higher temperature (180 ◦C) to obtain the same level of deuteration.

Molecules 2021, 26, x FOR PEER REVIEW 14 of 26 
 

In 2005, Sajiki and co-workers [79] revealed that platinum catalysts present a higher 
tendency towards the deuteration of aromatic positions, whereas palladium catalysts pre-
fer mostly aliphatic ones (Figure 20). Using this method, the efficient deuteration of phe-
nol was obtained in the presence of 5% Pt/C at room temperature, whereas the palladium-
catalyzed reaction needed a higher temperature (180 °C) to obtain the same level of deu-
teration. 

 
Figure 20. HDX at the carbon center presented by Sajiki et al. [79]. 

Palladium and platinum catalysts may also be applied in a mixed catalyst system for 
the preparation of deuteration derivatives on the sterically hindered aromatic positions. 
It was found that the deuterium incorporation at the ortho position in 5-phenylvaleric acid 
in the presence of palladium (10% Pd/C) was only 14%, with platinum (5% Pt/C) 19%. In 
a mixed catalyst, the same reaction was characterized by almost complete deuteration 
(97% D) of the ortho position. Additionally, the synergistic effect of palladium and plati-
num complexes in stepwise deuteration was postulated as a useful tool in the case of a 
low degree of deuterium incorporation. [80]. 

HDX at the carbon center of alcohol molecules may also be catalyzed by molybdo-
cenes. In this case, the reaction mechanism involves C–H bond activation by the metal 
catalyst. Deuteration may occur in different ranges, depending on the chemical structure 
of the alcohol used and can reach up to 99% in the case of benzylic hydrogens [81]. 

Most of the presented metal-catalyzed deuteration methods involve the application 
of second-row transition metals. In 2018, Prakash and co-workers developed a method of 
the regioselective deuteration of primary and secondary alcohols in the presence of first-
row transition-metal catalysts [82]. In 2007 Hamid et al. presented the ‘borrowing hydro-
gen’ method of deuteration [83] which allows deuteration at the α and β carbon atoms of 
alcohols and amines by using a hydrogen-transfer catalyst. It was reported that manga-
nese and iron pincer catalysts increase the deuterium incorporation in primary and sec-
ondary alcohols especially in the presence of a base. The presented mechanism of HDX 
involves the amido-complex formation with the used base which is a key factor for cata-
lytic cycle initiation. The formed aldehyde is subsequently reduced by the deuterated 
metal complex formed by HDX on the catalyst mediated by D2O. This method was suc-
cessfully applied in the deuteration on the α and β carbons of primary and secondary 
alcohols, as well as diols. 

As presented by Bergman et al., the cationic iridium complexes may also activate C-
H bonds [84], and therefore iridium-mediated HDX represents the largest number of pub-
lished examples in the field of homogeneous metal catalysis. The most exploited area is 
the ortho-deuteration of aryl ketones and acetanilides. Starting with the investigations of 
the Heys [85] and Hesk [86] research groups, several different studies related to the effects 
of complex ligands [87], the deuterating agent [88], solvent [88–90], addition of bases [85] 
the amount of catalyst [36], the temperature, and the duration of the reaction [85] on the 
degree of deuteration and the substitution pattern in the substrate (Figure 21). 

 

Figure 20. HDX at the carbon center presented by Sajiki et al. [79].

Palladium and platinum catalysts may also be applied in a mixed catalyst system for
the preparation of deuteration derivatives on the sterically hindered aromatic positions. It
was found that the deuterium incorporation at the ortho position in 5-phenylvaleric acid
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in the presence of palladium (10% Pd/C) was only 14%, with platinum (5% Pt/C) 19%.
In a mixed catalyst, the same reaction was characterized by almost complete deuteration
(97% D) of the ortho position. Additionally, the synergistic effect of palladium and platinum
complexes in stepwise deuteration was postulated as a useful tool in the case of a low
degree of deuterium incorporation. [80].

HDX at the carbon center of alcohol molecules may also be catalyzed by molybdocenes.
In this case, the reaction mechanism involves C–H bond activation by the metal catalyst.
Deuteration may occur in different ranges, depending on the chemical structure of the
alcohol used and can reach up to 99% in the case of benzylic hydrogens [81].

Most of the presented metal-catalyzed deuteration methods involve the application
of second-row transition metals. In 2018, Prakash and co-workers developed a method
of the regioselective deuteration of primary and secondary alcohols in the presence of
first-row transition-metal catalysts [82]. In 2007 Hamid et al. presented the ‘borrowing
hydrogen’ method of deuteration [83] which allows deuteration at the α and β carbon
atoms of alcohols and amines by using a hydrogen-transfer catalyst. It was reported that
manganese and iron pincer catalysts increase the deuterium incorporation in primary and
secondary alcohols especially in the presence of a base. The presented mechanism of HDX
involves the amido-complex formation with the used base which is a key factor for catalytic
cycle initiation. The formed aldehyde is subsequently reduced by the deuterated metal
complex formed by HDX on the catalyst mediated by D2O. This method was successfully
applied in the deuteration on the α and β carbons of primary and secondary alcohols, as
well as diols.

As presented by Bergman et al., the cationic iridium complexes may also activate
C-H bonds [84], and therefore iridium-mediated HDX represents the largest number of
published examples in the field of homogeneous metal catalysis. The most exploited area
is the ortho-deuteration of aryl ketones and acetanilides. Starting with the investigations of
the Heys [85] and Hesk [86] research groups, several different studies related to the effects
of complex ligands [87], the deuterating agent [88], solvent [88–90], addition of bases [85]
the amount of catalyst [36], the temperature, and the duration of the reaction [85] on the
degree of deuteration and the substitution pattern in the substrate (Figure 21).
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Further, Kröger et al. presented that the unsaturated carbonyl compounds were also
suitable substrates for the above presented deuteration method reacting through a similar
mechanism [88]. It was shown that β-hydrogen atoms underwent the H/D exchange with
a good yield. It was also pointed out that the regioselectivity of the labeling depended on
which deuterium source was used.

Buchanan et al., who developed catalysts for C-H bond activation [84] also presented
the applicability of the soluble iridium complexes for the specific deuterium incorporation
in aliphatic and nonfunctionalized aromatic substrates. A high degree of deuterium
incorporation was obtained with hydrocarbons, alcohols, phenols, ethers, carboxylic acids,
esters, and amides with D2O, [D6]acetone, or [D6]benzene [91].

In 2006, Peris et al. demonstrated efficient HDX with diethyl ether, ethyl methyl
ketone, isopropanol, and styrene with the N-heterocyclic iridium–carbene complexes in
the presence of [D4]methanol (Figure 22) [92].
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2.3. Metal-Catalyzed HDX Adjacent to Nitrogen Atom

A first example of deuterium incorporation into the carbon centers in amines was
reported in 1977, by Maeda et al. [93]. The hydrogen−deuterium exchange on the carbon
atoms of primary and tertiary amines was performed in the presence of a deuterated form
of Adam’s catalyst (platinum oxide treated under reductive conditions by D2 in D2O)
(Figure 23). Such a solution allowed the selective deuteration at the β carbon of primary
amines and at the α-C of the tertiary. The applied catalyst was activated by UV light or γ-
radiation irradiation. PtO2, after activation with D2, was applied for the selective deuterium
incorporation in nucleosides [94]. A strong dependency of the exchange selectivity upon
the number and steric demand of the substituents on the nitrogen atom has been observed
for the exchange of α-hydrogen atoms of aliphatic amines and amino acids with Adam’s
catalyst (PtO2·H2O). It was found that the nitrogen atom bound to the surface of the
applied catalyst. The efficiency of H/D exchange decreased in the following series tertiary
> secondary > primary amines [93]. A first example of chiral carbon atom deuteration in
amines with retention of configuration was presented by Jere et al. in 2003 [95]. In this case,
the HDX of alanine or alaninol with complete retention was performed in the presence of
ruthenium on carbon under D2 in D2O.
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The possibility of secondary amine deuteration via H/D exchange in the presence of
RuCl2(PPh3)3 as the catalyst was investigated by Matsubara et al. [57]. It was found that
the applied reaction conditions allowed selective deuteration at the α carbon atom with
deuterium incorporations of up to 94% (Figure 24) The proposed reaction conditions were
also applied in the deuteration of tertiary amines, resulting in 12% deuterium incorporation.
As described, there was a possibility of selective amine deuteration at the α carbon atom
under reaction conditions similar to those presented for alcohols. The configuration on the
stereocenter in the β position depended on the temperature isotope exchange process and
remained unaffected as long as the temperature did not exceed 100 ◦C [57].
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Figure 24. HDX at the carbon centers adjacent to nitrogen proposed by Matsubara and co-workers
with selected examples [57].

In 2015, Taglang and co-workers, reported that hydrogen−deuterium exchange at the
chiral carbon centers of amino acid derivatives turned out to be stereoretentive (Figure 25) [96].
The authors proposed a mechanism of reaction in which the key step is the coordination
of the nitrogen atom of the amino group to the surface of the applied catalyst which
makes a ruthenium site and enables the C–H activation at the α carbon atom. A molecule
thus-activated undergoes HDX, resulting in a selective α carbon deuterated derivative.
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Alexakis et al. in 2005 analyzed different ruthenium(II) catalysts in the deuterium
labeling reactions of piperidines, piperazines and several different dialkylamines in the
presence of D2O as the deuterium source [97]. They found that while RuCl2(PPh3)3 was ac-
tive for the deuteration of primary alcohols and amines, in the presence of RuCl4(CO)6 only
secondary amine labeling was possible. The study on the deuteration of 4-benzylpiperidine
in the presence of [Ru2Cl4(CO)6] as catalyst revealed the incorporation of an average of
five deuterium atoms per molecule, however, the positions of the introduced deuterons
were not precisely described [97].

The study of the increase of the deuterated yield led Roche’s group [98] to demonstrate
that similar deuteration as shown by Taglang and co-workers [96] could be achieved in
the presence of a Ru/C catalyst instead of Ru nanoparticles, H2 atmosphere in D2O and
a base under mild temperature (70 ◦C) [99]. The presented methodology allowed the
stereoretentive preparation of large quantities (up to 0.2 mols) of hydrosoluble amines with
chiral centers, showing the applicability of this process for industrial application.

After successful deuteration of α, β carbons of alcohols in the presence of Ru-pincer
complexes, Gunanathan and co-workers [100] presented the α deuteration of amines and
amino acids by using D2O as deuterium source. The presented protocol is characterized by
its selectivity for primary and secondary amines (no deuteration occurs at the α carbon of
tertiary amines or alcohols). In the case of amino acids epimerization was observed.

In 2012, Neubert et al. applied ‘borrowing hydrogen’ catalysis to perform the deuter-
ation of tertiary amines [101]. In this study the Shvo catalyst was used to optimize the
reaction conditions (Figure 26) [102]. The mechanism involved the formation of an in-
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termediate in the form of iminium ion (in equilibrium with the corresponding enamine)
mediated by the monomer of the catalyst bearing an available position in the coordination
sphere of the metal atom. The reduced form of the applied catalyst underwent HDX in the
presence of deuterating agent (D2O, deuterated alcohols) and subsequently transferred
the deuterium atoms to the unsaturated bond of the enamine, generating a doubly labeled
tertiary amine. It was found in the case of N,N,N-trihexylamine as the substrate that the
deuterium incorporation was as high as 93% at the α and β positions in the presence of
isopropanol-d8 as the solvent. This protocol was also successfully applied in the formation
of deuterated pharmaceutical compounds, such as sunitinib (a kinase inhibitor).
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In 2014, Pieters et al. developed a method of regioselective α deuteration of nitrogen-
containing bioactive compounds in the presence of ruthenium nanoparticles supported on
polyvinylpyrrolidone under the D2 atmosphere [103] (Figure 27). Using this method, the
authors obtained high deuterium incorporation with complete regioselectivity.

In 2016, Jackson et al. [105] developed a method of electrocatalytic deuteration of
amines and alcohols which overcame the problem of the D2 solubility in an aqueous envi-
ronment, by in situ generation of D2. Using this method, different deuterated derivatives
were prepared with high level of deuterium incorporation, but with low yield.
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In 2016, Hale and Szymczak proposed a method of stereoretentive deuteration in the
presence of Ru-bMepi complex that avoided the use of D2. In this method the complete
stereoretention in the case of a chiral amine was observed. However, in the case of chiral
alcohol deuteration, complete racemization occurred (Figure 28) [104].
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A main challenge in this field was the development a stereoretentive hydrogen−deuterium
exchange at the chiral carbon centers. Although the Rousseau reaction can be considered
as stereospecific, an example of deuteration at the chiral carbon atom was presented in
his paper. Maeda et al. also investigated the stereospecificity of the HDX in amines and
found that at temperatures above 100 ◦C, L-alanine started to racemize [94]. During the
analysis of selective HDX at the β carbon of phenylalanine in the presence of Pd/C catalyst
under H2, the additional deuteration at the α carbon was observed at 160◦C, with partial
racemization of the chiral carbon atom.

Pyrimidine bases, including uracil or cytosine, may also be deuterated in the 5- and
6-positions in the presence of a Pd/C–H2/D2O mixture at 110 ◦C [106]. The deuterium was
incorporated in the 5-methyl group of thymine in addition to the 6-position, and no side
products have been reported. Purine nucleosides, including adenosine or inosine, were
successfully and chemoselectively deuterated in the 2- and 8-positions [107]. The lower
HDX levels were noted for the pyrimidine bases and analyzed nucleoside in the presence
of CD3OD as a solvent and deuterating agent in the form of D2O.

In 2001, Hardacre and co-workers reported the application of a catalyst activated
by hydrogen reduction in the preparation of deuterated imidazoles and imidazole salts.
The substrate solution in D2O was treated by the reaction mixture, degassed by several
cooling/thawing cycles [108].

Raney nickel catalyst in the presence of [D6]acetone, [D3]acetonitrile, [D1]chloroform,
D2O or [D8] 2-propanol allowed the selective deuteration of specific positions in tryptophan
derivatives, based on their nucleophilicity [109]. The influence of the differing nucleophilic
potential of these positions and the indole ring orientation on the catalyst surface influenced
by the solvent were responsible for the selectivity of deuteration (Figure 29). In the case
of deuteration catalyzed by Raney nickel, it was found that only the hydrogen atoms at
the α-carbons underwent selective deuteration in quinuclidine at higher temperatures, a
longer reaction time and in the presence of D2O (100 ◦C, 40 h, 2 reaction cycles; ≥99.7%
D). It was also reported that less than 1% of deuterium was incorporated into the β and γ

carbon centers [110].
Previously Hickey et al. reported the extended spectrum of the substrate to ani-

line and benzylamine derivatives [111]. The application of [Ir(cod)(acac-F6)] (acac-F6=
hexafluoroacetylacetonate) and D2 allowed ortho HDX, relative to the position of the amino
or methylamino group.
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In 2017, Loh et al. [112] proposed a new deuteration strategy, based on the application
of photoredox deuteration and tritiation. The method was successfully applied in the
formation of isotopically labeled derivatives of pharmaceuticals containing alkyl amine
moieties. The developed method involved the formation of an α-amino radical via a
single-electron transfer occurred in the presence of an iridium(III) catalyst, previously
excited by visible blue light. The application of a hydrogen atom transfer (HAT) catalyst
allowed the abstraction of deuterium (or tritium) to form labeled derivatives. It was also
found that application of thiols as HAT catalysts was crucial for the preparation of labeled
compounds. This process was optimized and then applied in the preparation of gram
scale products. All of the reported examples met all the requirement characteristic for
internal standards which may be applied in quantitative analysis by mass spectrometry
(more than 4 D and less than 0.1% of the unlabeled compound). Moreover, the proposed
process may be performed in the presence of several functional groups, presenting a high
selectivity towards exchange at the C(sp3)–H centers adjacent to the nitrogen atom and
retention of the stereochemistry, even when HDX proceeds at the chiral center. In 2015, Hu
and co-workers described an example of deuteration based on the single-electron transfer
mechanism [113]. In the presented process, deuteration took place only at the α carbon
atom of the amine when the radical was stabilized at a benzylic position. It was also found
that the presence of the nitrogen was not required for the deuterium incorporation.

2.4. pH Dependent and Metal-Catalyzed HDX Adjacent to Sulfur Atom

Sulfur-directed deuteration is not so common in scientific literature. Only a few
papers report deuteration at the α carbon position of sulfur center. In 2018, the application
of ruthenium on carbon under D2 in the H/D exchange in thioesters was presented by
Gao et al. [114] By using this method a number of deuterium-labeled drugs or amino acids
and peptides have been successfully prepared with a good regioselectivity towards the
α carbon to the sulfur center. Additionally, in the case of chiral molecules involved in
this process, the retention of the configuration was found. It was also suggested that the
mechanism of the described process was the same as that proposed for the ruthenium
nanoparticle-mediated deuteration of amino acids [96].

A great review presenting the possibility of pH dependent and metal-catalyzed
hydrogen−deuterium exchange adjacent to the sulfur atom was presented by Miche-
lotti and co-workers [115]. Rauk et al. [116] demonstrated a deuteration process in the
presence of NaOD in D2O or just in D2O for substances containing the methylsulfonyl
or methylsulfinyl groups. They reported that sulfonyl (-SO2-) and sulfinyl (-SO-) groups
should present similar conjugative ability with adjacent carbanionic centers (Figure 30).
It was also presented that -SO- group was much less effective than a -SO2- group in pro-
moting deuteration at the α carbon center. The previously reported HDX of dimethyl
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sulfoxide in the presence of deuteroxide may have resulted from the enhanced reactivity of
applied bases in dimethyl sulfoxide solution. Additionally, an unexpected difference in the
deuteration level at the two methylene hydrogens was found [101].
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The possibility of complete deuteration of methylene hydrogens adjacent to the sulfinyl
group was presented by Redondo and co-workers [117]. The reaction proceeded at room
temperature when the sodium salts of compounds containing [(pyridylmethyl)sulfinyl]
benzimidazole structural core were dissolved in a solvent serving as a deuterium source,
including D2O and CD3OD. The presented process resulted from the weak acidity of the
methylene hydrogen atoms, and was also observed in a nondeuterating solvent like DMSO-
d6 in the presence of aa catalytic amount of NaOH. The described HDX was monitored by
1H NMR which also revealed the stereoselectivity of deuterium incorporation [116,118].

Transition metal-catalyzed H/D exchange can be classified into three categories. The
first one involves the C−H bond activation which generates an organometallic intermediate,
bearing a metal−carbon bond as a result of the carbon−hydrogen bond activation. The
second one is denoted as C−H insertion catalysis as a key working mode, whereas the
third one is related to the photoredox catalysis [119].

The advantages of metal catalyzed hydrogen−deuterium exchange processes are that
they are usually easy to perform and most of the presented catalysts are commercially
available. The limitation of the presented methods is the high price of the catalyst, necessity
of compound purification, long reaction times or the necessity for the application of
high pressure.

3. Conclusions

The presented manuscript provides an overview of the methods of H/D exchange
reactions at the carbon centers. From the first reports of HDX at the carbon center in
alcohols and amines, the state-of-the-art in this field has expanded enormously, mostly
due to the application of metal catalysis. proving its validity and utility. Nowadays, the
deuterated compounds play a crucial role as the internal standards in the quantitative
analysis by the LC-MS technique. Although the possibilities of deuterated standards in
quantitative investigation of compounds are beyond doubt, their application in medical
diagnosis may be limited, due to the high costs of their preparation. Therefore, despite
significant progress there is still a strong need for the development of new, simple, rapid
and cost-efficient methods of carbon deuteration. It may be speculated that the new
techniques of hydrogen−deuterium exchange at the carbon centers will be developed
in the near future. It may be expected that they will be characterized by a low price of
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preparation, the stability of the introduced deuterons, long-term storage of the deuterated
derivatives at room temperature, an appropriate mass difference for MS quantification,
stability of introduced deuterons during chromatographic separation and co-elution with
nondeuterated isotopologues. It may be expected that further work in the presented area
will be forthcoming.
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48. Bąchor, R.; Konieczny, A.; Szewczuk, Z. Preparation of isotopically labelled standarts of creatinine via H/D exchange and their
application in quantitative analysis by LC-MS. Molecules 2020, 25, 1514. [CrossRef]
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