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Fungal secondary metabolites (FSMs) represent a remarkable array of bioactive com-
pounds, with potential applications as pharmaceuticals, nutraceuticals, and agrochemicals.
However, these molecules are typically produced only in limited amounts by their native
hosts. The native organisms may also be difficult to cultivate and genetically engineer, and
some can produce undesirable toxic side-products. Alternatively, recombinant production
of fungal bioactives can be engineered into industrial cell factories, such as aspergilli or
yeasts, which are well amenable for large-scale manufacturing in submerged fermentations.
In this review, we summarize the development of baker’s yeast Saccharomyces cerevisiae
to produce compounds derived from filamentous fungi and mushrooms. These compounds
mainly include polyketides, terpenoids, and amino acid derivatives. We also describe how
native biosynthetic pathways can be combined or expanded to produce novel derivatives
and new-to-nature compounds. We describe some new approaches for cell factory engi-
neering, such as genome-scale engineering, biosensor-based high-throughput screening,
and machine learning, and how these tools have been applied for S. cerevisiae strain im-
provement. Finally, we prospect the challenges and solutions in further development of yeast
cell factories to more efficiently produce FSMs.

Fungal secondary metabolites and their production
During long-term natural evolution, fungi, as other organisms, have developed a variety of mechanisms to
gain growth advantage. Fungal secondary metabolites (FSMs), a large class of specialized small molecules,
can stimulate the survival and reproduction of the host or inhibit these processes in competing organ-
isms [1]. Bu’lock et al. [2] distinguished ‘secondary metabolites’ from ‘primary or general metabolites’
as having ‘a restricted distribution (which is almost species-specific) and no obvious function in general
metabolism’. Mycotoxins (such as aflatoxin and deoxynivalenol) and antimicrobial compounds (such as
penicillins, cladosporin etc.) might inhibit the growth of other microorganisms competing for limited nu-
trients [3]. Conversely, phytohormones and oligosaccharides could serve as plant growth enhancers and
help to enable symbiotic growth [4]. Taken together, both antagonistic and symbiotic effects could support
the survival and growth of FSM-producing fungi under natural conditions.

As a result of their antibacterial, antifungal, antitumor, antioxidant, and plant growth-regulating bioac-
tivities [5–7], FSMs (as a class of natural products [8,9]) have enormous potential applications as phar-
maceuticals, nutraceuticals, and agrochemicals. However, FSM production in the native host is generally
low and would largely be unable to meet the demand. Historically, the production of FSMs could be im-
proved mainly by laborious random mutagenesis and strain selection. This approach was mostly executed
for antibiotics, for instance, for the improvement of penicillins production by generating a series of mu-
tants [10]. Considering the genetic instability of the mutagenized strains, it would be more direct and
effective, where possible, to improve the production by rational manipulation of the biosynthetic path-
ways [11]. Thanks to the development of recombinant DNA technology in the 1980s, the overexpression
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Figure 1. Recombinant production in yeast acts as a more efficient approach for FSMs derived from filamentous fungi and

mushrooms

of short biosynthetic pathways (for example, a three-gene penicillin pathway) could be realized by the late 20th century
and was able to increase product titers with much greater efficiency [12,13].

Although fungi do not make polycistronic operons, it has become clear, since the time when the pathway genes for
penicillin were characterized, that the biosynthetic pathway genes for an FSM were often located contiguously as a
biosynthetic gene cluster (BGC) in the genome. Recently, the identification of BGCs became much more straightfor-
ward due to the development of next-generation and long-read sequencing and bioinformatics tools, such as SMURF
[14], AntiSMASH [15] etc. However, the validation of any BGC function is somewhat difficult using the native system
due to (i) the typical non-expression (‘silence’) of the gene cluster in the native host, and (ii) the lack of genetic tools
for the native host. These difficulties become even greater when it comes to strain engineering for increasing the titer
of a desired product, where both the genes of the long biosynthetic pathway need to be overexpressed and the primary
metabolic network is poorly characterized but likely needs rewiring. One approach to get around this is to transfer
the biosynthetic pathway into a yeast host (Figure 1), for which advanced genetic tools have been well developed and
where global metabolism is relatively well-studied [16–18]. Once the pathway genes are functionally expressed, the
relevant FSMs are produced from the native yeast primary metabolites, precursors. Yeast chassis can be optimized
via metabolic engineering to improve the supply of the required precursor molecule(s). Various other metabolic en-
gineering strategies can be applied to further improve the production of the target molecules; these strategies will be
discussed in the further sections.

Heterologous production of FSMs in the yeast S. cerevisiae
Diversity of FSMs
The majority of FSMs studied to date belong to polyketides, terpenoids, and amino acid (AA) derivatives (Figure 2).
Polyketide synthesis originates from acetyl-CoA/propionyl-CoA/malonyl-CoA/methylmalonyl-CoA and is driven by
polyketide synthases (PKSs). Terpenoids are synthesized by terpene synthases (TSs) or terpene cyclases (TCs) from
isoprene units (including geranyl and farnesyl pyrophosphates) that are also derived from acetyl-CoA. AA derivatives
include non-ribosomal peptides (NRPs) and other proteinogenic and non-proteinogenic AA derivatives. NRPs are
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Figure 2. Schematic biosynthetic pathway towards typical fungi-derived AA derivatives, terpenoids, and polyketides

Cys, cysteine; E4P, erythrose-4-phosphate; Glu, glucose; His, histidine; PEP, phosphoenolpyruvate; Trp, tryptophan; Val, valine.

commonly formed by the condensation of proteinogenic AAs and other building blocks via multidomain NRP syn-
thetases (NRPSs). Other proteinogenic AA derivatives are synthesized through AA modifications and condensations
by a set of separate enzymes. There also exist polyketide, terpenoid, and/or NRP hybrid FSMs synthesized by mul-
tifunctional enzymes such as PKS-NRPS or PKS-TC, as well as mixed fatty acid derivatives and ribosomally derived
peptides [19]. These compounds were, however, rarely investigated for recombinant production in a heterologous
host and are not addressed in this review.

Polyketides
Polyketide synthesis relies on the successive condensation of building blocks (CoAs) and is catalyzed by PKSs that
consist of one to many functional modules. Based on the module’s organization, PKSs are roughly classified into Types
I–III. Type I are large multimodule PKSs, Type II PKSs comprise multiple dissociated monofunctional proteins, and
Type III PKSs are sole ketosynthase proteins (Figure 3) [20,21]. Type I PKSs are further divided into modular and
iterative PKSs (Figure 3). Modular PKSs consist of multiple modules, where each active site is used only once and the
molecule is assembled as it passes through the modules. Iterative PKSs consist of a single module, where the active
sites are re-used multiple times [22].

Depending on the complexity of PKS, the chemical structure of polyketides varies considerably in terms of chain
length, the number of carbonyl groups, methylene groups, hydroxyl groups, and double bonds etc. [23]. The first
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Figure 3. The structure of different types of PKSs

The classification of PKSs is determined by the organization of domains. Functional domains/components are present either in the

multidomain (type I) or dissociated (types II and III) form. Type I PKSs consist of multiple modules (modular) or a single module

(iterative) where each of the active site is used once or multiple times for the assembly reactions, respectively.

recombinant polyketide produced in yeast was 6-methylsalicylic acid (6-MSA) [24], a simple model compound that
could activate plant disease resistance [25]. 6-MSA is synthesized from acetyl-CoA and malonyl-CoA by 6-MSA syn-
thase (6-MSAS), an iterative type I PKS with five domains. The domains areβ-ketoacyl synthase (KS), acyltransferase
(AT), thioester hydrolase (TH), ketoreductase (KR) and acyl carrier protein (ACP), where ACP, in its apo-ACP state,
needs post-translational modification by phosphopantetheinyl transferase (PPTase) to be active (holo-ACP) (Figure
4). Although PPTase is present in yeast, as a module of fatty acid synthase [26], it is incompatible with and insuf-
ficient to activate heterologous PKSs, therefore, the function of PKSs requires expression of a heterologous PPTase.
Kealey et al. co-expressed the genes encoding 6-MSAS from Penicillium patulum and PPTase from Bacillus subtilis
(Sfp) in Saccharomyces cerevisiae strain InvSc1 [24]. The resulting engineered strain could produce 1.7 g/l 6-MSA
in a small-scale cultivation (50 ml), while the strain expressing only the 6-MSAS gene had no detectable 6-MSA
[24]. This titer is more than two-fold higher than that achieved using the native host P. patulum [24]. Curiously,
expressing the same gene combination in another S. cerevisiae strain CEN.PK resulted in only 0.05 g/l 6-MSA, while
replacing PPTase with the variant from Aspergillus nidulans (npgA) resulted in a four-fold titer improvement, giv-
ing 0.2 g/l 6-MSA [27]. The differences between the two studies can be explained by different strain backgrounds,
usage of different genetic constructs, and variations in media and cultivation conditions. A ten-fold difference in
vanillin-β-glucoside production was observed between S288c and CEN.PK strains [28]. A two-fold difference in
p-coumaric acid production was found in the same two strain backgrounds, however, once the strains have been
engineered to optimize the supply of the precursor, the titers obtained in two strains were more similar [29]. When
12 different strains of the yeast Yarrowia lipolytica were tested for β-carotene production, the differences were up
to six-fold between the lowest and the highest producing strains [30]. Besides finding efficient enzymes for PKS ac-
tivation, increasing the supply of precursor, malonyl-CoA, also improved 6-MSA production. Wattanachaisaereekul
et al. increased 6-MSA titer by 60% by overexpressing the ACC1 gene encoding acetyl-CoA carboxylase and thus
improving malonyl-CoA production [31].

Several polyketides that have pharmaceutical effects have been recombinantly produced in yeast. Most of these pre-
vious works were limited to functional characterization of putative PKSs using S. cerevisiae as expression host. Zhou
et al. co-expressed two iterative polyketide synthase (IPKS) genes, Rdc5 and Rdc1 from Pochonia chlamydospo-
ria, in S. cerevisiae strain BJ5464-NpgA, and achieved the production of (R)-monocillin II (approx. 15 mg/l) [32], a
potential anticancer polyketide. The host strain BJ5464-NpgA is vascular protease-deficient (pep4Δ, prb1Δ) and is
able to activate ACP due to a PPTase (npgA) expression. Using the same host, Cochrane et al. expressed PKS genes
Cla2 and Cla3 from Cladosporium cladosporioides and achieved the production of cladosporin (10 mg/l) (Figure
2), a tricyclic octaketide that shows antimicrobial and antimalarial effects [33]. These studies verified the function of
the PKS gene clusters in vivo and helped elucidate their working mechanisms.

A BGC may include not only the PKSs but also the genes encoding for tailoring enzymes, which work together to
elaborate the polyketide scaffold and thus generate the final product. PKS12 from Fusarium graminearum catalyzes
YWA1 formation. YWA1 is a heptaketide pigment. It can be further converted into rubrofusarin, a pigment with
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Figure 4. Expression of a heterologous PPTase is required for the activation of ACP domain in PKSs and NRPSs in yeast

6-MSAS is shown here as an example. In S. cerevisiae, there is no native PPTase that is competent for a sufficient ACP domain

activation of 6-MSAS.

antibiotic effects, by dehydratase (aurZ) and O-methyltransferase (aurJ). The genes aurZ and aurJ are located in the
same BGC as PKS12. By expressing the aurZ and aurJ genes in addition to PKS12 in a S. cerevisiae strain carrying
PPTase from Aspergillus fumigatus, Rugbjerg et al. achieved the recombinant production of 1.1 mg/l rubrofusarin
[34]. More recently, Zhao et al. demonstrated how S. cerevisiae could be employed both for the whole pathway valida-
tion and engineered for an improved recombinant production of bikaverin, a red-colored tetracyclic polyketide with
antibacterial and anticancer activities [35]. The authors first introduced four elements from a putative gene cluster
for bikaverin synthesis, which included Type I PKS Bik1, FAD-dependent monooxygenase Bik2, O-methyltransferase
Bik3, permease Bik6, and PPTase from Fusarium fujikuroi, as well as npgA from A. nidulans, into the S. cerevisiae
[35]. With the resulting strain, the authors tested the essentiality of each element and validated the order of the bio-
catalytic reactions (see the detailed reaction route in Figure 4 in [35]). Furthermore, by swapping the promoter for
Bik genes to the GAL1 promoter and expressing a fused gene of Bik2 and Bik3, the authors improved the bikaverin
production by 273-fold to 0.2 g/l [35].

Natural statins, such as lovastatin (monacolin K) from Aspergillus terreus or mevastatin from Penicillium cit-
rinum, are polyketides that inhibit hydroxy-methyl-glutaryl coenzyme A reductase and have cholesterol-lowering
effect. Monacolin J acid (MJA) is the central intermediate compound for statin synthesis. Thus, Bond and Tang intro-
duced the pathway genes from both A. terreus (PKS (LovB), thioesterase (LovG), cytochrome P450 monooxygenase
(LovA), cytochrome P450 reductase (CPR), and P. citrinum (enoyl reductase (MlcG) into S. cerevisiae [36]. By op-
timizing the expression of the biosynthetic genes, expressing npgA, and deleting PYC2, PRB1, and PEP4 genes, the
authors improved the MJA titer to 75 mg/l [36]. Using the resulting strain, the authors further introduced an AT
variant (LovD9) from A. terreus, and established a one-pot process for the production of simvastatin (55 mg/l), a
lovastatin derivative that is still one of the top-selling statins and is on the WHO list of Essential Medicines [36].
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Terpenoids
The recombinant production of fungal terpenoids in yeast is in early development in comparison to the extensive
studies on plant-derived terpenoids, such as artemisinic acid and taxadiene.

Terpenoids vary in their chain lengths (monoterpene, sesquiterpene, diterpene etc.) depending on the sub-
strate specificity of TSs. Yap et al. introduced the sesquiterpene synthase-encoding gene GME3634 from the tiger
milk mushroom Lignosus rhinocerotis into a S. cerevisiae BJ5464 strain carrying PRB1 and PEP4 deletions,
and realized the recombinant synthesis of α-cadinol, which has selective cytotoxicity towards cancer cells [37].
Fusicocca-2,10(14)-diene (FCdiene) is a tricyclic diterpene and a precursor of anticancer drugs. Arens et al. intro-
duced FCdiene synthase-encoding gene from Alternaria brassicicola UAMH 7474 (AbFS) into S. cerevisiae. They
further expressed two native protein variants, hydroxy-methyl-glutaryl coenzyme A reductase isoenzyme 1 missing
the N-terminal domain (tHMGR1), and a mutant of transcription factor UPC2 (UPC2-1) that regulates ergosterol
metabolism [38]. The resulting strain produced more FCdiene than Escherichia coli and A. nidulans strains that
carried similar genetic manipulations [38], possibly due to the higher precursor supply and/or more functional ex-
pression of catalytic enzymes in S. cerevisiae. Follow-up studies increased the FCdiene titer to 240 mg/l in shake flask
cultivation [39,40].

Trichodermol is a sesquiterpene with potential anticancer and fungicidal effects. Its production (252 μg/l) in yeast
was achieved in a S. cerevisiae strain expressing genes that encode for trichodiene synthase (FgTRI5) from Fusarium
graminearum and cytochrome P450 monooxygenase from Trichoderma harzianum (TaTRI4 and TaTRI11), as well
as overexpression of the native tHMGR1 and UPC2-1 enzymes [41].

Abscisic acid (ABA) is a phytohormone regulating plant development, senescence, and tolerance to abiotic stress.
It is synthesized in plants via the cleavage of C40 carotenoids, while in fungi like Botrytis cinerea, it is formed by
cyclization of farnesyl diphosphate (FPP) and additional modifications. Otto et al. transferred ABA biosynthetic
pathway genes, viz. cytochrome P450 monooxygenase (bcaba1 bcab2), sesquiterpene cyclase (bcaba3), short-chain
dehydrogenase/reductase (bcaba4), as well as the cytochrome P450 reductase (bccpr1) from B. cinerea, into S. cere-
visiae. They further deleted lipid phosphate phosphatase (LPP1) and diacylglycerol pyrophosphate (DGPP) phos-
phatase (DPP1) genes, swapped ERG9 promoter to glucose-dependent HXT1 promoter, and overexpressed ERG20
and tHMG1 genes, leading to a strain that produced 11 mg/l ABA [42].

Lycopene, responsible for the red color of tomatoes, is a tetraterpene that has potential effects in inhibiting prostate
cancer [49] and cardiovascular disease [50]. Its biosynthesis involves geranylgeranyl diphosphate (GGPP) synthase
(CrtE), phytoene synthase (CrtB), and phytoene desaturase (CrtI). In developing efficient S. cerevisiae cell factories
for lycopene production, these three enzymes from various organisms (plant, red yeast, mold, and bacterium) have
been tested [51–54]. Among others, CrtI from the filamentous fungus Blakeslea trispora (BtCrtI) was identified to
contribute to the most efficient lycopene production [51,53].

AA derivatives
Many NRPs have antibiotic activity. As with the studies of polyketides, the recombinant production of NRP in yeast
was also initiated with a simple compound, δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV), a penicillin precursor.
Its synthesis starts with the condensation of cysteine, valine, and α-amino adipic acid. The production of ACV was
achieved by reconstructing the NRP synthetase (pcbAB) from Penicillium chrysogenum and PPTase from either A.
nidulans, P. chrysogenum, or B. subtilis, with a specific yield of 1 μg–1 mg/g dry cell weight [43]. The production
of a classical antibiotic, penicillin G (benzylpenicillin), has also been realized in S. cerevisiae. In addition to the ACV
biosynthetic pathway genes (pcbAB and npgA), the isopenicillin N synthase (pcbC), phenylacetyl CoA ligase (pclA),
and acyl-coenzyme A:isopenicillin N acyltransferase (penDE) genes from P. chrysogenum were implemented. The
expression levels were tuned by searching for the most productive strain within a yeast library in which genes were
driven by different promoters with varying strengths [44]. The strain could produce 3 μg/l penicillin G that showed
the same bioactivity as a commercial standard [44]. It is noted that the reached production level is still much lower (6
orders of magnitude) in comparison to that of optimized P. chrysogenum strains. The production of cyclooligomer
depsipeptides—beauvericins and bassianolide, which show anticancer and antibiotic effects, was also achieved in
S. cerevisiae [45]. Beauvericin synthetase (BbBEAS) and ketoisovalerate reductase (KIVR) genes from Beauveria
bassiana were introduced into a BJ5464-NpgA strain and led to the production of beauvericins (105.8 +− 2.1 mg/l),
while the expression of bassianolide synthetase (BbBSLS) in the BJ5464-NpgA strain resulted in a titer of bassianolide
of 21.7 +− 0.1 mg/l [45].

Psilocybin is a tryptophan derivative initially identified in ‘magic’ mushrooms (Psilocybe spp). In the human
body, psilocybin is dephosphorylated into psilocin, a molecule that causes hallucinations. Psilocybin is currently

282 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Essays in Biochemistry (2021) 65 277–291
https://doi.org/10.1042/EBC20200137

investigated in several clinical trials for treatment of cluster headaches, anxiety, and depression. Milne et al. con-
structed psilocybin-producing S. cerevisiae strain by expressing tryptophan decarboxylase (CrTdc) from Catharan-
thus roseus, cytochrome P450 monooxygenase (PcPsiH), N-methyltransferase (PcPsiM), 4-hydroxytryptamine ki-
nase (PcPsiK), and CPR (PcCpr) from Psilocybe cubensis [46]. The strain produced 137.1 +− 8.3 mg/l psilocybin in
small-scale cultivation [46]. Following further genetic manipulation towards an elevated metabolic flux to tryptophan
(ric1�, ARO1, ARO2, ARO4K229L, and TRP2S65R,S76L), the titer was improved to 200.5 +− 6.5 mg/l. In a controlled
fed-batch fermentation, the strain produced 627 +− 140 mg/l psilocybin and 580 +− 276 mg/l psilocin [46].

Ergothioneine (ERG) is a promising antioxidant nutraceutical [55], formed by methylation of histidine and a fol-
lowing condensation with cysteine. van der Hoek et al. reconstructed ERG biosynthesis in a S. cerevisiae strain by
expressing various gene combinations from Neurospora crassa, Claviceps purpurea, and Mycobacterium smeg-
matis [47]. The strain with the two copies of NgEgt1 and CpEgt2 produced 598 +− 18 mg/l ERG in a fed-batch
fermentation in 1-liter bioreactors [47]. Another recent study exploited the application of genes from other organ-
isms for ERG production in S. cerevisiae. An engineered strain carrying Gfegt1 and Gfegt2 from the mushroom
Grifola frondosa could produce up to 20.61 mg/l ERG [48].

Re-purposing biosynthetic enzymes for non-native
compound synthesis
PKS and NRPS proteins are mega-enzymes comprising many domains specific to their substrates and catalytic func-
tions. The substrate specificity can be changed by protein engineering [56,57]. This can be carried out by library
screening of enzyme variants. S. cerevisiae has high transformation efficiencies (up to 108/μg DNA) and is well
amenable for construction of libraries [58]. Many high-throughput (HTP) single-cell screening methods are avail-
able, such as fluorescence-activated cell sorting (FACS) [59], microfluidic droplet screen [60], growth coupling screen
[61]. Niquille et al. tagged the target substrate and a fluorescent probe to the adenylation domain (A-domain) of NRPS
displayed on yeast cell surface, and leveraged FACS to engineer the A-domain towards a target substrate. They could
identify variants that favor β-amino acids as a substrate, instead of the native α-amino acids [62].

Besides AA substitution, the swapping of the functional domains or motifs also serves as an approach to altering
the substrate acceptance and product spectrum [63,64]. An NRPS, BbBEAS, controls the chain length of its catalytic
product through the function of the C-terminal domain. A chimeric version of BbBEAS, in which the C-terminal
domain was exchanged with that of BbBSLS, could not synthesize its native product, beauvericin, but instead made
a new tetrameric NRP product [65]. Expression of PKSs genes Hpm8 and Hpm3 from Hypomyces subiculosus
in S. cerevisiae resulted in dehydrozearalenol, while the β-ketoreductase domain of Hpm8 showed stringent stere-
ospecificity. Swapping the α4β5α5α6 motif of β-ketoreductase to the homolog of another PKS, Rdc5, changed the
stereospecificity and led to the synthesis of an unnatural diastereomer of dehydrozearalenol [66].

Specific fungal biosynthetic enzymes, in comparison to the analogs from other organisms, may show higher activ-
ity and were preferentially leveraged towards the construction of an efficient S. cerevisiae cell factory. BtCrtI from
B. trispora has been shown to be superior to its analogs, and its manipulation lead to the most productive S. cere-
visiae strain for lycopene production [51,53]. Furthermore, equipping S. cerevisiae with the fungal enzymes could
result in the biosynthesis of complex xenobiotics (prenylated β-carbolines [67]) or even new-to-nature compounds
(N-acetyl-4-hydroxytryptamine [46]). As the knowledge of biosynthetic enzymes is growing, so are our opportunities
to create new possibly more potent bioactive molecules.

Advanced metabolic engineering for improving secondary
metabolite production in S. cerevisiae
In this section, we summarize the recent development of tools and engineering strategies in S. cerevisiae that could
be employed to improve FSMs production. To improve the performance of a cell factory, the substrate-derived carbon
needs to be efficiently re-directed towards the precursor metabolites and further into the target product (Figure 2).
The basic metabolic engineering strategies include up-regulation of the activity and expression of the most limiting
biosynthetic enzymes, as well as deletion of enzymes competing for or degrading precursor metabolites. Such modifi-
cations can be readily carried out in S. cerevisiae due to convenient genome editing tools, particularly CRISPR-based.
Advanced CRISPR tools in S. cerevisiae enable various genetic manipulations: single base mutation [68]; gene over-
expression [69], activation [70], repression [70,71], and knockout [69]. CRISPR-mediated gene editing further allows
multiplexing up to six genome edits in a single transformation [72]. Also methods for construction of large strain
libraries have been developed, such as CRISPR-AID [73] and CHAnGE [74].
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Table 1 Recombinant production of FSMs in S. cerevisiae

Compounds Application; function

Heterologous
enzymes
implemented in yeast

Manipulation of yeast
native genes Titer Source

Polyketides

6-MSA Agrochemical; plant
disease resistance

6-MSAS from P. patulum,
surfactin PPTase (Sfp) from
B. subtilis

NA 1.7 g/l [24]

6-MSA Agrochemical; plant
disease resistance

6-MSAS from P. patulum
and PPTase (npgA) from A.
nidulans

NA >200 mg/l [27]

6-MSA Agrochemical; plant
disease resistance

6-MSAS from P. patulum
and npgA

Overexpression of
acetyl-CoA carboxylase
(ACC1)

554 +− 26 mg/l [31]

(R)-monocillin II Pharmaceutical; potential
anticancer effect as an
inhibitor of Hsp90

IPKSs, Rdc5 and Rdc1
from Pochonia
chlamydosporia, PPTase
(npgA) from A. nidulans

Deletion of genes that
encode for vacuolar
aspartyl protease (PEP4)
and proteinase B (PRB1)

15 mg/l [32]

Cladosporin Pharmaceutical;
antimicrobial and
plant-growth inhibitory
activities, antimalarial effect
as a result of inhibition of
Plasmodium falciparum
lysyl-tRNA synthetase

PKSs (Cla2 and Cla3) from
Cladosporium
cladosporioides, PPTase
(npgA) from A. nidulans

Deletion of PEP4 and
PRB1

10 mg/l [33]

Rubrofusarin Pharmaceutical and food
additive; pigment with
antibiotic effects on both
bacteria and fungi

PKS12, dehydratase
(aurZ), and
O-methyltransferase (aurJ)
from Fusarium
graminearum, PPTase from
Aspergillus fumigatus

NA 1.1 mg/l [34]

Bikaverin Pharmaceutical;
antibacterial and
anticancer activities

Type I PKS (Bik1),
FAD-dependent
monooxygenase (Bik2),
O-methyltransferase (Bik3)
and PPTase from Fusarium
fujikuroi, npgA from A.
nidulans

NA 202.75 mg/l [35]

Simvastatin Pharmaceutical PKS (LovB), thioesterase
(LovG), cytochrome P450
monooxygenase (LovA),
cytochrome P450
reductase (CPR), and AT
variant (LovD9) from
Aspergillus terreus, enoyl
reductase (MlcG) from
Penicillium citrinum

Deletion of PEP4, PRB1,
and gene for pyruvate
carboxylase (PYC2)

55 mg/l [36]

Terpenoids

α-cadinol Pharmaceutical; potential
anticancer effect (selective,
potent cytotoxicity in
breast adenocarcinoma
cells)

Sesquiterpene synthase
(GME3634) from Lignosus
rhinocerotis

Deletion of PEP4 and
PRB1

Detectable [37]

FCdiene Pharmaceutical; precursor
of anticancer drug
fusicoccin A

FCdiene synthase from
Alternaria brassicicola
UAMH 7474 (AbFS)

Overexpression of genes
that encode for
hydroxy-methyl-glutaryl
coenzyme A reductase
isoenzyme 1 missing the N
terminal domain (tHMGR1),
variant of transcription
factor UPC2 (UPC2-1) that
regulate the ergosterol
metabolism

20–240 mg/l [38–40]

Continued over
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Table 1 Recombinant production of FSMs in S. cerevisiae (Continued)

Compounds Application; function

Heterologous
enzymes
implemented in yeast

Manipulation of yeast
native genes Titer Source

Trichodemol Pharmaceutical and
agrochemical; potential
anticancer agent and
fungicide

Trichodiene synthase
(FgTRI5) from Fusarium
graminearum and
cytochrome P450
monooxygenase from
Trichoderma harzianum
(TaTRI4 and TaTRI11)

Overexpression of
tHMGR1 and UPC2-1

252 μg/l [41]

ABA Agrochemical;
phytohormone

Cytochrome P450
monooxygenase (bcaba1
bcab2), sesquiterpene
cyclase (bcaba3),
short-chain
dehydrogenase/reductase
(bcaba4), cytochrome
P450 reductase (bccpr1)
from Botrytis cinerea

Deletion of genes that
encoding for lipid
phosphate phosphatase
(LPP1) and DGPP
phosphatase (DPP1),
swapping ERG9 promoter
to glucose-dependent
HXT1 promoter,
overexpression of ERG20
and tHMG1

11 mg/l [42]

AA derivatives

NRPs

ACV Pharmaceutical; antibiotic
precursor

ACV synthetase (pcbAB)
from P. chrysogenum,
PPTase from A. nidulans, P.
chrysogenum, or B. subtilis

NA 1 μg–1 mg/g dry cell
weight

[43]

Benzylpenicillin Pharmaceutical; antibiotic npgA from A. nidulans,
pcbAB, isopenicillin N
synthase (pcbC),
phenylacetyl CoA
ligase(pclA), and
acyl-coenzyme
A:isopenicillin N
acyltransferase (penDE)
from P. chrysogenum

NA 3 μg/l [44]

Beauvericins Pharmaceutical and
agrochemical; antibiotic,
anticancer and insecticidal
effects

Beauvericin synthetase
(BbBEAS) and
ketoisovalerate reductase
(KIVR) from Beauveria
bassiana; PPTase (npgA)
from A. nidulans

Deletion of PEP4 and
PRB1

105.8 +− 2.1 mg/l [45]

Bassianolide Agrochemical; insecticidal
effect

Bassianolide synthetase
(BbBSLS) from Beauveria
bassiana, PPTase (npgA)
from A. nidulans

Deletion of PEP4 and
PRB1

21.7 +− 0.1 mg/l [45]

Other proteinogenic AA derivatives

Psilocybin Pharmaceutical; treatment
of various psychological
and neurological afflictions

Tryptophan decarboxylase
(CrTdc) from Catharanthus
roseus, cytochrome P450
monooxygenase (PcPsiH),
N-methyltransferase
(PcPsiM),
4-hydroxytryptamine
kinase (PcPsiK), CPR
(PcCpr) from Psilocybe
cubensis

Deletion of transcriptional
regulator RIC1 gene,
overexpression of genes
encoding for
pentafunctional AROM
protein (ARO1),
bifunctional chorismate
synthase and flavin
reductase (ARO2),
3-deoxy-d-arabinose-
heptulosonate-7-phosphate
(DAHP) synthase
(ARO4K229L), and
anthranilate synthase
(TRP2S65R,S76L)

627 +− 140 mg/l [46]

ERG Nutraceutical; antioxidant ERG biosynthesis protein 1
(NcEgt1) from Neurospora
crassa, ERG biosynthesis
protein 2 (CpEgt2) from
Claviceps purpurea

NA 598 +− 18 mg/l [47]

ERG Nutraceutical; antioxidant Gfegt1 and Gfegt2 from
Grifola frondosa

NA 20.61 mg/l [48]

NA, not applicable.
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The strain library can be built by altering either the expression level [60,73] or the amino acid sequence [74] of
the genes that could account for the desired phenotype, for example, an improved product titer. The variant strains
with the desired phenotype can be isolated through HTP screening. Such so-called direct in vivo genome evolution
has been aided by the rapid development of HTP screening that relies on the biosensors for important precursor
metabolites (malonyl-CoA [75], tyrosine [76,77] etc.) or xenobiotic compounds [78].

Xenobiotic compounds may be toxic to S. cerevisiae cells and therefore retard biomass accumulation. To accumu-
late higher biomass to support the high production, separation of product biosynthesis from biomass accumulation,
both temporally and spatially, was developed. The dynamic regulation of expression of biosynthetic genes serves as
a robust temporal control approach, for instance in two-stage fermentation [79,80]. The process consists of growth
and production stages, in which biosynthetic genes were muted and highly activated, respectively. This design would
ensure a high biomass for product synthesis and support a high production. Spatial separation strategies include
co-culture [81,82] and compartmentalization [83,84], where the toxic compounds were synthesized and metabolized
by a second microorganism or in subcellular organelles, respectively. This way, toxic impacts are reduced, metabolic
burdens are separated, and the benefit of reaction condition (pH, precursors, cofactors) is maximized. Besides being
separated from harm, strains may also be trained to resist toxicity through adaptive laboratory evolution [85,86].

Over the growth/fermentation stage, recombinant strains may get rid of the heterologous biosynthetic pathway
genes that are not essential for their growth. The resulting non-producing mutants may dominate the population as
a result of the growth advantage and, therefore, reduce the overall producing capacity. An emerging trend is to use
population control, via the product-activated expression of essential and selective genes; this stabilizes the producing
capability of the recombinant cell population [87].

The blooming of ‘deep’ machine learning [88,89] makes it more accessible to simulate cellular processes and op-
timize the recombinant cells despite a limited understanding of the global metabolism. It has shown success in
fine-tuning the expression of a set of pathway genes towards efficient β-carotene- [90] and tryptophan-producing
[91] S. cerevisiae strains. This application would be broadened and speeded up by the automation that would help
generate larger amounts of training data for higher prediction accuracy.

Conclusion and perspectives
The yeast S. cerevisiae has been developed to become a robust host strain for the recombinant production of FSMs
(Table 1). It is easy to manipulate genetically and its metabolism is well studied. Many issues hindering the functional
expression of fungal biosynthetic genes in yeast, such as high GC content and accurate intron splicing, have also been
readily solved by codon optimization of the mature mRNA sequence and subsequent gene synthesis. Although much
progress has been made, challenges still exist in developing yeast as a universal chassis strain for FSMs.

There are still many FSMs that cannot be produced in recombinant S. cerevisiae strains carrying the relevant BGC
(19 out of 41 in an earlier report [17]). This may be due to incorrect protein folding, modification, and trafficking. Both
upgrading the native protein quality control system to be compatible with the heterologous proteins and modifying
the heterologous proteins to be compatible with the recombinant system (e.g. using more suitable signal peptides)
can potentially relieve the problem.

The high-level production of FSMs also requires a sufficient supply of precursor metabolites, for instance,
malonyl-CoA and methylmalonyl-CoA essential for polyketides. The supply of these precursors can be improved
through extensive reprogramming of the central carbon flux, bioenergetics, and redox status [92,93]. Other strategies
are more direct, using non-conventional yeast strains that are superior in malonyl-CoA (such as Y. lipolytica [94])
and protein synthesis (such as Pichia pastoris [95,96]) as the ‘chassis’ strain.

The secretion of metabolites by cell factories is preferred as secretion can relieve the cellular feedback inhibition
and simplify the downstream product recovery [97]. While some of the FSMs (such as ABA [42], psilocybin [46])
are mostly secreted to the extracellular medium in S. cerevisiae, others (such as ergothionine [47], betaxanthins
[77]) are partly retained in the cell. The substrate specificity of S. cerevisiae transporter proteins to xenobiotic com-
pounds is unclear, which complicates rational transporter engineering to facilitate the export. However, if an HTP
screening method is available, then a library of transporter knockout yeast mutants can be created and screened for
improved metabolite production [77]. Sometimes, native transporters from the metabolite-producing organisms can
be expressed in yeast to facilitate the export [98].

With the rapid development of synthetic biology and metabolic engineering approaches for S. cerevisiae and
non-conventional yeasts, we will witness emergence of novel and improved yeast-based fermentation processes for
the production of FSMs.
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Summary
• FSMs have broad applications as pharmaceuticals, nutraceuticals, and agrochemicals.

• Recombinant production of FSMs in yeast can allow for an efficient manufacturing process.

• Polyketides, terpenoids, and AA derivatives have been produced recombinantly in baker’s yeast S.
cerevisiae.

• Advanced metabolic engineering approaches relying on genome-scale engineering and HTP screen-
ing speed up the development of effective yeast cell factories.
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