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A B S T R A C T

Peer-to-Peer (P2P) energy trading has gained much attention recently due to the advanced development of
distributed energy resources. P2P enables prosumers to trade their surplus electricity and allows consumers to
purchase affordable and locally produced renewable energy. Therefore, it is significant to develop solutions that
are able to forecast energy consumption and generation toward better power management, thereby making
renewable energy more accessible and empowering prosumers to make an informed decision on their energy
management. In this paper, several models for forecasting short-term renewable energy consumption and
generating are developed and discussed. Real-time energy datasets were collected from smart meters that were
installed in residential premises in Western Australia. These datasets are collected from August 2018 to Apr 2019
at fine time resolution down to 5 s and comprise energy import from the grid, energy export to the grid, energy
generation from installed rooftop PV, energy consumption in households, and outdoor temperature. Several
models for forecasting short-term renewable energy consumption and generating are developed and discussed.
The empirical results demonstrate the superiority of the optimised deep learning-based Long Term Short Memory
(LSTM) model in forecasting both energy consumption and generation and outperforms the baseline model as well
as the alternative classical and machine learning methods by a substantial margin.
1. Introduction

The ongoing growth of the world's population has led to a dramatic
increase in energy demand which is expected to approach a 25% in-
crease, in comparison to the actual consumption, by 2040 [1]. To meet
such demand, efforts have been consolidated toward developing
advanced renewable energy systems that have led to establishing new
economic alternatives [2, 3]. In this context, sharing economy has
exploded in popularity over recent years and is expecting to continue its
trend and expand to many market sectors e.g., Peer-to-Peer (P2P)
transportation (Uber), P2P accommodation (Airbnb), P2P energy
trading, etc. Supply and demand are matched using high-speed ICT in
sharing economy which is disrupting traditional business models. In the
energy sector, the development and the widespread deployment of smart
meters offer the essential infrastructure for sharing economy through P2P
lih).
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energy trading [4]. This leads to affordable clean energy and ultimately
to the sustainable energy transition. Further, this commences venues for
power system markets as well as potentially allowing a transformation to
customers sharing electricity. In addition, P2P electricity markets may
allow investing in locally produced renewable energy which provides
more flexibility for consumers to choose their source of electric energy. A
sharing economy in the energy sector can be seen through a P2P local
energy trading market allowing energy buyers and sellers to trade with
each other bypassing the central system.

The Australian Government has funded a research project (RENeW
Nexus project [5]) to investigate the effect of using blockchain tech-
nology as well as data analytics to enable P2P trading of energy and
water. In the first phase of the project, electric smart meters were
deployed in fifty houses across the city of Fremantle, Western Australia.
The energy data was collected in real-time and included: energy data
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imported from the grid; energy data exported to the grid; energy data
generated from the installed rooftop PV; and energy consumed at the
households. To enable effective P2P energy trading, real-time fore-
casting is essential to estimate the likely energy usage and production,
forming crucial insights that can substantially increase operation effi-
ciency and make the most efficient energy trading between prosumers
and consumers. In a traditional centralised power supply, consumers
purchase electricity from utilities and eligible counterparts in fixed
tariffs. On contrary, consumers become prosumers (i.e., they can
consume as well as produce power) in P2P energy trading and their role
can be smoothly switched, thereby allowing to either purchasing power
or selling it to achieve a win-win in an open market model [6]. However,
decision-making, including electricity price bidding, energy consump-
tion and generation scheduling, etc., in such a decentralised environ-
ment is not an easy task; this is due to the complexity, independency,
uncertainty, and unpredictability of the market in reality [7, 8]. Further,
reliability analysis, security assessment, voltage excursion, thermal
overloading, and other network constraints [9, 10, 11, 12, 13] augment
the trading complexity. Therefore, real-time energy forecasting is an
essential guide for buyers and sellers to assist the bidding process on the
spot market, to a better understanding of real-time prosumers behav-
iour, and to enable peak-shaving and smooth power dispatching [14, 15,
16]. It also allows to attain security of operations conducted under tight
reserve margins [17].

In addition, a traditional highly centralised energy management and
market is controlled by a few key players. A transition to a more demo-
cratic decentralised market is needed. The real-time forecasting for P2P
energy consumption and generation is not only enabling the transition
but also providing a solution to the phenomenon known as the utility
death spiral [18]. This global phenomenon is caused by the increased
adoption of rooftop photovoltaic (PV) panels which reduces overall grid
electricity demand without affecting peak demand. With fewer paying
customers to maintain the necessary infrastructure, utilities are required
to increase electricity prices; this in turn encourages greater adoption of
PV panels. This is exacerbated by the decreasing costs of PV technology.
Battery adoption by PV users can help to reduce peak demand however
excess electricity is still exported to the grid in an inefficient manner, at
times when demand is low. A study of actual P2P trading system has been
reported and published in [4].

In this paper, short-term forecasting of energy consumption and
production using actual data is explored. Real-time data were collected
from smart meters that were installed in residential premises and used to
evaluate the efficacy and effectiveness of statistical and machine learning
techniques. Well-known classical (statistical) and AI-based models are
used to analyse energy consumption and production. The comprehensive
comparison is investigated and illustrated. The following are the key
contributions of this paper:

� A two-fold analytical model to forecast energy consumption and
generation in P2P settings is designed and implemented.

� An auto-ML model and various classical and advanced AI-based
techniques are incorporated, and their utility is evaluated and
compared comprehensively.

� To the best of our knowledge, this is the first paper that furnishes a
forecasting model for both energy consumption and generation based
on real data captured from a P2P grid system in the state of Western
Australia.

The rest of this paper is organized as follows: Section 2 offers a review
of various intelligent techniques used in energy consumption and gen-
eration. Section 3 discusses different forecasting approaches used for
time series analysis. Section 4 provides a comprehensive discussion on
the models’ development. The carried out experiments to validate the
utility of the model are presented and discussed in Section 5. Section 6
discusses the empirical results and point to the limitations of this study.
Section 7 concludes the paper.
2

2. Related works

The application of Artificial Intelligence (AI) has extended to
numerous industrial domains. This is due to the sophisticated architec-
ture of AI algorithms that empowers them to address a wide variety of
real-life problems [19, 20, 21, 22, 23]. Forecasting of energy consump-
tion and generation is an important venue of research that is used to
tackle related issues such as demand response, fault detection and trou-
bleshooting, model predictive control, and energy management and
optimization [24]. Hence, renewable energy forecasting has attracted a
great deal of interest recently [25, 26, 27, 28, 29]. Energy forecasting
techniques are commonly categorized into two key approaches, namely
conventional models and AI-based models. In a recent survey [30], it was
indicated that the proportion of AI-based models to con-
ventional/classical models, based on a study of 128 models, are 48% and
43%, respectively. This implies the significance of both models in the
designated task even though AI-based models are much more sophisti-
cated. In fact, some classical models, under certain assumptions, over-
shadow advanced AI approaches [31]. In this section, we visit studies
that have been carried out in the area of both energy forecasting and
consumption using the aforementioned approaches.

In terms of energy consumption forecasting, various studies were
proposed to tackle this issue incorporating both classical models [32, 33,
34, 35, 36, 37, 38] and AI-based models [36, 37, 38, 39, 40, 41]. For
example [32], proposed a novel time-series smoothing model for
medium-term electricity consumption forecasting. The model is based on
a semi-parametric model that offers an extension of the semi-parametric
and nonparametric vector autoregression model. Long-term energy
consumption forecasting was addressed in [33] where authors combined
a mixed data sampling model with an autoregressive distributed lag to
predict energy demand in China. For energy consumption in Turkey and
Pakistan, Akpinar et al. [34] and Hussain et al. [35] applied the ARIMA
model for this designated task respectively. Various other conventional
models have been incorporated for energy consumption prediction,
including logistic regression [36], linear regression [37], and Nonlinear
regression (NLR) [38].

Popular AI-based approaches such as Artificial Neural Networks
(ANN), Support Vector Machine (SVM), and Random Forest (RF) were
also utilized in energy forecasting models. ANN includes various ma-
chine learning algorithms that were used in the literature. For example,
three layers of Feedforward Neural Network (FFNN) are used in [42].
An optimized hybrid algorithm that uses FFNN was presented by [39]
to predicted short-term building energy forecasting. Another optimi-
zation algorithm, for short-term energy consumption, was proposed
which incorporates FFNN and Bayesian regularization algorithm [40].
Another thread of efforts adopts Deep Learning (DL) techniques
leveraged by advanced specifications of modern computers. DL models
are mainly represented by the recurrent neural network (RNN) to
forecast energy consumption [43]. He [41] incorporated RNN to model
the implicit dynamics and obtain the predicted load along with CNN
that was used in their work to extract significant features from the
historical load sequence. Long Short-Term Memory (LSTM) is a special
type of RNN that has been proven to outperform modern models [41,
44]. Authors of [45] employed LSTM architecture toward electricity
consumption forecasting. They presented the sequence-to-sequence
architecture to obtain a random number of formerly attainable load
measurements and use them as input to approximate the load for future
time steps.

Statistical models using both classical models as well as AI-based
models were utilised to predict energy generation, including ARMAX
models [46], ARIMA/SARIMA models [47, 48, 49], multiple regression
[50], regression with neural networks [51, 52, 53], support vector ma-
chine (SVM) [54], etc. For example, the authors of [55] transformed time
series data into stationary data using the ARIMA model. Their model for
predicting energy is validated using the Akaike Information Criterion
(AIC) and Residual Sum of Squares (SSE). Ayub et al. [56] applied SVM
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with three parameters (kernel parameter, cost penalty, and incentive loss
function parameter) on the electricity load data set. Using various ma-
chine learning methods was also reported on a real data set collected in
France [57]. Li [58] introduced short-term solar irradiance forecasting
algorithms based on Hidden Markov Model and SVM regression. The
paper presents an approach to predict Photovoltaic (PV) generation
under different weather conditions. Statistical and intelligent models
based on machine learning used for PV generation forecasting were also
reported in [3, 59, 60, 61].

Table 1 demonstrates a summary of several approaches for fore-
casting energy generation and consumption. As illustrated in the table,
most of the current studies were carried out using limited variations of
statistical techniques to predict either energy generation or energy con-
sumption. Also, few attempts were undertaken to conduct very short-
term energy forecasting. Implementing short-term energy forecasting
approaches benefits real-time or near real-time energy dispatching sys-
tems, and it has proven utility in providing better coordination of re-
sources [14]. Our approach, on the other hand, discusses the
Table 1. A Summary comparison between various energy generation and consumpti

Ref. Forecasting Model Consumption/
Generation

Data Source

[32] Vector Autoregression Consumption Suzhou Municipal Bureau
Statistics

[33] ADL-MIDAS Consumption National Bureau of Statisti
of China

[34] ARIMA Consumption Adapazari Natural Gas
Distribution

[35] Holt-Winter and ARIMA Consumption Pakistan Economic Survey

[62] ARMA þ Kalman filter Consumption Hellenic Public Power
Corporation S.A.

[63] MA þ SARIMA þ PSO Consumption Power Grids of China

[64] Exponential smoothing
model þ Bayesian inference

Consumption IEA website

[65] FARX Consumption Residential Energy
Consumption Survey

[36] Multi-cycle logistic model Consumption
and Generation

US Energy Information
Agency

[66] Holt-Winters exponential
smoothing method

Consumption International Energy Agenc

[67] Adaptive Residual
Compensation

Generation global energy forecasting
competition

[39] FFNN Consumption ASHRAE, library building
located in Hangzhou, East
China

[40] FFNN and Bayesian
regularization algorithm

Consumption Building management syste

[41] RNN and CNN Consumption A City in North China

[45] LSTM Consumption Individual household elect
power consumption

[55] ARIMA Generation Building in Reese Research
Center

[59] WT, LSTM, SAE Generation Energy Information
Administration

[60] Ensembled ANN Generation Federal Institute of Southe
Minas Gerais State

[61] ARIMA and ANN Generation National Climate Data Cen

[3] LSTM Generation Turkish Electricity
Transmission Corporation

This
study

LSTM, ARIMA, VAR
LR, Lasso, Ridge, ElasticNet
HuberRegressor, Lars,
LassoLars,
PassiveAggressiveRegressor,
RANSACRegressor,
SGDRegressor, and RapidMiner

Consumption
and Generation

RENeW Nexus project
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implementation of short-term (i.e., hourly) power generation as well as
power consumption models using a variety of classical and sophisticated
AI-based techniques. Further, to the best of our knowledge, this is the
first paper that offers a two-fold energy consumption and generation
model based on real data captured from a P2P grid system in the state of
Western Australia.

3. Time series forecasting models and evaluation metrics

In this section, a discussion is provided on the classical (statistical)
and AI-based models which are incorporated in the development of the
prediction models in this study. Those models are typically used to
forecast the energy consumption and generation of buildings, and
implemented through four main stages, namely; data acquisition, data
pre-processing, model training, and model testing [68]. Further, certain
machine learning tools and software platformswill be presented followed
by a discussion on key metrics to evaluate the performance of the time
series forecasting model.
on forecasting methods.

Data Temporality Forecasting
Horizon

Country Evaluation Metric(s)

of Jan 2004 to Jan 2014 Monthly China MAPE

cs 2016 Quarterly China RMSFE

2009 to 2012 Monthly Turkey MAPE

1980 to 2011 Annually Pakistan RMSE, MAPE

Jan 2004 to Dec 2006 Daily Greece MAPE

Dec 2003 to Dec 2009 Monthly China MAE, RMSE, MAPE

1990 to 2014 Yearly Japan AAEP

Apr 2018 to Jul 2015 Hourly USA MAPE, RMSE

1949 to 2015 Yearly USA R-square

y 1993 to 2007 Yearly Romania MAPE, MAE, MSE

2004 to 2014 Hourly USA RMSE, R-square, CRPS

Sep 1989 to Feb 1990 Hourly China MAPE

m Jul 2012 15-minute N/A MBE, RMSE

Feb 2010 to Dec 2012 Hourly China MAPE, MAE

ric Dec 2006 to Nov 2010 Hourly, and
sub-hourly

USA RMSE

Nov 2017 to Nov 2018 Monthly USA MAPE

Jan 1997 to Dec 2022 Monthly USA MAE, RMSE, U1, U2

rn May 2017 to Apr 2019 Weekly Brazil MAPE

ter Jan 2014 to Oct 2019 Daily Korea RMSE, MAPE

Jan 2016 to Dec 2019 Daily Turkey RMSE, MAE MAPE

Aug 2018 to Apr 2019 Hourly Australia RMSE, MAE
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3.1. Classical time series forecasting models

3.1.1. Univariate and multivariate classical models
Classical time series forecasting models are designed to focus on

linear relationships where many of these techniques rely on decomposing
time series to three main components; (i) Trend: indicates the increase/
decrease of data; (ii) Seasonality: inferring an iterating pattern in a
particular time interval; and (iii) Noise: refers to irregular components of
data samples [69]. There are various classical time series forecasting
models to handle either or both univariate (a single variable) and
multivariate (Multiple variables) time series problems.

Autoregressive Integrated Moving Average (ARIMA): ARIMA
refers to a particular form of regression-based models which presume
that time series values are continuous measures [70]. ARIMA is
commonly used to be fitted to the time series dataset to gain a better
fathom of the dataset and to forecast future points in the examined time
series problem. ARIMA models are widely used due to their extensive
harness of sophisticated statistics that permit effective determination of
the embodied parameters, as well as inclusive valuation of their suit-
ability [71]. ARIMA is used to model stationary and non-stationary time
series datasets, and it is mainly composed of two models; Autoregressive
Models (AR): uses observations inferred from preceding time steps in
the series to feed a regression linear function, thereby forecasting the
value at the next time step; Moving Average (MA): uses the past fore-
casting errors instead in the regression linear function. ARIMA also in-
cludes a pre-processing step (Integration (I)) to make the series
stationary by conducting a differencing step. Hence, any typical ARIMA
model should identify three main parameters; ARðpÞ; MAðqÞ; and IðdÞ,
thus the notation of ARIMA can be defined as ARIMAðp;d;qÞ. These pa-
rameters formulate the forecasting equation of an ARIMA model as
follows:

xt �ϕo � ϕ1xt�1 � ϕ2xt�2 �⋯� ϕpxt�p

¼ at þ θ1at�1 þ θ2at�2 þ⋯þ θqat�q (1)

where xt is the observed output at time t; and at is the error term at time t.
Seasonal Autoregressive Integrated Moving-Average (SARIMA):

Seasonal ARIMA or SARIMA is a special form of ARIMA model that is
used mainly to model a wide range of seasonal data. This is attained by
incorporating an additional seasonal parameter to handle a period of
seasonality [72]. SARIMA, therefore, has its own configuration and new
different hyperparameters are introduced as follows; (i) P: Seasonal
autoregressive order. D: Seasonal difference order; Q: Seasonal moving
average order; and m: The number of time steps for a single seasonal
period (for example, m¼ 4 of data is quarterly). The notation of SARIMA
can be described as SARIMAðp;d;qÞðP;D;QÞm and can be formulated as:
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yt ¼ ð1� LÞdð1� LsÞD

(2)

where xt is the original non-stationary output at time t; yy is the sta-
tionary output at time t., and at is the error term at time t.

Vector Autoregression (VAR): VAR is used commonly with multiple
parallel time series (eg. multivariate time series). It is a generic form of
AR for predicting a vector of time series. Hence, it includes one equation
for each variable in the model, then VAR generates a forecast for each
variable in a repetitive way [72]. VAR model has proven ability to fit
several time series problems, this includes analysing a dissimilar number
of variables to infer the dynamic relationships among them [73], or
investigating whether a certain variable might affect forecasting different
variables. In other words, each designated variable is a linear function of
4

previous lags of itself as well as previous lags of other variables. The
typical equation for a VAR model can be written as:

Yt ¼αþ β1Yt�1 þ β2Yt�2 þ⋯þ βpYt�p þ ϵt (3)

where α is a constant, β1; β2 to βp are the coefficients of the lags of Y until
order p which indicates the number of p-lags of Y used, and ϵt indicates
the white noise.

3.1.2. Multi-step forecast with linear algorithms
Time series problem is commonly addressed through forecasting one

value (observation) in the future (i.e. one-step prediction). However, con-
ducting time series analysis can also include predicting multiple values in
the future (i.e., multiple-steps prediction). For example, instead of pre-
dicting the temperature of the next day (one-step), forecasting the tem-
perature for the next week (seven-steps) is also valid with multi-step time
series. This studywill focusonone-step time series forecastingandwill leave
multi-step forecasting to future work. Python's scikit-learn library1 offers a
set of generalized linear regression-based models that can be incorporated
with one-step and multi-step time series forecasting problems. These
include LinearRegression, Lasso, Ridge, HuberRegressor, to name a few.
3.2. Deep learning - Long Short-Term Memory (LSTM)

Long Short-TermMemory networks - commonly called "LSTMs" - are a
special kind of Recurrent Neural Network (RNN), capable of learning long-
term dependencies. It was first introduced by Hochreiter & Schmidhuber
[74], revised, and circulated by many research fellows at the following
work [75, 76, 77]. LSTM layer uses the concept of numerous hidden state
types to alter the quantity of information kept across so called states. This
can be used for instance when working on sequential data (i.e.,
time-series or text), since the hidden states can store a given amount of
information from previous states beyond the just handled one. This
means that for example, a connection between the first word of a long
text and the last word can be created even though the complete para-
graph is quite long. To account for the importance of in-between states,
LSTMs use mechanisms to adjust the importance and amount of influence
a hidden state has for the current calculation [78].

Figure 1 portrays the inner cell diagram of an LSTM Network. LSTM
preserves a hidden vector, h, and a memory vector, m, where the state
updates and outputs are controlled at each step, respectively. The
computation at each time step is formulated as the following:

gu ¼ σðWuht�1 þ IuxtÞ (4)

g f ¼ σ
�
W fht�1 þ If xt

�
(5)

go ¼ σðWoht�1 þ IoxtÞ (6)

gc ¼ tanhðWcht�1 þ IcxtÞ (7)

mt ¼ gf �mt�1 þ gu � gc (8)

ht ¼ tanhðgo �mtÞ (9)

Where gu is the activation vector of the input gate, gf is the activation
vector for the forget gate, go is the activation vector of the output gate, and
gc is the activation vector of the cell state gate. ht is the hidden state
vector of the LSTM unit, the logistic sigmoid function is indicated by σ,
the elementwise multiplication is embodied by �. Wu; W f ; Wo; Wc

represent the recurrent weight matrices. Finally, Iu; If ; Io; Ic notations
indicate the projection matrices.
1 https://scikit-learn.org/stable/modules/linear_model.html.

https://scikit-learn.org/stable/modules/linear_model.html


Figure 1. LSTM cell architecture [79].
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The ongoing incorporation of deep learning approaches is due to their
technical capabilities to learn long-term dependencies as well as
nonlinear characteristics that are captured in electric data which
commonly leads to obtain accurate forecasting results; thus they over-
shadow other classical or statistical machine learning models [80, 81].
Further, data in an energy forecasting problem might embody a strong
periodicity (i.e., oscillates or fluctuates over time) [82]. This can be
observed in electricity consumption that commonly peaks at a certain
time of the day. This periodicity can be also perceived seasonally (i.e.,
monthly, yearly, etc.). The literature also verifies the utility of deep
learning models in other metrics including evaluation errors, prediction
accuracy, and robust generalisation ability [83, 84, 85].
Figure 2. Gartner magic quadrant for data

5

3.3. Data science tools

With the growing interest in data science and machine learning, the
intense rivalry amongst software companies has led those companies to
develop cross-platform tools and software systems that are used for
conducting machine learning and data mining tasks with minimum ef-
forts. Gartner in their 2021 Magic Quadrant for Data Science and Ma-
chine Learning Platforms [86] has placed seventeen distinguished
software companies into four different forms of technology providers. As
depicted in Figure 2, RapidMiner is amongst four competing companies
which are positioned on the Leader quadrant for being drivers for
transformation.
science and machine learning (2021).



Table 2. Dataset description.

Weekday Temp Energy Generated Energy Consumed

mean 3.00 17.46 31.38 29.25

std 2.00 6.35 41.62 12.13

min 0.00 2.80 0.00 3.27

25% 1.00 13.30 0.04 20.21
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RapidMiner™ has been incorporated in this study as an alternative
rapid approach for conducting time series forecasting. The aim is to
examine the results of the conducted experiments using this software
platform, thereby providing another benchmark comparison with the
obtained results of classical and deep learning-based forecasting
techniques.

3.4. Metrics for models performance evaluation

This study uses a set of evaluation metrics to measure the perfor-
mance of the implemented prediction module. The following metrics are
used to compare the performance of the model for forecasting energy
consumption and generation: (i) Root-Mean-Square Error (RMSE): is
used to measure the accuracy of model prediction performance. It is
commonly used to calculate standard deviation of the prediction errors
(residuals); (ii) Mean Square Error (MSE): provides an indication on how
well the regression model is by computing the distance between the data
point and the regression line; and (iii) Mean Absolute Error (MAE): it is
essentially the mean of the absolute differences between forecasted and
actual values.

These metrics can be defined through the following formulas:

MSE¼ 1
n

Xn

i¼1
ðFi � OiÞ2 (10)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðFi � OiÞ2

r
(11)

MAE¼1
n

Xn

i¼1
jFi �Oij (12)

where Fi ¼ forecasted value, Oi ¼ the actual value, and n ¼ number of
data samples.

4. Models development

In this section, we discuss various experiments carried out to develop
models for forecasting energy consumption and generation. The experi-
ments that incorporate classical andML techniques were developed using
Python. Keras2 is also used as an efficient deep learning-based python
library. Another set of experiments was also implemented incorporating
the RapidMiner™ software platform.

4.1. Dataset description and Features Selection

The energy data are collected from August 2018 to Apr 2019 (9
months) at fine time resolution down to 5 s and transmitted through the
Internet of Thing network. Amazon Web Services (AWS), a Virtual
Private Cloud (VPC), is used to store energy data. The data comprises
energy import from the grid, energy export to the grid, energy gener-
ation from installed rooftop PV, and energy consumption in households.
This paper aims to build forecasting models to predict both energy
generation and consumption. The dataset also comprises daily temper-
ature observations collected by the Bureau of Meteorology for Perth,
Western Australia3.

Datasets Pre-processing: a set of data pre-processing and feature
engineering steps were followed before conducting experiments: (1)
the energy consumption and generation data were aggregated from
different sites and transformed from data with 5 s intervals into data
with one-hour intervals. The aggregation of all power consumption
and generation for all sites was carried out due to the fact that fore-
casting accuracy commonly declines as the level of aggregation
2 https://keras.io/.
3 http://www.bom.gov.au/climate/data/.
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decreases [87]. (2) Energy consumption and generation dataset were
integrated with the temperature data obtained from the weather
dataset. (3) The null/missing values in the dataset were identified
and imputed. (4) A new feature to represent the day of the week is
created.

Features Selection: The resultant dataset comprises three different
variables which are selected due to their direct effect on energy gener-
ation and consumption. Those include day of the week (Monday to
Sunday), outdoor temperature (⁰C), and the hour of the day (0–23).
Table 2 shows some statistics of the processed datasets and Figure 3 il-
lustrates a diagram of three subplots showing temperature data, energy
consumption and energy generation during the whole 6120 h period (�9
months).

Figure 4 depicts the correlation between temperature and energy
(generated and consumed). It is evident that energy generation and
consumption are highly dependent on temperature. People tend to
consume much energy on hot days (for cooling) and cold days (for
heating). Also, as depicted in Figure 4, there is moderate energy con-
sumption in mild weather conditions. On the other hand, renewable
energy production surges as temperature rises, thereby augmenting
supplied energy (mix energy) to the smart grid.

The dataset from the beginning of Aug 2018 to the end of Feb 2019
was used in the model training process, and the remaining dataset of Mar
and Apr 2019 were used to test and evaluate the model performance as
depicted in Figure 5.
4.2. Multivariate energy consumption and generation forecasting using
deep learning

4.2.1. Dataset preparation
Normalization and reshaping: incorporating LSTM for time series

problem necessitates a need to normalize the dataset and to transform the
dataset to a supervised learning problem (i.e., dataset is split into a set of
variables/features and an output label). This involves learning from the
previous data points in the series to forecast the next value in the future,
thereby, the sequence of observations inferred from the series should be
transformed as feature variables from which LSTM can learn. Based on
suggestions provided by [88], we frame our time series problem as
forecasting the energy consumption/generation at the current time
(t) given the temperature, week of the day, and energy con-
sumption/generation at the former time step.

Data Stationary: the next step is to ensure that the dataset is sta-
tionary which facilitates model development. This can be obtained by
ensuring that there is no regular increase or decrease in the data over
time (i.e., data is time-independent). Figure 6 portrays the relationship
between both energy consumption and generation over time. It is evident
that both energy generation and consumption do not depict any explicit
trend over time, this data is stationary.

Time Series Scaling: LSTM, like any other neural network, requires
the dataset to be scaled to fit its activation function. The default activa-
tion function of LSTM is tanh function, its output values are in the range
of [�1,1] which is a favorable range for time series data. Hence, scaling
was applied to the dataset, and min/max coefficients were calculated on
both the training and testing dataset.
50% 3.00 17.30 2.55 27.75

75% 5.00 21.20 62.64 35.07

max 6.00 38.00 136.29 88.24

https://keras.io/
http://www.bom.gov.au/climate/data/


Figure 3. Line plot of energy generation and consumption dataset.

Figure 4. The correlation between temperature and energy consumption and generation.
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4.2.2. LSTM network model design
Grid Search Hyperparameters Settings: constructing a neural

network is not a conventional task; the selection amongst dissimilar
parameters for LSTM setting consumes time and effort, but it is crucial
to attain high-quality prediction model. This is because the forecasting
performance of a developed model might vary based on dissimilar
hyperparameter settings provided, this is due to the stochastic nature
of LSTM algorithm where different batch sizes for example lead LSTM
to learn differently each time it maps inputs with outputs. Therefore,
7

hyperparameter optimization technique such as grid search was
incorporated in this study to examine various LSTM structures of
dissimilar hyperparameters settings. In particular, grid search com-
prises building a distinct LSTM for a combination of different pa-
rameters to tuning a neural network, thereby finding the optimal
settings for building a competent forecasting model. To obtain this, we
build a dictionary depicted in Table 3 containing a list of selected
parameters with the incorporated selected settings available in the
Keras library.



Figure 5. Training and testing datasets.

Table 3. LSTM's hyperparameters and their settings.

Hyperparameter Examined Settings

Batch Sizes 2,3

Number of Neurons 2,3

No of Epochs 1000,1500,2000

Optimization algorithms SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam

Activation Functions tanh, softmax, elu, selu, softplus, softsign, relu, sigmoid,

Losses mse, mae, mape, logcosh

Dropout Rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
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4.3. Models development using RapidMiner™

RapidMiner™ was used to forecast both energy consumption and
generation using diverse embodied machine learning-based statistical
techniques, namely; Generalised Linear Model (GLM), Deep Learning
(DL), Random Forest Tree (RFT), Gradient Boosted Tree (GBT), Decision
Tree (DT), and Support Vector Machine (SVM). Figure 7 depicts the
model development process incorporating RapidMiner studio.

As depicted in Figure 7, the developed framework using RapidMiner™

comprises the following main stages with their embodied operators:

(i) Data Engineering and Pre-processing: in this phase, the dataset
of energy consumption and generation passed through the set of
data acquisition and pre-processing operators where the dataset is
initially loaded with its metadata to the RapidMiner Object.
Dataset then is regularised, unified, and mapped. In particular,
pre-processing operator alters the type of the numerical attributes
to real (float) data type. It also maps all values of these attributes
to real values. Dataset Engineering in RapidMiner also includes
replacing the missing value with the minimum, maximum or
average value of the designated attribute - average value is chosen
in our case. Finally, the dataset was split into three different
subsets (40% Training, 20% Testing, and 20% Validation)
Figure 6. Energy consumption
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(ii) Model Training and Testing: after the data engineering and
pre-processing phase, the dataset passed through the “Reor-
dering” operator that allows reordering the regular features of
the dataset. RapidMiner allows to customize the reordering
operator where ordering can be done alphabetically (including
Regular Expressions) or with a reference – the default alpha-
betical ordering was used. Then, the dataset passed through the
“Sliding Window Validation” operator. This operator comprises
a set of sub-operators encapsulating the sliding windows of both
training and test datasets and also is responsible to measure the
performance of a prediction operator. The average of the per-
formance measurements is computed after the window is moved
over the dataset. Further, as depicted in Figure 7, the Sliding
Window Validation operator embodies the set of all Machine
Learning modules incorporated for training in this experiment
alongside delivering a list of performance values based on the
performance settings indicated for each Machine Learning
technique.

(iii) Model Evaluation: by completing the previous phase, the final
performance of the various machine learning algorithm is tested
through several experiments to infer the optimal hyperparameter
settings for each module. In Model Evaluation an assessment was
carried out to see how well the model is able to generalize. This is
through using data samples that were not used to build the model,
the aim is to provide an unbiased evaluation of final model
effectiveness [89], by means of evaluating the final hypothesis by
an independent evaluation [90].
and generation over time.



Figure 7. Model process development using RapidMiner.
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As mentioned previously, the aim of this study is to provide an effi-
cient forecasting platform to predict both renewable energy generation
and energy consumption in households. The next section presents several
experiments conducted to find the optimal model for energy generation
and consumption.

5. Experimental results and discussion

5.1. Forecasting results based on LSTM model

5.1.1. Baseline model of performance
Building a baseline model for a time series problem (or generally any

machine learning problem) is crucial as it establishes a benchmark
comparison with the developed model. One of the most frequently used
baseline models for time series problems is the persistence algorithmwhich
essentially forecasts the value of the next time step (tþ1) using the
inferred value from the previous time step (t-1). Evaluating this baseline
model was carried out using the rolling forecast or walk-forward validation
approach as an alternative approach to cross-validation. Cross-validation
could not be used in a time series problem as it neglects the fact that
temporal factor links all observations of the time series dataset, thus
samples are time-dependent. This differs from a typical machine learning
9

problem where samples are independent with commonly no explicit re-
lationships. Figure 8 illustrates the actual and prediction values from
both energy consumption and generation tests datasets, also RMSEs
values for both baseline models are indicated which will be used in the
experiments discussed next section.

5.1.2. Experimental results on energy generation and consumption
The experiments were initiated by developing a model to forecast

energy generation and consumption. Grid search optimization technique
was used, thereby various LSTM network designs were constructed and
tested to infer the optimal structure with the best hyperparameter set-
tings. Table 4 presents the optimal settings for each task obtained by
conducting a grid search for the LSTMs’ hyperparameters. Table 4 also
illustrates the values of key metrics inferred from the conducted desig-
nated experiment for both tasks (i.e., Energy Generation and Energy
Consumption).

As depicted in Table 4, the developed model has proven the ability to
outperform the baseline model as the resultant RMSE is lower than the
inferred value from the persistence baseline model for both tasks.
Figure 9 and Figure 10 portray the reported loss and validation loss per
epoch obtained from training the LSTM models (experiments of the
lowest RMSEs) designed for energy generation and consumption



Figure 8. Persistence baseline with the resultant RMSE on energy generation (a) and energy consumption (b).

Table 4. Optimal hyperparameter settings and evaluation metric of energy generation and consumption forecasting using LSTM model.

Task Hyperparameters Evaluation Metric

No. epochs No. neurons Batch size optimizer Dropout rate activation loss RMSE MAE

Energy
Generation

2000 3 2 Adam 0.2 tanh mae 0.5654 0.329

Energy
Consumption

2000 3 3 SGD 0.2 relu mae 0.3273 0.2410

Figure 9. Experiment result of energy generation forecasting using LSTM model: a) a plot of train and test loss, b) a plot of actual vs prediction values.

Figure 10. Experiment result of energy consumption forecasting using LSTM model: a) a plot of train and test loss, b) plot of actual vs prediction values.
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Table 5. RMSEs on using classical and statistical time series algorithms for En-
ergy Consumption (EC) and Energy Generation (EG).

Linear/Classical Algorithm RMSE MAE

EG EC EG EC

ARIMA 4.256 4.539 3.325 3.482

VAR 6.452 5.983 4.254 4.198

LinearRegression 2.110 2.082 1.568 1.568

Lasso 2.045 2.023 1.770 1.770

Ridge 2.109 2.082 1.569 1.568

ElasticNet 2.042 2.019 1.765 1.765

HuberRegressor 2.500 2.455 1.743 1.742

Lars 2.110 2.082 1.568 1.568

LassoLars 2.045 2.023 1.771 1.770

PassiveAggressiveRegressor 6.133 6.088 2.41 2.409

RANSACRegressor 2.464 2.421 1.391 1.389

SGDRegressor 2.103 2.137 1.612 1.592
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forecasting respectively. The loss/validation_loss values were computed
on training and validation datasets (summary of the errors inferred by
each example in training and validation sets at successive epochs) and
Table 6. Selected parameters settings.

Parameter Description Value

Windowing

Window size number of values per window 20

Step size Size between the first values of two
successive windows

1

Horizon size The number of values taken as the horizon
(i.e. time points).

24

Machine Learning Models

Gineralised Linear Model (GLM)

Solver For optimisation IRLSM

maximum
number of
threads

Controls parallelism level of building
model

1

number of
lambdas

Controls the amount of applied
regularization

30

Artificial Neoral Network (ANN)

Activation
function

Function used by neurons in the hidden
layers

Rectifier

No. of hidden
layer

Number of hidden layers in the model 2

No. of neurons
per layer

Size of each hidden layer 50

Epochs Iteration times over dataset 10

L1 Regularization (absolute value of the
weights)

1.0E-5

L2 Regularization (sum of the squared
weights)

0.0

Loss function loss (error) function Auto

Random Forest Tree (RFT)

No. Trees Number of random generated trees 20

Criterion On which attribute will be split least_square

Max_depth Depth of the tree 7

Gradient Boosted Tree (GBT)

No. Trees Number of generated trees 150

Decision Tree (DT)

Criterion On which attribute will be split least_square

Max_depth Depth of the tree 15

Support Victor Machine (SVM)

Kernel Type Kernel Function used in the model Radial

Kernel gamma SVM kernel parameter gamma 1.0000000000000007

kernel cache size of the cache for kernel evaluation (MB) 200

C SVM complexity constant 1000
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the plots show that both models designed for the two tasks are skill on
these two datasets.

5.1.3. A comparison with classical time series forecasting algorithms
Another thread of experiments was implemented to compare the deep

learning LSTM technique with several classical and linear algorithms. In
fact, those models had been implemented initially to scrutiny their per-
formance before conducting any further experiments. This is due to the
claim that the classical time series-based approach might outweigh other
sophisticated statistical deep learning approaches [91]. However, as
depicted in Table 5, the experiment on more than ten classical and
linear-based algorithms to forecast both energy generation and con-
sumption did not report high performance in terms of RMSE metric and
did not outweigh the LSTM deep learning model for both tasks.

5.2. Forecasting results using RapidMiner™

The experiment on RapidMiner™ was carried out based on the
methodology discussed in section 4.3 and the approach provided. Table 6
presents a summary of the key parameters and their settings for the
experiment conducted using RapidMiner platform. These settings
comprise values inferred by RapidMiner using their auto model to fit the
designated regression problem.

RapidMiner computes the performance based on 20% of the unseen
dataset. This dataset is embedded for a multi-hold-out-set validation
where average performance is computed for seven dissimilar subsets.
Table 7 shows the performance metrics of six different machine learning
algorithms. As depicted in the table, Gradient Boosted Tree obtains the
best performance in both evaluation metrics amongst all techniques to
forecast both power consumption and power generation. This is
commonly due to the strong scalability and regularization quality of the
GLM amongst other techniques [92, 93].

Figure 11 and Figure 12 portray the predictions plots of the six
different regression algorithms tested using RapidMiner on energy gen-
eration and energy consumption respectively. These charts show the
predictions vs. the actual values for the validation samples. It is evident
that Random Forest Tree performance was poor on both tasks, this is due
to the fact that RF commonly forecasts an average of unseen training
samples since it is not able to extrapolate the normal increasing/
decreasing trend in the dataset, thereby does not scale well for time series
data.

5.3. Aggregated experimental results

Previous sections present and discuss the experimental results that are
implemented using the baseline model, optimised LSTM, classical
models, and RapidMiner embedded machine learning models. To obtain
a holistic view, we aggregate the resultant values of the evaluation
metrics obtained by all models in two figures, thereby providing better
insights. Figure 13 demonstrates the aggregated RMSE values obtained
by all models in forecasting both energy consumption and generation
experiments, while Figure 14 shows the MAE values obtained in the same
designated experiments. These figures verify again the superiority of the
optimised LSTM and its utility to provide energy consumption and gen-
eration predictions with minimum errors. The next section furnishes a
further discussion on these empirical results and cast more light on the
significance of the study.

6. Discussion, limitations, and future work

In the energy sector, embracing distributed renewable resources is
recognised as a potential solution to the climate change problem [94].
Therefore, the energy sector is presently shifting promptly to accom-
modate sustainable energy transitions driven by forces of technological
innovation and advances of digitalisation platforms. Opportunities for
distributed energy markets are tremendous and being trialled around the



Table 7. Performance metrics for Energy Consumption (EC) and Energy Generation (EG).

GLM ANN RF GBT DT SVM

EG EC EG EC EG EC EG EC EG EC EG EC

RMSE 10.253 9.76 12.742 7.353 10.25 8.254 8.275 4.342 12.291 7.976 14.383 6.164

MAE 8.796 7.211 8.687 5.331 8.69 6.011 4.214 2.918 5.824 5.544 8.298 4.258

Figure 11. Energy generation prediction charts (the predictions vs. the actual values) of different regression models tested on RapidMiner. A) Prediction chart for
GLM Model, B) Prediction chart for ANN model, C) Prediction chart for DT model, D) Prediction chart for RF model, E) Prediction chart for GBT model, and F)
Prediction chart for SVM model.
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world including pilot projects are being trialled across the world to
explore the potential of P2P energy trading, including the RENeW Nexus
project in the city of Fremantle, Western Australia [5]. However, to in-
crease operation efficiency (including energy consumption and genera-
tion scheduling) as well as make the most efficient energy trading
between prosumers and consumers it is imperative to build intelligent
systems that are able to estimate energy usage and production in such a
decentralised environment. This study attempts to address this issue by
developing a correlated array of various classical and advanced AI-based
techniques to forecast both energy generation and consumption. The
empirical results have concluded with important outcomes that can be
summarised as follows.

The first observation is the superiority of the optimised LSTM model
in the designated experiments. The abstract structure of the LSTM model
enables capturing strong periodicity due to its capacity to maintain the
temporal correlation utilising the memory block that is embedded in the
12
recurrent layer [95]. Hence, contextual information represented by the
temporal or spatial dependency of data can be attained and
well-presented [96]. It is also important to highlight the significance of
the hyperparameter optimization process that has been carried out on
LSTM to infer the best set of settings so as to fit well the incorporated
dataset. The second observation is the poor performance of the autoML
tool, namely RapidMiner, and its embedded ML on the designated tasks
in comparison to the optimised LSTM as well as the classical models.
Figure 11 and Figure 12 provide an evident viewpoint on this inadequacy
of RapidMiner's built-in settings to tackle the forecasting problem. Also,
this study points to the importance to carry out data preprocessing and
preparation to enhance data quality prior to data analytics. This is
through data normalisation, reshaping, and scaling as well as ensuring
stationarity of data.

This paper attempts to provide an efficient forecasting platform to
predict both renewable energy generation and energy consumption in



Figure 12. Energy consumption prediction charts (the predictions vs. the actual values) of different regression models tested on RapidMiner. A) Prediction chart for
GLM Model, B) Prediction chart for ANN model, C) Prediction chart for DT model, D) Prediction chart for RF model, E) Prediction chart for GBT model, and F)
Prediction chart for SVM model.
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Figure 13. Aggregated RMSE values obtained by all models in forecasting both energy generation and consumption.
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households. However, this study exhibits certain limitations that we
hope to address in the future. For example, despite the applicability of
LSTM to tackle the designated problem due to its capacity to handle
sequence pattern information, LSTM utilises only the attributes given
in the training dataset with inadequacy to capture patterns that appear
in local and global trends of the time series. Extracting patterns of the
data can be attained by implementing a Convolutional Neural Network
13
(CNN) model [81]. Therefore, a promising avenue for future research
is to develop a hybrid model incorporating both LSTM and CNN that
can enhance forecasting accuracy. Also, bagging and other ensemble
machine learning strategies will be investigated. In the same context,
other advanced hyperparameter and feature selection strategies
including bayesian optimization, random optimization, and evolu-
tionary optimization will be examined. This study utilises one-time



0

1

2

3

4

5

6

7

8

0

2

4

6

8

10

12

MAE - EG and EC

MAE-EG

MAE-EC

Figure 14. Aggregated MAE values obtained by all models in forecasting both energy generation and consumption.

B. Abu-Salih et al. Heliyon 8 (2022) e09152
step as a forecasting approach. Strategies for multi-step time series
forecasting will be scrutinized in future research using large-scale
datasets to provide further flexibility, thus forecasting multiple time
steps instead of one single time step. Finally, more features/attributes
will be incorporated, thereby providing a comprehensive multivariate
forecasting approach, for example, by examining behavioral charac-
teristics of households’ residents in terms of their electricity con-
sumption and generation.

7. Conclusion

This study presents several conducted experiments to forecast hourly-
based energy consumption and generation. Real-time data were collected
from smart meters that were installed in residential premises and used to
evaluate the efficacy and effectiveness of various well-known classical
(statistical) and AI-based models that are used to predict energy con-
sumption and production. This paper furnishes the following contribu-
tions (i) A two-fold analytical model to forecast energy consumption and
generation in P2P settings is designed and implemented; (ii) an auto-ML
model and various classical and advanced AI-based techniques are
incorporated, and their utility is evaluated and compared comprehen-
sively; and (iii) to the best of our knowledge, this is the first paper that
furnishes a forecasting model for both energy consumption and genera-
tion based on real data captured from a P2P grid system in the state of
Western Australia.
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