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Abstract: Osteoporosis is treatable but often overlooked in clinical practice. We aimed to construct
prediction models with machine learning algorithms to serve as screening tools for osteoporosis in
adults over fifty years old. Additionally, we also compared the performance of newly developed
models with traditional prediction models. Data were acquired from community-dwelling partici-
pants enrolled in health checkup programs at a medical center in Taiwan. A total of 3053 men and
2929 women were included. Models were constructed for men and women separately with artificial
neural network (ANN), support vector machine (SVM), random forest (RF), k-nearest neighbor
(KNN), and logistic regression (LoR) to predict the presence of osteoporosis. Area under receiver
operating characteristic curve (AUROC) was used to compare the performance of the models. We
achieved AUROC of 0.837, 0.840, 0.843, 0.821, 0.827 in men, and 0.781, 0.807, 0.811, 0.767, 0.772 in
women, for ANN, SVM, RF, KNN, and LoR models, respectively. The ANN, SVM, RF, and LoR
models in men, and the ANN, SVM, and RF models in women performed significantly better than
the traditional Osteoporosis Self-Assessment Tool for Asians (OSTA) model. We have demonstrated
that machine learning algorithms improve the performance of screening for osteoporosis. By incor-
porating the models in clinical practice, patients could potentially benefit from earlier diagnosis and
treatment of osteoporosis.

Keywords: osteoporosis; prediction model; machine learning; screening tool; early detection

1. Introduction

Osteoporosis is characterized by decreased bone density and architectural disruption
of the bone tissue, leading to a susceptibility to fractures [1,2]. Osteoporosis may cause
disability and mortality in individuals [3], and is recognized as an important public health
problem worldwide [4]. People diagnosed with osteoporosis is strikingly increasing and
facing the greatest challenge to prevalence issues owing to the rapidly aging society [4–6].
The prevalence of osteoporosis and osteoporotic fractures among Taiwanese more than
50 years old increased from 17.4% in 2001 to 25.0% in 2011 [1]. Treatment modalities
with lifestyle change, fall precaution, and medication have been proposed and results in a
21–66% reduction in fracture risks in osteoporosis patients [7]. Hence, early intervention to
prevent fractures can be achieved through earlier osteoporosis detection.

With dual-energy X-ray absorptiometry (DXA) being an important tool for diagno-
sis [8,9], the availability of DXA is quite limited and the utility of DXA for osteoporosis
diagnosis is extremely low, with about 0.95% annually in adults above 50 years old [5].
Currently, bone mineral density (BMD) examination is still not included as a generalized
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screening tool during regular health checkup in Taiwan. Moreover, the presence of os-
teoporosis is often overlooked in clinical practice [10]. To identify patients at risk and to
increase the awareness of physicians for asymptomatic osteoporosis, understanding the
risk factors and proper interpretation is crucial.

Osteoporosis is associated with age, female gender, low body weight, low physical
activity, poor nutritional status, and other endocrine and cardiometabolic factors [11–19].
Beyond the identification of risk factors, many researchers also aimed to develop prediction
models for the screening of osteoporosis. The Osteoporosis Self-Assessment Tool for Asians
(OSTA) model was developed for postmenopausal Asian women [20]. Another study
constructed a logistic regression model [21]. Aside from traditional modeling, machine
learning algorithms are gaining popularity in recent years for their flexible modelling and
the ability to detect more complex relationship between input features and outputs, thus
enhancing the performance of prediction [22,23]. In the field of osteoporosis, several studies
aimed to predict fracture risks in osteoporosis patients [24], and some aimed to predict BMD
with X-ray or computed tomography images [25]. For prediction of osteoporosis with more
easily available data, some machine learning models were constructed, focusing mainly on
postmenopausal women [26,27]. These models performed significantly better comparing
with traditional ones. Currently, there is still a lack of machine learning approach for
prediction of osteoporosis with a larger dataset in both men and women.

In our study, we aimed to develop prediction models with machine learning algo-
rithms for screening of osteoporosis in community-dwelling individuals more than fifty
years old, using easily available input features consisted of physical characteristics, per-
sonal and medical history, and laboratory tests. By incorporating the prediction model in
clinical practice as a screening tool, both the patients and the physicians could be more
aware of the risk of osteoporosis, and take further action in the early stage to prevent
undesirable outcomes.

2. Materials and Methods
2.1. Data Acquirement

Data of community-dwelling individuals who participated in health checkup pro-
grams between 2008 and 2018 in a medical center in northern Taiwan were reviewed. In all
participants, past medical history and personal history were taken, physical examination
were performed including measurement of vital signs, body height, body weight, and waist
circumference. Hematological and Biochemical profiles were obtained but the specific
tested items differed in individual program. BMD was checked with DXA (Lunar Prodigy
Advance; GE Healthcare, Madison, WI, USA) at the lumbar spine and bilateral hip joint.
T-score represented the standard deviation of BMD from the healthy young adults of same
sex and ethnicity. The BMD results were compared with the results from healthy young
adults. The T-scores at each site were obtained, and the lowest T-score was used to interpret
the results as osteoporosis (T-score ≤ −2.5), osteopenia (−2.5 < T-score < −1), or normal
(T-score ≥ −1) in the final report card. This study was approved by the Ethics Committee
of Mackay Memorial Hospital (Institutional review board number: 18MMHIS137).

Out of 18,629 enrollments, 12,647 were excluded due to DXA not performed, age
under 50 years old, repeated enrollment of the same individual, extreme outliers including
creatinine > 10 mg/dL, Hemoglobin A1c (HbA1c) > 15%, alanine transaminase (ALT) >
1000 IU/L, and other missing data. The remaining 5982 enrollments were included for
further analysis. The flowchart of data inclusion and preprocessing is shown in Figure 1.
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Figure 1. Flowchart of data inclusion and preprocessing. DXA: dual-energy X-ray absorptiometry; 
HbA1c: Hemoglobin A1c; ALT: alanine transaminase; ALK-P: alkaline phosphatase; TG: triglycer-
ide; HDL-C: high-density lipoprotein cholesterol; TSH: thyroid-stimulating hormone. 

2.2. Feature Selection and Data Preprocessing 
Candidate features were categorized into different domains related to bone health, 

including physical characteristics, history of smoking, history of alcohol drinking, medical 
history of diabetes mellitus, medical history of hypertension, hematological profile, renal 
function, liver function, thyroid function, lipid profile, protein content in blood, electro-
lytes, and for women, obstetrics and gynecological history. Features from these domains 
were examined for the representativeness, availability, and the significance on the predic-
tion of decreased bone density. We selected 1–2 features from each domain which were 
more representative, more commonly used, and showed significant difference between 
the normal BMD group and the decreased BMD group. This selection process was done 
by discussion among the authors. After examination, 16 input features for men and 19 
input features for women were selected. A summary of candidate and selected features 
was presented in Supplementary Table S1. 

The input features applied to the models included: age, body weight, body height, 
waist circumference, history of smoking, history of alcohol drinking, diabetes mellitus 
(DM), hypertension (HTN), and blood test results of albumin, hemoglobin, ALT, creati-
nine, triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), alkaline phospha-
tase (ALK-P), and thyroid-stimulating hormone (TSH). For women, the menopause sta-
tus, history of hormone-replacement therapy (HRT), and parity were also included. Alco-
hol drinking was defined as drinking more than once per week, diabetes mellitus was 
defined as having a previous diagnosis, fasting plasma sugar level ≥ 126 mg/dL, postpran-
dial plasma sugar level ≥ 200 mg/dL, or HbA1c level ≥ 6.5%, and hypertension was defined 
as having a previous diagnosis, systolic blood pressure (SBP) ≥ 140 mmHg, or diastolic 
blood pressure (DBP) ≥ 90 mmHg.  

Figure 1. Flowchart of data inclusion and preprocessing. DXA: dual-energy X-ray absorptiometry; HbA1c: Hemoglobin
A1c; ALT: alanine transaminase; ALK-P: alkaline phosphatase; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol;
TSH: thyroid-stimulating hormone.

2.2. Feature Selection and Data Preprocessing

Candidate features were categorized into different domains related to bone health,
including physical characteristics, history of smoking, history of alcohol drinking, medical
history of diabetes mellitus, medical history of hypertension, hematological profile, renal
function, liver function, thyroid function, lipid profile, protein content in blood, electrolytes,
and for women, obstetrics and gynecological history. Features from these domains were
examined for the representativeness, availability, and the significance on the prediction
of decreased bone density. We selected 1–2 features from each domain which were more
representative, more commonly used, and showed significant difference between the
normal BMD group and the decreased BMD group. This selection process was done by
discussion among the authors. After examination, 16 input features for men and 19 input
features for women were selected. A summary of candidate and selected features was
presented in Supplementary Table S1.

The input features applied to the models included: age, body weight, body height,
waist circumference, history of smoking, history of alcohol drinking, diabetes mellitus
(DM), hypertension (HTN), and blood test results of albumin, hemoglobin, ALT, creatinine,
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), alkaline phosphatase
(ALK-P), and thyroid-stimulating hormone (TSH). For women, the menopause status,
history of hormone-replacement therapy (HRT), and parity were also included. Alcohol
drinking was defined as drinking more than once per week, diabetes mellitus was defined
as having a previous diagnosis, fasting plasma sugar level ≥ 126 mg/dL, postprandial
plasma sugar level ≥ 200 mg/dL, or HbA1c level ≥ 6.5%, and hypertension was defined
as having a previous diagnosis, systolic blood pressure (SBP) ≥ 140 mmHg, or diastolic
blood pressure (DBP) ≥ 90 mmHg.



Int. J. Environ. Res. Public Health 2021, 18, 7635 4 of 12

The aim of this study was to predict the presence of osteoporosis. However, the
prevalence of osteoporosis was low in our study population (10.4% in women and 3.8% in
men), and this imbalanced class proportion would cast obstacles to the machine learning
process. To overcome the problem, and to preserve more information about the relationship
between input features and low bone mass, we trained the model with prediction of
“decreased bone density”, which consisted of the osteopenia and osteoporosis group.
During the training process, the prediction target of the model was a binary variable (1, 0),
where ‘1’ represented the decreased bone density groups, and ‘0’ represented the normal
group. In contrast, during the testing process, the prediction results were tested with ‘1’
standing for the osteoporosis group, and ‘0’ standing for the normal and osteopenia group.

Data in both men and women were randomly divided into training and testing dataset
with an 80:20 split. This resulted in 2442 and 611 men in the training and testing datasets,
and 2343 and 586 women in the training and testing datasets, respectively. For the artificial
neural network (ANN), support vector machine (SVM), and k-nearest neighbor (KNN)
models, the training dataset was rescaled to the range of 0 to 1, and the testing dataset was
rescaled using the rescale index of the training dataset.

2.3. Machine Learning Model Development

Candidate machine learning algorithms in the study included ANN, SVM, random
forest (RF), KNN, and logistic regression (LoR). The ANN model was constructed with Ten-
sorflow 1.14.0 (Google Brain Team, Mountain View, CA, USA), and the other models with
Scikit-learn 0.21.2 [28], under the environment of Python 3.7 (Python Software Foundation,
Wilmington, DE, USA). Due to the difference in input features, baseline characteristics, and
prevalence of positive prediction, the models were trained separately in men and women.

During each training section of the ANN, SVM, RF, and KNN model, a 20% validation
dataset was randomly split out from the training dataset to test for the performance of
the models. On the contrary, the full training dataset was used during construction of the
LoR model. To avoid overfitting, we limited the complexity of the models, and applied
early stopping and dropout during training of the ANN model [29]. For early stopping,
we monitored the AUROC of the training and validation dataset in each epoch. Training
was stopped when the AUROC of the validation dataset reached a peak and did not show
further improvement after 100 epochs. The model generated from the peak point was used
for further analysis.

For hyperparameter tuning, different combinations of the number of layers (1 or
2 hidden layers), number of nodes (from 4 to 20 in each hidden layer), learning rate (from
0.01 to 0.0001), and dropout rate (from 0% to 60%) were tested for the ANN model. Grid
search was done for the SVM, RF, and KNN models. For the SVM model, the kernel type
(linear, polynomial, or radial basis function), regularization parameter C (from 2−2 to 29),
kernel coefficient gamma (from 2−9 to 22), and degree (from 1 to 4) for the polynomial
kernel function were examined; for the RF model, the number of trees (from 100 to 1000),
number of features to consider (from 3 to 11), and the maximum depth of the tree (from
3 to 11) were examined; for the KNN model, the number of neighbors (from 1 to 30), the
leaf size (from 1 to 49), and the power parameter p (Manhattan distance or Euclidean
distance) were tested. All models were constructed with a balanced class weight. For
each hyperparameter set, randomization for the split of validation dataset and the training
process was repeated several times. The area under the receiver operating characteristic
curve (AUROC) was calculated for the validation dataset in each training process, and the
mean value of AUROC were compared. We adopted the hyperparameter that yield a better
mean AUROC during validation to train our models.

The final adopted hyperparameter for ANN model was with two hidden layers:
9 nodes in hidden layer one, 4 nodes in hidden layer two in men’s model, and 13 nodes in
hidden layer one, 7 nodes in hidden layer two in women’s model. The learning rate was
set to 0.001, optimized with adaptive moment estimation, and the dropout rate was set to
0.4 in both genders included in the study. For the SVM model, the better performance was
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obtained with radial basis function kernel, for men’s and women’s model, the regularization
parameter C was set to 32 and 16, and kernel coefficient gamma was set to 0.125 and 0.5,
respectively. In the RF model, the number of trees was set to 300, the number of features
to consider was set to 8, and the maximal depth of tree was set to 8 in the men’s model;
the number of trees was set to 600, the number of features to consider was set to 10, and
maximal depth of the tree was set to 10 in the women’s model. Finally, for the KNN model,
the number of neighbors was set to 28, the leaf size was set to 15, and the power parameter
p was set to the Manhattan distance in the men’s model; the number of neighbors was
set to 13, the leaf size was set to 3, and the power parameter, p, was set to the Euclidean
distance in the women’s model. The process and the final selected hyperparameters for
each model were presented in Table 1.

Table 1. Selection of hyperparameters for the ANN, SVM, RF, and KNN models.

Hyperparameter Examined Range * Selected Hyperparameter for
the Men Model

Selected Hyperparameter for
the Women Model

ANN
Number of hidden layers 1–2 2 2

Number of nodes 4–20 in each hidden layer 9 in hidden layer 1, 4 in
hidden layer 2

13 in hidden layer 1, 7 in
hidden layer 2

Learning rate 0.01–0.0001 0.001 0.001
Dropout rate 0–60% 40% 40%

SVM

Kernel type linear, polynomial, or radial
basis function radial basis function radial basis function

Regularization parameter C 2−2–29 25 24

Kernel coefficient gamma 2−9–22 2−3 2−1

Degree for Polynomial
Function 1–4 - -

RF
Number of trees 100–1000 300 600

Number of features to
consider 3–11 8 10

Maximum depth of the tree 3–11 8 10

KNN
Number of neighbors 1–30 28 13

Leaf size 1–49 15 3

Power parameter p Manhattan distance or
Euclidean distance Manhattan distance Euclidean distance

* Within the examined range, different combinations of hyperparameters were tested for the ANN model; grid search was done for the SVM,
RF, and KNN models. ANN: Artificial neural network; SVM: Support vector machine; RF: Random Forest; KNN: K-nearest neighbors.

After we determined the hyperparameter in each model, the model was trained again
with the specific set of hyperparameter several times to obtain the maximal AUROC of the
validation dataset, and the final product was further analyzed with the testing dataset.

2.4. Statistical Analysis

We applied the testing dataset to different models to obtain the predicted probabilities
of having osteoporosis in each model. When we tested these probabilities with the true
condition set to having or not having osteoporosis, receiver operating characteristic (ROC)
curves could be drawn. AUROC was calculated to examine and compare the performance
of different machine learning models. A 95% confidence interval (CI) for the AUROC and
comparison between different AUROC values were performed with MedCalc 19.2, using
methods provided by DeLong et al. [30].

To compare the performance of the machine learning models in our study and tra-
ditional models, the OSTA score [20] was included. The OSTA score was calculated as
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0.2(Weight (kg)–Age (year)), with the results rounded to an integer. We applied the OSTA
score to the testing dataset, and the AUROC was also calculated and compared.

For cutoff point optimization, a weighted Youden index [31,32] was applied with a
weight of 0.6. The weight was selected at 0.6 to increase the sensitivity, also not sacrificing
too much on specificity, as we aimed to construct a screening tool for osteoporosis in the
general population. The sensitivity and specificity were calculated at the corresponding
cutoff point which maximized the weighted Youden index.

3. Results
3.1. Demographic Information of the Study Population

Of the 5982 participants enrolled in the study, 3053 (51.0%) were men and 2929 (49.0%)
were women. The average age was 59.3 ± 7.0 years old for both gender groups. The
results of DXA showed that 117 men (3.8% of men) and 304 women (10.4% of women)
had osteoporosis, and 1134 men (37.1% of men) and 1369 women (46.7% of women) had
osteopenia. Other demographic information was summarized in Table 2.

Table 2. Baseline characteristics of the study population.

Characteristic Total (n = 5982) Men (n = 3053) Women (n = 2929) p-Value *

Age (years) 59.3 ± 7.0 59.3 ± 7.0 59.3 ± 7.0 0.9650
Body height (cm) 161.8 ± 8.4 167.7 ± 6.2 155.7 ± 5.5 <0.0001
Body weight (kg) 63.5 ± 11.7 69.8 ± 10.2 56.9 ± 9.2 <0.0001
Waist circumference (cm) 83.9 ± 9.8 87.8 ± 8.4 79.9 ± 9.5 <0.0001
History of smoking (n, %) 1255 (21.0) 1133 (37.1) 122 (4.2) <0.0001
History of alcohol drinking (n, %) 484 (8.1) 414 (13.6) 70 (2.4) <0.0001
Diabetes mellitus (n, %) 1075 (18.0) 618 (20.2) 457 (15.6) <0.0001
Hypertension (n, %) 2226 (37.2) 1250 (40.9) 976 (33.3) <0.0001
Albumin (g/dL) 4.50 ± 0.30 4.52 ± 0.27 4.45 ± 0.26 <0.0001
Hemoglobin (g/dL) 14.1 ± 1.4 15.0 ± 1.2 13.2 ± 1.1 <0.0001
ALT (IU/L) 27.5 ± 18.6 30.5 ± 20.0 24.4 ± 16.6 <0.0001
Creatinine (mg/dL) 0.89 ± 0.27 1.03 ± 0.26 0.75 ± 0.21 <0.0001
TG (mg/dL) 133.1 ± 84.8 147.2 ± 95.2 118.4 ± 69.1 <0.0001
HDL-C (mg/dL) 55.1 ± 16.4 48.76 ± 13.54 61.78 ± 1.57 <0.0001
ALK-P (IU/L) 67.9 ± 19.9 66.0 ± 18.4 69.9 ± 21.2 <0.0001
TSH (uIU/mL) 2.32 ± 2.34 2.18 ± 2.15 2.47 ± 2.52 <0.0001
Menopause (n, %) 2448 (83.6)
History of HRT (n, %) 283 (9.7)
Parity (n) 2.4 ± 1.4
Categories of bone density result <0.0001
Normal (n, %) 3058 (51.1) 1802 (59.0) 1256 (42.9)
Osteopenia (n, %) 2503 (41.8) 1134 (37.1) 1369 (46.7)
Osteoprosis (n, %) 421 (7.0) 117 (3.8) 304 (10.4)

* p-values were calculated with two-tailed T tests for continuous variables, two-tailed Z tests for binary variables, and Chi-square tests
for categorical variables. ALT: alanine transaminase; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; ALK-P: alkaline
phosphatase; TSH: thyroid-stimulating hormone; HRT: hormone-replacement therapy.

For input feature selection, we compared the candidate features in the normal bone
density group and the decreased bone density group. Most of the selected features showed
significance. Other features that did not show significance, including DM, HTN, and
history of HRT, were still included for their well-established relation to bone health. The
comparison of input features between participants with normal bone density and decreased
bone density was done. The results were shown in Table 3.
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Table 3. Comparison of the input features between participants with normal bone density and decreased bone density.

Feature Normal Bone Density
(n = 3058, 51.1%)

Decreased Bone Density
* (n = 2924, 48.9%) p-Value **

Age (years) 57.6 ± 6.1 61.1 ± 7.3 <0.0001
Body height (cm) 163.9 ± 8.0 159.6 ± 8.1 <0.0001
Body weight (kg) 67.1 ± 11.5 59.8 ± 10.6 <0.0001
Waist circumference (cm) 85.7 ± 9.5 82.1 ± 9.6 <0.0001
History of smoking (n, %) 739 (24.2) 516 (17.7) <0.0001
History of alcohol drinking (n, %) 291 (9.5) 193 (6.6) <0.0001
Diabetes mellitus (n, %) 550 (18.0) 525 (18.0) 0.9753
Hypertension (n, %) 1151 (37.6) 1075 (36.8) 0.4844
Albumin (g/dL) 4.49 ± 0.26 4.47 ± 0.28 0.0289
Hemoglobin (g/dL) 14.3 ± 1.5 13.9 ± 1.4 <0.0001
ALT (IU/L) 28.9 ± 19.4 26.0 ± 17.7 <0.0001
Creatinine (mg/dL) 0.92 ± 0.26 0.86 ± 0.28 <0.0001
TG (mg/dL) 138.2 ± 84.3 127.8 ± 85.0 <0.0001
HDL-C (mg/dL) 52.9 ± 15.6 57.5 ± 16.9 <0.0001
ALK-P (IU/L) 64.9 ± 17.9 71.1 ± 21.5 <0.0001
TSH (uIU/mL) 2.32 ± 2.05 2.32 ± 2.63 0.9480
Abnormal TSH level (<0.01 or ≥4.5 uIU/mL) (n, %) 222 (7.3) 253 (8.7) 0.0464
Menopause (n, %) 937 (74.6) 1511 (90.3) <0.0001
History of HRT (n, %) 127 (10.1) 156 (9.3) 0.4756
Parity 2.24 ± 1.25 2.60 ± 1.55 <0.0001

* Decreased bone density referred to participants with osteopenia or osteoporosis. ** p-values were calculated with two-tailed T tests
for continuous variables, and two-tailed Z tests for binary variables. ALT: alanine transaminase; TG: triglyceride; HDL-C: high-density
lipoprotein cholesterol; ALK-P: alkaline phosphatase; TSH: thyroid-stimulating hormone; HRT: hormone-replacement therapy.

3.2. Model Performance

In the five machine learning models (ANN, SVM, RF, KNN, LoR) and the traditional
model (OSTA), the AUROC, sensitivity, and specificity were presented in Table 4. The
sensitivity and specificity were calculated at the cutoff value determined by maximization
of weighted Youden index at weighted 0.6. The resultant cutoff value was <3 in men
and <0 for women in the OSTA model. Overall, for the prediction of osteoporosis in
men, the machine learning models obtained 83–96% sensitivity and 53–73% specificity; for
the prediction of osteoporosis in women, the machine learning models obtained 76–90%
sensitivity and 62–69% specificity. Additionally, we compared the AUROC between the
machine learning models and OSTA. The ANN, SVM, RF, LoR models in men, and the
ANN, SVM, RF models in women performed significantly better than the OSTA model.
The ROC curves of different machine learning models in men and women were presented
in Figure 2A,B.
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Figure 2. (A)The ROC curves of different machine learning models and the OSTA model for pre-
diction of osteoporosis in men. ANN: Artificial neural network; SVM: Support vector machine;
RF: Random Forest; KNN: K-nearest neighbors; LoR: Logistic regression; OSTA: Osteoporosis Self-
assessment Tool for Asian; ROC curve: Receiver operating characteristic curve. (B) The ROC curves
of different machine learning models and the OSTA model for prediction of osteoporosis in women.
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Table 4. Performance of different machine learning models and the OSTA model for prediction of osteoporosis in men
and women.

Model AUROC (95% CI) Sensitivity * Specificity * p-Value ** (Compare with OSTA)

Men
ANN 0.837 (0.805–0.865) 0.917 0.646 0.0151
SVM 0.840 (0.809–0.868) 0.917 0.547 0.0061
RF 0.843 (0.812–0.871) 0.875 0.700 0.0321

KNN 0.821 (0.788–0.851) 0.833 0.729 0.1087
LoR 0.827 (0.794–0.856) 0.958 0.533 0.0421

OSTA *** 0.766 (0.730–0.799) 0.958 0.361

Women
ANN 0.781 (0.745–0.814) 0.864 0.643 0.0258
SVM 0.807 (0.773–0.838) 0.898 0.651 0.0136
RF 0.811 (0.777–0.842) 0.898 0.624 0.0006

KNN 0.767 (0.731–0.801) 0.762 0.692 0.3563
LoR 0.772 (0.732–0.806) 0.814 0.670 0.0808

OSTA*** 0.734 (0.697–0.770) 0.763 0.630

* Sensitivity and specificity were based on cutoff values calculated by the weighted Youden index with weight set at 0.6. ** p-values were
calculated with the nonparametric method to compare two ROC curves proposed by DeLong et al. *** Sensitivity and specificity for the
OSTA model were obtained at cutoff value <3 for men models, <0 for women models. ANN: Artificial neural network; SVM: Support vector
machine; RF: Random Forest; KNN: K-nearest neighbors; LoR: Logistic regression; OSTA: Osteoporosis Self-assessment Tool for Asian;
AUROC: Area under the receiver operating characteristic curve; CI: Confidence interval; ROC curve: receiver operating characteristic curve.

4. Discussion

In this study, we used five different machine learning algorithms as ANN, SVM, RF,
KNN, and LoR for the screening of osteoporosis in community-dwelling individuals older
than fifty years old. The models reached AUROC of 0.821–0.843 in men and 0.767–0.811 in
women. At designated cutoff points, the models achieved 83–96% sensitivity and 53–73%
specificity on prediction of osteoporosis in men; and 76–90% sensitivity and 62–69% speci-
ficity on prediction of osteoporosis in women. The ANN, SVM, RF, and LoR models in
men, and the ANN, SVM, and RF models in women performed significantly better than
the well-established OSTA model.

Previous works on this topic focused more on the women population. A study
published in 2013 by Kim et al. including 1674 postmenopausal Korean women [27] gained
the best AUROC at 0.827 with the SVM model for prediction of osteoporosis using age,
height, weight, body mass index, duration of menopause, duration of breast feeding,
estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus as
input features. The model reported 77.8% sensitivity and 76.0% specificity. In another
study published in 2020 by Shim et al. [26], also targeting 1792 postmenopausal women
and compared seven machine learning models. The best performance was achieved with
the ANN model, with an AUROC of 0.743. One research published in 2019 by Meng
et al. included study population of women older than twenty years old [33]. An ANN
model was constructed and the AUROC reached 0.829. Comparing with these studies,
we are the first to include men in the prediction of osteoporosis. Among male patients,
secondary etiology accounts for up to 65% of cases in osteoporosis; these secondary causes
include alcohol abuse, steroid treatment and other metabolic disorders. In contrast, the
prevalence of secondary osteoporosis in women is much lower as compared to men.
Postmenopausal estrogen deficiency and senile osteoporosis stands for the main causes
of primary osteoporosis in women [34]. Due to the difference in etiology and baseline
characteristics, we trained prediction models for men and women separately, and gained
satisfactory results. The advantages in our study included the larger dataset in both men
(n = 3053) and women (n = 2929), and the inclusion of more input features (16 features in
men and 19 features in women) from multiple aspects. The input features were selected
based on their easy availability and known relevance to bone health. Most of the selected



Int. J. Environ. Res. Public Health 2021, 18, 7635 10 of 12

features showed significance comparing the decreased bone density group and the normal
bone density group in our study population.

The increase in the number of input features may raise concerns about the applicability
of the models in clinical practice. From this aspect, the traditional model OSTA seems
to be the most convenient tool, since it only requires simple calculations with age and
weight. However, with the aids of automated calculator and alert system, this problem
can be solved, and can potentially call more attention from the patients and physicians
to recognize the risk of osteoporosis. As mentioned previously, osteoporosis is treatable,
but often overlooked. By incorporating the prediction models in clinical practice, patients
could benefit from earlier diagnosis and intervention.

To assess the contribution of the input features, we made smaller models with six
variables, including age, weight, history of smoking, history of alcohol drinking, ALT,
creatinine, using the same methods proposed, to compare with the full models. These
variables were selected for their availability and larger effect size observed in our study
population. The results were summarized in the Supplementary Table S2. As the results
suggested, reducing the number of variables resulted in poorer performance, although
statistical significances were difficult to establish. By comparison of the full models and
the smaller 6-variable models, it is evident that inclusion of these variables provided more
information, and contributed to the better performance in the machine learning models.

For the determination of cutoff points in different models, we adopted weighted
Youden index at weight 0.6 [31]. In ideal conditions, the cutoff points of ROC curves could
be decided by cost and benefit analysis [35]; however, the cost and benefit of different
conditions were difficult to quantify. As an alternative, weighted Youden index was
designed to balance sensitivity and specificity for different requirements [31,36]. In our
study, we aimed to construct screening tools. The cost of false positive would mainly be
that the patient underwent DXA to confirm the presence of osteoporosis; however, the
cost of false negative was that osteoporosis would be unrecognized, left untreated, and
osteoporotic fracture could not be prevented. Therefore, instead of putting the same weight
0.5 on both sensitivity and specificity (which was, the original Youden index), we tested
and set the weight to 0.6 to emphasize more on the sensitivity, and generate more suitable
cutoff value for real-world application. The cutoff value for the OSTA model in our study
was also calculated and resulted in <3 in men and <0 in women. The performance of
the OSTA model, and the corresponding sensitivity and specificity were compatible to
previous studies [37]. In previous study, the OSTA model reported an AUROC of 0.79, with
91% sensitivity and 45% specificity [20].

Several limitations of the study should be considered. First, some of the input features
in our study were recorded by history taking and were prone to recall bias. Additionally,
the results of DXA in the database were categorical, being reported as normal bone density,
osteopenia, and osteoporosis. If we could gain the information of the original T score of the
tests, continuous modelling could be made possible, and the performance could be further
improved. Second, selection bias might occur during inclusion of participants. When
comparing with other studies [1,5,21,26], the prevalence of osteoporosis was lower in our
study population, being 3.8% in men and 10.4% in women. This difference in prevalence
might be related to the lower average age and better health condition in our participants.
To overcome the problem of imbalanced class proportion of categorical outcomes, we
trained the models with categorical groupings different from that in the testing process.
This should not cast a problem since all the subsequent statistical analysis were done
with osteoporosis being the prediction target. Finally, characteristics and risk factors in
osteoporosis differ among ethnicity groups and different environments. The validity of the
machine learning models should be examined for different populations worldwide.

5. Conclusions

Prediction models using machine learning algorithms including ANN, SVM, RF, KNN,
and LoR were constructed with easily available input features to serve as screening tools for
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osteoporosis in community-dwelling men and women older than 50 years old. The models
reached AUROC of 0.821–0.843 in men and 0.767–0.811 in women. At designated cutoff
points, the models also achieved 83–96% sensitivity and 53–73% specificity in men; 76–90%
sensitivity and 62–69% specificity in women. Our results for the machine learning model
generally outperformed the traditional model, OSTA. We have shown that machine learning
could improve the screening performance in osteoporosis. It would be difficult to choose a
definite winner between the models due to their similar performances and applications in
different populations and situations. By incorporating the models in clinical practice, both
the patients and physicians could be more aware of the disease, and potentially benefit
from an earlier diagnosis and treatment of osteoporosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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