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Tissue resident memory T cells-
A new benchmark for the
induction of vaccine-induced
mucosal immunity

Mariah Hassert and John T. Harty*

Harty Laboratory, Department of Pathology, University of Iowa- Carver College of Medicine, Iowa
City, IA, United States
Historically, the gold-standard benchmark for vaccine immunogenicity has

been the induction of neutralizing antibodies detectable in the serum of

peripheral blood. However, in recent years there has been a new

appreciation for the mucosa as an important site for vaccine induced

immunity. As a point of first contact, the mucosal tissue represents a major

site of immune based detection and restriction of pathogen entry and

dissemination. Tissue resident memory T cells (Trm) are one of the critical cell

types involved in this early detection and restriction of mucosal pathogens.

Following tissue-specific infection or vaccination, Trm lodge themselves within

tissues and can perform rapid sensing and alarm functions to control local re-

infections, in an effort that has been defined as important for restriction of a

number of respiratory pathogens including influenza and respiratory syncytial

virus. Despite this characterized importance, only minor attention has been

paid to the importance of Trm as a benchmark for vaccine immunogenicity. The

purpose of this review is to highlight the functions of Trm with particular

emphasis on respiratory infections, and to suggest the inclusion of Trm

elicitation as a benchmark for vaccine immunogenicity in animal models, and

where possible, human samples.

KEYWORDS

TRM, respiratory pathogens, mucosal immunity, mucosal vaccines, T Cell immunity,
influenza, COVID-19
Introduction

Throughout history, respiratory infections have been a global scourge on human

health and many respiratory infections we have yet to effectively control through

vaccination (1). Seasonal influenza virus infects between 5-20% of the population

annually and was estimated to cause more than 20,000 deaths in the U.S. in the 2019/

2020 season (2). While seasonal influenza vaccines are produced and administered
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annually, they vary substantially in efficacy each year depending

upon a number of factors including the accuracy of algorithms

designed to predict the likely circulating strains (3). Speaking to

this, is the additional challenge that the seasonal influenza

vaccine must be reformulated annually to account for the virus

constantly mutating to evade existing humoral immunity.

Outside of seasonal influenza, looms the constant threat of

pandemic influenza, which can emerge from a reassortment

event with a non-human reservoir influenza strain. Examples of

this include the 2009 H1N1 pandemic that resulted in nearly

300,000 deaths and the 1918 H1N1 pandemic that resulted in an

estimated death toll of 20-40 million people (4, 5). Since its

emergence in 2019, the novel coronavirus SARS-CoV-2 spread

explosively throughout the world. At the time of this review

there have been an estimated 600 million cases and more than 6

million deaths due to SARS-CoV-2 worldwide (both numbers

are likely underestimates) (6). The deployment of multiple

COVID vaccines including the Moderna and Pfizer mRNA-

based vaccines and the Johnson & Johnson and AstraZeneca

adenovirus-vector-based vaccines contributed to curbing severe

disease associated with COVID-19 (7). However, the virus

continues to spread as new viral variants that are poorly

controlled by pre-existing immunity are generated, posing a

roadblock to controlling this virus (8). Despite these substantial

burdens to public health, effective vaccination strategies to

control many respiratory infections have continued to elude us.

Barrier sites such as the respiratory epithelial interface

represent the first site of encounter for pathogens. T cells have

been demonstrated to play a critical role in the control of a

number of respiratory infections, particularly when antibody

neutralization fails (9). Following infection, a subset of memory

T cells can be retained in the tissue of immunological insult and

are termed “tissue resident memory T cells” (Trm) and have been

demonstrated to play an important role in protection from a

number of respiratory pathogens including influenza virus (9,

10), respiratory syncytial virus (RSV) (11), and mycobacterium

tuberculosis(mTB) (12). In addition to being poised to respond

directly within the tissue of initial infection, Trm display unique

transcriptional and functional profiles relative to other memory

T cell subsets that permit them to maintain tissue residence,

sense pathogens early after reinfection and activate a local

inflammatory state within the tissue to restrict dissemination

of the pathogen (13–16). Despite their recognized importance in

a number of infection models, the elicitation of antigen-specific

Trm to barrier sites is not typically used as a benchmark for

immunogenicity of candidate vaccines. This is likely due to a

number of reasons, including accessibility of the tissue and

specific challenges in mucosal vaccine design such as lack of

effective adjuvant and delivery platforms. To aid in the design

and testing of more effective mucosal vaccines, much work still
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needs to be done to overcome these barriers, including the

optimization of mucosal delivery platforms to overcome

immune tolerance at mucosal sites and the inclusion of Trm as

a benchmark for immunogenicity in pre-clinical model testing of

mucosal vaccine candidates.
Trm generation and maintenance

Following resolution of infection, subsets of T cells can be

retained in memory at a higher frequency and lower activation

threshold relative to naïve T cells. These memory T cell subsets

are defined by expression of specific homing receptors and their

functions (17). Central memory T cells (Tcm) patrol secondary

lymphoid organs and are characterized by rapid proliferation

upon antigen re-encounter, while T effector memory (Tem)

recirculate between blood and non-lymphoid tissues (18). In

the last decade, it has begun to be appreciated that another

subset of memory T cells exist, termed tissue resident memory T

cells (Trm), which lodge into non-lymphoid tissues as a result of

distinct cellular signals controlling their transcriptional profiles,

allowing them to perform functions distinct from Tem and

Tcm (19).

CD8+ T cells primed in the draining lymph nodes migrate to

the tissue of immunological insult (20, 21). After entry, some of

these cells undergo transcriptional changes including

upregulat ion of HOBIT, BLIMP1 and RUNX3 and

downregulation of KLF2 (15), resulting in upregulation of Trm

hallmark proteins such as CD69, and depending upon the tissue,

upregulation of the aeb7 integrin CD103 [e.g. in epitheliod

tissues such as the skin (22), lungs (23), and gut (24)]. As an

antagonist of S1PR1, CD69 expression is thought to prevent Trm

egress from the tissues (25). CD103 expressed on Trm can

interact with E-cadherin on epithelial cells (26) supporting

their tissue retention (22, 27) and potentially supporting their

survival through the upregulation of Bcl-2 (19, 22). Multiple

studies support these proposed roles of CD103 and CD69, but it

is still unclear exactly how each is necessary or sufficient to

promote Trm retention in tissues (19, 22, 28). It is highly likely

that the cytokine milieu within specific tissues may drive unique

Trm generation and maintenance (29). Multiple studies have

established an importance in the pleiotropic cytokine TGF-b in

CD103 upregulation (22, 27, 30). There is evidence that CD69

expression can be induced by IL-33, type 1 interferons and TNF-

a (31).

There is understandably substantial interest in the longevity of

Trm particularly as it pertains to vaccines. In animal models

(including rhesus macaques and mice), Trm have been reported

as a highly stable population at least out to 300 days post infection

in tissues like the skin (16, 22, 32–34). Importantly, this appears to
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be a tissue-dependent phenomenon. Trm in the lung begin to

numerically wane via apoptosis and potentially draining lymph

node egress by 100 days post infection with influenza virus (33,

35). This loss of Trm has been shown to correlate with the loss of

heterosubtypic immunity to influenza virus (33, 36). Therefore, a

significant challenge in optimal mucosal vaccine design,

specifically as it relates to respiratory pathogens, is to determine

why lung Trm are relatively short-lived. In a model of influenza

infection, it was shown that repeated antigen exposure increased

the longevity of Trm in the lung, likely through stepwise

transcriptional alterations including the upregulation of survival

signals like Bcl-2 (16, 35). This repeated antigen stimulation as a

means to enhance Trm longevity in the lung could have substantial

implications for vaccine design and deployment, though more

mechanistic work needs to be done.
Unique Trm effector functions

Because Trm occupy the first exposure sites of infection,

they represent a powerful and rapid mechanism for restriction

of pathogen replication. Indeed, this appears to be the case for a

number of infections in the skin (37), liver (38), female

reproductive tract (39), and lungs (11, 36). In addition to

being in a locally advantageous position to restrict pathogen

entry and replication, Trm possess unique functional

characteristics that also support this effort. In terms of

patrolling function, Trm in the skin appear to have a dynamic

morphology that includes projections, which can potentially

assist in facilitating antigen encounters in the tissue (40, 41).

Particularly in the skin, Trm have been confirmed to display

“crawling behavior” between keratinocytes as they patrol for

virally infected cells (40, 42). In the liver, Trm have also been

reported to patrol within the sinusoids, facilitating close

interactions with infected hepatocytes and liver resident

immune cells (43). This motile behavior is likely to occur

within the respiratory tissues, but has yet to be elucidated.

In addition to unique motility and projections, CD8+ Trm

upregulate the cytolytic molecules perforin and granzyme B to

quickly control infection through direct cytolysis of infected

cells (16, 44, 45). In addition to this, these cells can potentially

contribute to pathogen restriction through non-cytolytic

means such as IFN-g production (46) or production of

chemokines to attract other immune cell populations (13).

This swift cytokine and chemokine production can trigger an

antiviral state in the infected tissue, facilitating the recruitment

of additional T and B cells (13), triggering the induction of

antiviral genes (47), and driving dendritic cell maturation (13).

In this way, Trm serve as a means to regulate both innate and

adaptive immune responses at the site of pathogen entry to

quickly limit pathogen invasion.
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Trm correlates of protection in the
context of respiratory infection
and vaccination

Influenza virus

Perhaps one of the most well-studied systems in relation to

Trm and respiratory infections is that of influenza virus. It has

been appreciated that in the absence of cross-reactive antibodies

(as is the case often times when antigenic drift occurs with

seasonal flu) CD8+ Trm specific for conserved influenza antigens

can facilitate strain transcending heterosubtypic (but non-

sterilizing) immunity to influenza in mouse models (33, 36).

The Kohlmeier group found that specifically airway-resident

CD8+ T cells contribute to this protection in a mechanism that is

dependent on IFN-g production (48, 49). It is less clear how Trm

found in the lung parenchyma can facilitate protection. Prior to

the formal description of Trm in the literature, studies identified

perforin, FasL and IFN-g as being important mediators for

CD8+ T cell dependent protection against heterosubtypic

influenza challenge (50, 51). As it is known that Trm are the

predominant drivers of heterosubtypic influenza virus immunity

in murine models, it is likely that these mechanisms are

important for protection driven by Trm in the parenchyma.

Importantly, several studies of cells from human lung donors

have identified influenza-specific Trm that were cross-reactive

against multiple influenza strains (49, 52–54). While CD4+ Trm

are an under-appreciated population, multiple studies have

found them sufficient for protection in a mouse model of

influenza challenge (55, 56). Indeed, one study from the Sant

group utilized a nanoparticle vaccine linked to the influenza

nucleoprotein (NP) which was administered intranasally, and

found to elicit persistent and polyfunctional influenza specific

CD4+ Trm responses in the lung that protected from severe

disease in mice (56). This highlights forward development in

terms of a novel delivery platform for mucosal vaccines and the

notion that multiple T cell populations can contribute to

mucosal protection.

Injectable vaccines against influenza virus have been

approved for use for many years and have some success at

eliciting protective effects in the lower respiratory tract, mainly

in the form of secretory IgA and IgG (57). More recently, the

temperature-sensitive live attenuated intranasal influenza

vaccine (LAIV, FluMist) was introduced into the United

States and found to be immunogenic and protective against

antigenically matched influenza strains in children (58).

Perhaps unsurprisingly, the intranasally administered live

attenuated vaccine was more similar to natural immunity

elicited from infection compared to the injectable vaccine

(59). This was supported when controlled comparisons were

made in murine vaccination models, finding that LAIV was
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capable of generating influenza-specific CD4+ and CD8+ Trm

that facilitated cross-strain protection, while the injectable

inactivated vaccine did not generate Trm nor facilitate cross-

strain protection, highlighting the potential importance of

route of immunization in eliciting T cells resident to the

respiratory tract (10).
RSV

Studies involving human Trm in protection from respiratory

pathogens are less common due to the invasiveness surrounding

Trm isolation. However, one human study focusing on

respiratory syncytial virus (RSV) investigated the local and

systemic CD8+ T cell response by serial bronchoscopy and

blood sampling, respectively, and found that the abundance of

RSV-specific CD8+ T cells within the bronchial washes

correlated with reduced symptoms and viral load during

infection, while the abundance of peripheral CD8+ T cells did

not (60). This study indicated a potential importance for Trm in

protection from RSV in humans, which had not been

previously shown.

Multiple murine studies have also demonstrated that CD4+

and CD8+ lung Trm rather than peripheral T cells contribute to

protection from RSV (11, 61). Importantly, it was found that

while both CD4+ and CD8+ Trm contributed to disease

reduction (as measured by weight loss), only CD8+ Trm

contributed to the reduction of viral load in the lungs (61).

IFN-g produced by these CD8+ T cells was proposed to be the

likely mechanism for this protection. These studies assessed

different mechanisms of vaccine-induced immunity that warrant

discussion. The study by Kinnear et al. utilized a DNA vaccine

encoding the RSV M2 protein which was administered

intramuscularly. This vaccine has previously been shown to

induce robust anti-RSV T cells in the periphery (62). In

contrast, the Luangrath et al. study utilized a recombinant

influenza virus expressing the RSV H2-D restricted CD4+ T

cell epitope F51 and CD8+ T cell epitope M282 to intranasally

challenge RSV immune mice (11). The Kinnear study very

clearly found that while the DNA based intramuscular

vaccination led to RSV-specific CD8+ T cells that were highly

inflammatory, there was not substantial numerical induction of

CD8+ Trm relative to prior RSV exposure. As such, vaccination

did not lead to a reduction in disease or viral burden in the lungs

(61). In the Luangrath study, mice with prior RSV intranasal

exposure had significantly reduced viral burden when challenged

with the recombinant influenza virus expressing RSV antigen

(11). These two studies nicely highlight that different routes of

immunization will lead to different levels of induction of Trm in

the lungs and it will be critical to address the mechanism by

which this occurs in order to aid in effective vaccine design.
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Coronaviruses

The literature surrounding the nature of Trm as they relate to

SARS-CoV-2 is still a rapidly developing field, though some

information does exist. Human studies from the Zhang lab and

Farber lab have identified and characterized Trm in

bronchoalveolar flushes from healthy controls and COVID-19

patients (63–65). It was found that mild COVID-19 cases were

more associated with a robust expansion of CD8+ Trm compared

to more severe cases, suggesting a role for SARS-CoV-2-specific

Trm in the mitigation of COVID-19 pathogenesis (64). Despite

having changed the trajectory of the COVID-19 pandemic, there

is little information regarding the propensity for the currently

approved COVID vaccines to elicit SARS-CoV-2 specific Trm in

the lungs. Somewhat justifiably, these early immunogenicity

studies relied on measuring antigen-specific circulating

memory T and B cell populations, and the elicitation of

neutralizing antibodies (66–70). While Trm can be generated

from site-specific vaccination (e.g. intranasal vaccination to elicit

Trm in the lungs) it is unknown whether the currently approved

COVID vaccines elicit lung Trm when administered

intramuscularly, as is current practice. As has been the case

historically with other emerging viral pathogens, murine studies

will likely be important in furthering our mechanistic

understanding of the role of Trm during SARS-CoV-2 infection.

While limited studies have been completed delineating the

role of lung Trm in response to SARS-CoV-2 infection or

vaccination, we can, however draw some information from

studies involving SARS-CoV-1 infection. SARS-CoV-1 specific

CD4+ and CD8+ Trm have been defined as necessary for

vaccine-mediated protection from SARS-CoV-1 in a mouse

model of infection (71, 72). By using a dendritic cell pulsed

peptide immunization followed by an intranasal boost with

recombinant vaccinia virus expressing the H2-B restricted

epitopes S436/525, the authors were able to induce rapid

production of IFN-g, TNF-a, IL-2, and granzyme B by

antigen-specific CD8+ T cells, which was shown to contribute

to reduced viral loads; again highlighting the potential value of

the advancement of mucosal vaccines to elicit Trm populations in

the lung (71). The robustness and conserved nature of this type

of immunity has the potential to be a highly effective strategy for

the design of broadly protective respiratory pathogen vaccines.

However, one must acknowledge the necessity of further

development of more effective mucosal vaccines to elicit

pulmonary Trm.

Challenges to Trm rational vaccine
design and study

While Trm have been linked to protective immune responses

against a number of pathogens, barriers still exist to their
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successful use as a benchmark for vaccine immunogenicity. One

such obvious barrier is the challenge of tissue access to study

Trm. By nature, these cells are lodged within their tissue of origin

which often requires invasive techniques to extricate them for

study. To move the study of vaccine induced Trm forward, the

substantial power of animal models of pre-clinical vaccine

testing will continue to be an invaluable resource to rational

vaccine design. In this way, murine or non-human primate

tissues can be analyzed for effective and optimal elicitation of

mucosal Trm by vaccine candidates. Moreover, several human

studies have been described in this review that utilized

longitudinal bronchoalveolar sampling to assess Trm induction

in airways in response to infection (63, 65). While this technique

is relatively invasive compared to peripheral blood sampling, it

still represents a viable option to study respiratory Trm

in humans.

While the protective capacity of antiviral CD8+ Trm in the

respiratory tract have been heavily described in the literature, it

is important to note that a balance between viral clearance and

immune driven pathology is critical for an effective response

against any invading pathogen. CD8+ T cells clearing virally

infected cells have the capacity to cause damage and

subsequently fibrosis within the tissue (73). Of particular

relevance to this point are studies from the Jie Sun lab which

defined a role for PD-L1 in limiting post-infection inflammatory

damage mediated by CD8+ Trm in the lung following influenza

infection (74). It is clear that while antiviral Trm can be used as a

benchmark for protection, context is highly important and

should be taken into consideration to promote a balance

between protection and pathogenesis.

As noted earlier in the review, Trm in the respiratory tract

have been characterized as more short-lived in comparison to

other memory cell populations, waning numerically by

approximately 100 days after a single antigen exposure (33,

35). This represents an interesting and unique challenge to

mucosal T cell biology that will require further mechanistic

studies into the underlying cause of lung Trm loss. Interestingly,

our lab has previously found that repetitive encounters with their

cognate antigen can drive increased Trm longevity in the lungs,

representing a potentially fruitful mechanism to address this

question (35). Specifically, Trm stimulated in vivo via a single

infection begin to wane by 100 days. However, Trm that had

experienced antigen in vivo four times were numerically

maintained out to at least 150 days. This is likely due to the

stepwise transcriptional changes that have been demonstrated to

occur when memory T cells have multiple encounters with

antigen, which support survival signals such as Bcl-2

expression (16, 75). It is certainly possible that mucosal

vaccines designed to elicit Trm in the lung may have to be

administered multiple times (boosting) to have full long-term

protective effects.
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Discussion

Respiratory pathogens have had catastrophic impacts on

human health and economic development throughout history.

The explosive spread of SARS-CoV-2 over the past 2 years, has

highlighted the continued threat of emerging respiratory

pathogens. Within the devastation of COVID-19 has also been

a reminder that vaccination against respiratory pathogens

remains a highly effective strategy to curb the disease and

community spread and an impetus for the further

development of novel vaccine strategies. Over the past 10

years, Trm have emerged as a newly appreciated memory T cell

subset, particularly in the case of respiratory infection biology.

Being poised at the site of pathogen entry and possessing unique

transcriptional and functional profiles makes this cell type a

prime candidate to capitalize on for the next generation of

vaccines. Multiple human and animal studies have

demonstrated an importance for these cells in protection from

disease including influenza virus, respiratory syncytial virus, and

coronaviruses. While these findings have been clear, the

challenges described in this review must be addressed to most

effectively design mucosal vaccines to elicit protective Trm

mediated responses.
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