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Abstract: Viral resistance is a worldwide problem mitigating the effectiveness of antiviral drugs.
Mutations in the drug-targeting proteins are the primary mechanism for the emergence of drug
resistance. It is essential to identify the drug resistance mutations to elucidate the mechanism of
resistance and to suggest promising treatment strategies to counter the drug resistance. However, ex-
perimental identification of drug resistance mutations is challenging, laborious and time-consuming.
Hence, effective and time-saving computational structure-based approaches for predicting drug
resistance mutations are essential and are of high interest in drug discovery research. However,
these approaches are dependent on accurate estimation of binding free energies which indirectly
correlate to the computational cost. Towards this goal, we developed a computational workflow to
predict drug resistance mutations for any viral proteins where the structure is known. This approach
can qualitatively predict the change in binding free energies due to mutations through residue scanning
and Prime MM-GBSA calculations. To test the approach, we predicted resistance mutations in HIV-RT
selected by (-)-FTC and demonstrated accurate identification of the clinical mutations. Furthermore,
we predicted resistance mutations in HBV core protein for GLP-26 and in SARS-CoV-2 3CLpro for
nirmatrelvir. Mutagenesis experiments were performed on two predicted resistance and three predicted
sensitivity mutations in HBV core protein for GLP-26, corroborating the accuracy of the predictions.

Keywords: HIV; HBV; SARS-CoV-2; 3CLpro; RT; capsid; drug resistance; mutation; residue scanning;
MM-GBSA; emtricitabine; nirmatrelvir

1. Introduction

The discovery of effective antiviral drugs revolutionized world health by delaying
virus-associated disease progression and thus saving millions of lives. Despite these
medical advances, the selection of drug-resistant strains is a persistent problem that leads
to viral breakthrough and reduced antiviral efficacy [1–4]. There are several mechanisms
reported for the development of drug resistance [5,6]. Random mutations in viral genes
which alter the binding of the drug to its protein target are the primary mechanism of
acquired drug resistance in viruses [6]. The mutation rate in RNA viruses is generally
very high—estimated at 10−4 per nucleotide per replication. In contrast, DNA viruses
have an estimated mutation rate of 10−8 per nucleotide per replication [7,8]. The primary
cause of failure of anti-HIV therapy is the selection of drug-resistant mutants. With the
advent of genetic sequencing and a deeper understanding of drug resistance mechanisms,
combination drug therapy has become the standard of care [9,10]. Similarly, the use of
multiclass combination therapy in HCV effectively prevented the selection of resistant
mutants, leading to curative rates in the range of 98% [11]. Thus, the emergence of drug-
resistant viruses is one of the greatest risks to public health and is a priority across the
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globe. Foreknowledge of potential mutations that could be selected in vitro and in vivo,
coupled with a comprehensive understanding of viral resistance mechanisms, is of immense
importance in developing more effective and durable drug treatments.

Experimentally, drug-resistant viruses are typically selected by maintaining an in-
fected culture under drug pressure for months (sometimes years) without a guarantee that
resistance will emerge under those specific cellular conditions [12]. In certain situations,
resistance appears exclusively in clinical settings, requiring hasty characterization of the
mutation and viral species [13]. The ability to predict drug resistance mutations expedites
understanding of antiviral efficacy, anticipates activity against existing mutant strains,
delivers mechanistic insight into how specific mutants confer resistance, allows for the
design of drug combinations that are not cross-resistant, forecasts mutant species that may
develop in clinical settings, provides guidance on the development of diagnostic assays
that detect mutations and generally provides broad utility and benefit to infectious disease
drug discovery [14].

Numerous efforts have been made to develop tools to predict drug resistance mu-
tations. One group of prediction models includes sequence-based approaches, which
use various machine learning methods. These prediction models rely primarily on pri-
mary sequences of the protein or genotypic sequence data, and their prediction accuracies
are dependent on the availability of large and diverse training sets [15–18]. The main
advantage of these methods is that they are computationally efficient. A weakness of
these methods is that they are reliant on the availability of training set data. Further,
without 3-D structural information and knowledge of the enzymatic function of the mu-
tated residues, this group of models fails to link viral genetic mutations and structural
changes due to corresponding phenotypic mutations [14,19,20]. A second type of prediction
models is based on the 3-D structure of the target proteins. In the last few decades, the
availability of a large number of 3-D structures of protein targets has enabled the imple-
mentation of various structure-based molecular modeling approaches to study binding
interactions and binding free energies of drug molecules with their corresponding protein
targets. The binding free energies are crucial for facilitating the prediction of drug resis-
tance mutations [21–24]. Although these methods are advantageous over sequence-based
methods, they can be time-consuming or show low predictive accuracy. Hence, there is a
need for novel structure-based methods with an optimum balance between computational
efficiency and accuracy [25].

Molecular mechanics–generalized Born surface area (MM-GBSA) is one of the structure-
based approaches widely used to estimate binding affinities in protein–ligand or protein–
protein complexes [26–29]. Recently, Schrödinger utilized a physics-based scoring function
together with the MM-GBSA model (Prime MM-GBSA) to calculate changes in the bind-
ing free energy of protein–protein complexes due to single point mutations, which was
called residue scanning [26,27]. Moreover, it was also shown that Prime MM-GBSA has
slightly better accuracy compared to other prediction methods such as PoPMuSiCsyn [30],
FoldX [31] and Rossetta [32] in predicting binding affinities due to single point mutations
in protein–protein complexes [26,27]. Although promising, the ability of Prime MM-GBSA
to calculate binding affinity due to single amino acid mutations and to predict resistance
mutations based on interactions between small molecules and their protein targets has not
been explored thoroughly.

Typically, drug-selected resistance mutations in viruses meet three requirements:
(1) a decrease in the inhibitor binding affinity, (2) retention of the native substrate binding
affinity to maintain essential viral function and (3) accessibility via a single nucleotide
substitution (SNS) in the wild-type codon [19,33,34]. Very few active-site mutations meet all
three criteria, providing the potential to efficiently predict resistance mutations. Moreover,
these criteria can be analyzed computationally using structure-based methods. Herein,
we describe the prediction of the binding affinities with the help of two Schrödinger suite
modules, Residue Scanning and Prime MM-GBSA, in the context of predicting mutations
conferring resistance to small molecule drugs following single amino acid mutations. We
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first implemented and validated this approach by predicting known resistance mutations
for the approved HIV reverse transcriptase (RT) inhibitor (-)-FTC. Second, we used the
approach to predict resistance mutations associated with GLP-26, a known HBV cap-
sid assembly modulator (CAM)-26, and with nirmatrelvir, an emergency FDA-approved
SARS-CoV-2 3CL protease inhibitor. Five GLP-26 resistance and sensitivity mutations were
validated in mutagenesis experiments.

2. Results and Discussion

The purpose of this study was to assess the prediction accuracy of drug resistance
mutation identification using the computational workflow shown in Figure 1. This work-
flow utilizes both residue scanning and Prime MM-GBSA calculations with the goal of
optimizing the balance between predictive accuracy and computational efficiency. This ap-
proach was used on three protein–drug complexes: (1) HIV RT complexed with (-)-FTC-TP,
(2) HBV core protein complexed with GLP-26 and (3) SARS-CoV-2 3CLpro complexed with
the protease inhibitor nirmatrelvir.
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The approach began with residue scanning followed by Prime MM-GBSA calculations
(Figure 1). Residue scanning generated mutations for specified residues using the Prime ro-
tamer search algorithm. We then performed Prime MM-GBSA refinement of the bound and
unbound state for each system for both wild-type and mutant protein structures. We kept
the protein backbone and the neighboring side chains fixed, allowing for rapid screening
of the mutations and predicted binding affinities in a computationally efficient way. The
main goal of residue scanning was to filter out mutations with increased drug/substrate
binding affinities (∆∆G < 0 kcal/mol) early on and to keep only mutations with a decrease
in binding affinities (∆∆G > 0 kcal/mol), allowing binding affinities with side-chain flex-
ibility in the binding sites to be explored using Prime MM-GBSA at a later time point.
Mutations with increasing binding affinities (∆∆G < 0 kcal/mol) are in energy minimum
conformations [26], and we hypothesized that incorporating side-chain flexibility would be
less likely to decrease binding affinities, and to therefore have less probability of chang-
ing binding free energies from a negative value (∆∆G < 0 kcal/mol) to a positive value
(∆∆G > 0 kcal/mol). Moreover, mutations with ∆∆G > 0 kcal/mol for the drug complexes
and ∆∆G≤ 0 kcal/mol for the native substrate complexes (i.e., decreasing binding affinities
for the drug molecules while maintaining or increasing binding affinities for substrates) are
targeted as they could be potential resistance mutations.

In the next step, Prime MM-GBSA calculations were implemented with side-chain
flexibility to calculate drug/substrate binding affinities with their point-mutated pro-
tein targets. Point-mutated structures, in which the mutations have ∆∆G > 0 kcal/mol
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for drugs/substrates, were identified from the residue scanning step. Side-chain flexi-
bility was provided for the residues located within 8 Å of the drugs/substrates to ex-
plore the conformational space of the side chains within the binding sites due to point
mutations. Moreover, binding affinities for mutations with ∆∆G > 0 kcal/mol could
be improved from ∆∆G > 0 kcal/mol to ∆∆G ≤ 0 kcal/mol by incorporating side-chain
flexibility in the binding sites. With Prime MM-GBSA, the binding affinity (∆G) of a
drug/substrate with wild-type and mutant protein targets is calculated separately to deter-
mine a free energy change (∆∆G). Mutations that maintain/increase binding affinities of
the substrates (∆∆G ≤ 0 kcal/mol) and decrease binding affinities of the drug molecules
(∆∆G > 0 kcal/mol) are potential drug resistance mutations. Most antiviral drugs are
known to have low genetic barriers, which means that viruses can become resistant [34]
through non-synonymous single-nucleotide polymorphism (SNP). Therefore, amino acid
mutations associated with single-nucleotide polymorphisms were prioritized as possible
drug resistance mutations.

To evaluate our approach, we used (-)-FTC (emtricitabine), which in its 5′-triphophate
form ((-)-FTC-TP) is a well-characterized HIV reverse transcriptase (HIV-RT) inhibitor, to
determine if we were able to recapitulate its mutation profile. HIV-RT polymerizes the viral
DNA primer from an RNA template. To do so, the active site binds 2′-deoxynucleotide
triphosphates, such as 2′-deoxcytidine triphosphate dCTP (Figure 2), for chemical incor-
poration into the growing DNA strand [35]. Nucleoside analogs have been developed
that bind to HIV-RT and terminate DNA chain elongation after incorporation. (-)-FTC is
a frontline nucleoside analog in antiretroviral therapy [36–38]. The drug is converted to
the active nucleoside triphosphate form by host kinases, and the active nucleoside triphos-
phate form then outcompetes dCTP for binding to HIV-RT and terminates genome chain
polymerization. The pharmacological activities and resistance mutations of (-)-FTC were
first described and studied rigorously by Schinazi et al. [39,40]. Moreover, the clinically
significant resistance mutations are reported and well-studied [41]. It is well established
that (-)-FTC selects the M184V resistance mutation in the HIV-RT active site leading to
virologic breakthrough [39,40]. Thus, HIV RT with (-)-FTC was the ideal system for testing
the ability of our computational protocol to predict the resistance mutations.
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(B) Chemical structures of (-)-FTC and natural substrate 2′-deoxycytidine (dC).

The approach predicted 157 resistance mutations through the first step of residue scan-
ning and 48 resistance mutations through the second step of Prime MM-GBSA calculations.
This demonstrates that incorporation of side-chain flexibility in Prime MM-GBSA filtered
out mutations that do not reduce drug/substrate binding affinities and that resistance muta-
tions were selected. Finally, SNP mutations were selected as probable resistance mutations
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(Figure 3, Table 1). Figure 3 shows the predicted binding free energy changes of natural
substrate dCTP (∆∆G(dCTP)) versus drug (-)-FTC-TP (∆∆G(FTC-TP)) obtained from Step 2.
Mutations leading to a decrease in binding affinity of (-)-FTC-TP while maintaining or
increasing the binding affinity of substrate dCTP are shown on the top left side of the graph.
Thus, mutations in this region could be potential drug resistance mutations. This approach
allowed us to recapture several clinically relevant resistance mutations, including M184V
and M184I (Figure 3, Table 1), two mutations known to show 500–1000-fold resistance to
(-)-FTC. Although the predicted ∆∆G values do not correlate with experimental values,
the predicted ∆∆G values for M184V and M184I are higher relative to other mutations.
Between M184V and M184I, the ∆∆G value of M184V is higher than that of M184I, which
corroborates the experimental data.
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Table 1. List of predicted resistance mutations in HIV-RT for (-)-FTC.

WT Predicted Resistance Mutations

M184 V, I, A, R, N, D, C, Q, G, L, K, P, S, T, W, Y
I63 D, E
K65 R
K66 I, P, T, G
D113 E
Y115 A, R, N, D, C, Q, E, G, H, I, L, K, P, S, T, V
Q151 E, I, C, D, P
G152 D, E
Y183 D, E

Red bold—clinically reported (-)-FTC resistance mutations in HIV-RT.

Moreover, four other clinically reported mutations, M184L, M184T, K65R and K66I,
were also predicted using our approach, validating the accuracy of our method. How-
ever, it is worth noting that our model did not predict the Q151M mutation, a clinically
known mutation to reduce 2-fold EC50 of (-)-FTC. Enzymatically, the Q151M mutation
remains sensitive to (-)-FTC with the same activity [42], and our approach is based on



Molecules 2022, 27, 5413 6 of 14

target protein structure, providing a possible explanation for why this mutation was not
identified through our approach. Although Q151M was not predicted, other Q151 muta-
tions Q151E/I/C/D/P were predicted as resistance mutations for (-)-FTC. Other predicted
resistance mutations from Table 1 have not yet been reported, but they could be put on a
potential watchlist for resistance to (-)-FTC. The prioritized list of resistance mutations for
(-)-FTC based on ∆∆G values is summarized in supplementary materials.

To explore our predictive approach further, we turned our attention to the HBV capsid,
which plays a pivotal role in the replication cycle of the virus. Capsid assembly modulators
(CAMs) have been shown to bind between two monomeric core proteins and impair
capsid assembly by affecting the kinetics and/or the binding strength between core protein
dimers [43]. GLP-26 is a non-toxic, highly potent HBV CAM which displays promising
effects in vitro and in various animal models [44–46]. Based on the unique profile of this
compound, we decided to use our approach to predict its resistance mutation profile. As
there is no substrate involved in the HBV capsid assembly, ∆∆G values of two monomeric
core proteins due to mutations were compared with and without GLP-26 complexes. The
selected binding site residues from both monomers are shown in Figure 4.
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Using our three-step workflow (Figure 1), we predicted a series of resistance mutations
in HBV core protein for GLP-26 (Table 2). Interestingly, the F110I, T128I and L140I mutations
have been reported for other CAMs [47], F101I (JNJ-6379 and Bay41-4109), T128I and L140I
(JNJ-6379). These mutations were predicted to reduce GLP-26 binding affinity to a higher
degree (∆∆G > 3 kcal/mol). Other known CAM-associated mutations including F23Y,
T33Q, L37Q, I105T, I105V, Y118F, V124A and V124G have also been reported [47], but
are predicted to show only mild to moderate effect on the binding of GLP-26. Finally,
T109 mutations, known to be resistant to most HBV CAMs [47,48], are not predicted to
be an issue with GLP-26 (Figure 4, Table 2) and could, therefore, provide options for
combination therapies with other CAMs. To validate our prediction model and its accuracy,
we performed site-directed mutagenesis experiments on HBV core for mutations F23Y,
L30F, T33Q, I105F and T109I and evaluated GLP-26 against these HBV core protein mutants.
F23Y and L30F are resistance mutations for CAMs JNJ-6379 and BAY41-4109, while T33Q
is a resistance mutation for SBA_R01, BAY41-4109 [47]. Thus, the selection of these five
mutations covered the sensitivity and resistance for GLP-26 and novelty with respect to the
resistance profile for other CAMs. GLS4, a well-known CAM, is resistant to T109I [47], so
we tested GLS4 against T109I to validate our experiment.
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Table 2. List of predicted resistance mutations in HBV core protein for GLP-26.

WT Predicted Resistance Mutations

A132 Y, W, V, S
S106 W, Y, F, L, R, C
L140 P, C, I, V, H, M, Y
T128 K, R, P, I, M
L30 W, H, R

W102 G, C, L, Y, F, S, R
Y118 Q, D, C, W, E, H, L, K, R, F
P134 L, H, S
R133 I, C, L, T, H, M, G
W125 G
T33 R, M, Q, I
F110 I, L, M
P25 L, Q, R
F23 M, L, Y
I105 M, F, S, V, T
P138 H, A
P129 H, T, S, Q
F122 V, L, C
N136 R
V124 G, A
L37 P, Y, Q

R127 Q
A34 E

Bold—predicted resistance mutations in HBV core protein for GLP-26 with ∆∆G > 3 kcal/mol.

The effect of GLP-26 on HBeAg production (EC50) was measured (Figure 5) at 10 µM
concentration. HBeAg production is a rapid and direct marker that is affected by capsid
effector modulators in this transfection assay and is also largely cccDNA-dependent, and
therefore can serve as a surrogate marker for cccDNA [49,50]. Interestingly, we were
able to recapture the mutation profile predicted by our modeling approach (Table 3).
GLP-26 was shown to be active against L30F, I105F and T109I mutants while T33Q and
F23Y significantly decreased the GLP-26 effect on HBeAg production. We are currently
evaluating the mutations which are predicted to be resistant to only GLP-26, but not to
other CAMs.
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Table 3. Experimental results for the selected mutations in HBV core protein for GLP-26.

HBV Core Protein Mutants GLP26 Predictions for GLP26

WT Sensitive -
F23Y Resistant Resistant
L30F Sensitive Sensitive
T33Q Resistant Resistant
I105F Sensitive Sensitive
T109I Sensitive Sensitive

Finally, we applied our prediction approach to SARS-CoV-2 3CLpro and the recently
approved nirmatrelvir, which should be helpful in rapid assays to diagnose resistance
and to select additional non-cross-resistant protease inhibitors. 3CLpro, one of the major
therapeutic targets for anti-SARS-CoV-2 drugs, plays an important role in viral replication
and cleaves polyprotein chains into non-structural proteins (NSPs). NSP peptide chains
are the native substrates for 3CLpro. Thus, 3CLpro has 11 substrate peptides, and 3-D
structures of six of them had been reported in Protein Data Bank (https://www.rcsb.org,
accessed on 14 July 2022) complexed with 3CLpro when we started the work. The binding
site residues of 3CLpro involved in this study are shown in Figure 6A.
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Mutations were considered resistance mutations if they decreased nirmatrelvir binding
affinity (∆∆G > 0 kcal/mol) but maintained or increased the binding affinity
(∆∆G ≤ 0 kcal/mol) for at least three out of the six NSP substrates. The mutations identified
using our approach are summarized in Table 4, and the list of prioritized resistance muta-
tions is provided in supplementary materials. It is worth noting that these mutations were
analyzed with a genomic database (https://www.gisaid.org (accessed on 14 July 2022))
to determine if any of these are known without drug treatment. Interestingly, Y54C was a
mutant reported in March 2020 in Malaysia. Further, T190I has been reported 110 times
from 15 different countries and represents 0.03% of the sequenced NSP5. As of now, there
are no experimental or clinical resistance mutations reported in peer-reviewed articles on
nirmatrelvir, but if our predictions are correct, these two naturally occurring variants could
emerge with the use of nirmatrelvir and pose a severe threat to the population. We are
currently evaluating the effect of the mutations on the binding of nirmatrelvir biochemically
since our laboratory cannot perform gain-of-function studies with live coronaviruses.

https://www.rcsb.org
https://www.gisaid.org
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Table 4. List of predicted resistance mutations in SARS-CoV-2 3CLpro for nirmatrelvir.

WT Predicted Resistance Mutations

S144 Y, W
H163 Y, Q
L167 Q, P, F, R, I, M, H
T190 N, I, R, K, A
R188 H, K, N, L
M49 N, R, K, F
P168 S, Q, R, A, H
Q192 H, K, Y, L, P
E166 G, A, K, V, N
F140 S, I, V, L
G143 A, C
Y54 D, C, E, Q, N, F, G, H, M, S, W, K
P52 R, S

H172 Q, N
H164 N, L, D, Q, K, T, E
Q189 H
A191 G, D
D187 G, Q, A
L141 Q, H
M165 L
F181 L, I, V, S, C
N142 I

Bold—predicted resistance mutations in SARS-CoV-2 3CLpro for nirmatrelvir with ∆∆G > 3 kcal/mol.

Future work could involve estimating binding free energy change accurately for the
predicted resistance mutations using the alchemical double-system/single-box method [51,52].
This would allow resistance mutations to be prioritized based on accurate binding free energies
and help to identify drug resistance mutations which show the resistance due to large-scale
conformational changes within or outside of the binding sites. Our computational approach
could be explored further to study and predict double or multiple drug resistance mutations.
It could also be used to explore drug resistance mutations in other viral protein targets
(e.g., respiratory syncytial virus and Ebola virus).

3. Materials and Methods
3.1. Test System Selection and Preparation

HIV RT complexed with (-)-FTC-TP (PDB ID—6UJX), natural substrate and dCTP
(PDB ID—6UIT) were selected to assess the approach to predict the resistance mutations.
The crystal structure of GLP-26 with HBV core protein has not been resolved; therefore,
our previously published modeled complex of GLP-26 with HBV core protein was selected
for this study [44]. GLP-26 binds between two dimeric subunits and so tetramer HBV
core protein (PDB ID—1QGT) was used. One additional system, SARS-CoV-2 3CLpro for
nirmatrelvir (PDB ID—7RFS) was used to predict the resistance mutations. For the sub-
strates, 3-D structures of SARS-CoV-2 3CLpro complexed with nsp4-nsp5 (PDB ID—7N89),
nsp6-nsp7 (PDB ID—7DVX), nsp8-nsp9 (PDB ID—7MGR), nsp9-nsp10 (PDB ID—7DVY,
nsp14-nsp15 (PDB ID—7DW6) and nsp15-nsp16 (PDB ID—7DW0) were used.

The PDB structures were prepared using Protein Preparation Wizard in Maestro
(Schrödinger Release 2020-4; Schrödinger, New York, NY, USA). Missing residues and
loops were added and minimized using Prime [53,54]. Crystallographic waters were
deleted, and the hydrogen bonding network was optimized using Epik at neutral pH [55].
The final structures were minimized with heavy atom restraints using the OPLS3e force
field. The minimization was terminated when the heavy-atom root mean square deviation
reached 0.3 Å.
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3.2. Residue Scanning

The binding site residues of drug/substrate were defined by Binding Site object in
Maestro (Schrödinger Release 2020-4; Schrödinger). The change in binding affinities of the
residues due to mutations was calculated using Residue Scanning module in BioLuminate
(Schrödinger Release 2020-4; Schrödinger). Before residue scanning, a new chain ID was
generated for drug/substrate/ligand molecule. In the residue scanning panel, all (allowed)
mutations of interest residue were generated, and “Stability and Affinity” calculation was
performed between drug/substrate/ligand chain and other binding partnered protein
chains. During the calculations, for the refinement of the mutated residue, “Side-chain
prediction with backbone sampling” option was selected with a cutoff of 0.0 Å. The residue
scanning uses MM-GBSA refinement without any side-chain and backbone flexibility.

3.3. Prime MM-GBSA Calculations

The WT-drug/substrate and MUT-drug/substrate complexes which showed greater
than 0 kcal/mol binding affinity change in residue scanning calculations were selected for
Prime MM-GBSA estimation with side-chain flexibility. The protein complexes generated
from residue scanning were split into ligand and protein structures which were selected for
Prime MM-GBSA calculations. For the covalent systems, the covalent bond was removed
for Prime MM-GBSA calculations. VSGB (variable-dielectric generalized Born) solvation
model and OPLS3e force field were utilized during Prime MM-GBSA calculations. Side-
chain flexibility was incorporated for the residues within 8 Å of the drug/substrate/ligand
molecule by selecting a distance from ligand of 8 Å. For the sampling, the “minimize”
option was selected. The changes in binding affinities, ∆GMUT and ∆GWT, were calculated
separately by Prime MM-GBSA, and the difference between them was used to calculate the
change in the binding affinity due to mutations:

∆∆Gbind = ∆GMUT − ∆GWT (1)

3.4. Cell Lines

Wild-type HBV DNA was amplified and cloned as previously described (38, 39). Five
HBV core mutants (F23Y, L30F, T33Q, I105F and T109I) were created by substituting nu-
cleotides to change the codon as indicated below using the QuikChange II Site-Directed
Mutagenesis Kit (Agilent, Santa Clara, CA, USA). Primers used for site-directed PCR mutage-
nesis are described in Table 5. The core genes of the mutants were sequenced bidirectionally
by GENEWIX (South Plainfield, NJ, USA) to confirm the introduction of mutations.

HepNTCP-DL cells were maintained in Dulbecco’s modified minimal essential medium
(DMEM) supplemented with 10% FBS and 0.1 mM non-essential amino acids (NEAA).

3.5. Compound Synthesis

GLP-26 and GLS4 were prepared in-house according to published procedures [45,56].
Both compounds had a purity of >95% as determined by 1H, 13C, 19F nuclear magnetic
resonance (NMR) and high-pressure liquid chromatography (HPLC) analysis. Entecavir
(ETV) was purchased from commercial vendors and confirmed at >95% purity using
standard analytical methods such as mass spectrometry and NMR.

3.6. Transfection of Full-Length HBV DNA into HepNTCP-DL Cells

Full-length HBV DNA wild-type and core mutants were prepared for transfection
as previously described [57]. HepNTCP-DL cells were seeded in either 96- or 24-well
collagen-coated plates in DMEM supplemented with 10% FBS and 0.1 mM NEAA and
maintained in a tissue culture incubator at 37 ◦C with 5% CO2. The cells were 90% confluent
the next day, and the medium was changed to DMEM supplemented with 3% FBS and
0.1 mM NEAA. Transfection of HBV DNA was performed with Lipofectamine 3000 reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Twenty-four
hours after transfection, the medium was replenished with drug-free medium or medium
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containing different concentrations of either GLP-26 or GSL4. Medium and cells (rinsed
3 times with ice-cold PBS) were harvested 3 days later. The efficiency of transfection was
monitored by co-transfecting a β-galactosidase expression plasmid, pCMVβ (CLONTECH
Laboratories Inc., Palo Alto, CA, USA). Assays for β-galactosidase in extracts of HuH-7
cells were performed as described [58]. Experiments were performed in triplicate.

3.7. Analysis of HBV HBeAg Production

Levels of HBeAg secreted in the culture medium were measured by using an HBsAg or
HBeAg enzyme-linked immunosorbent assay (ELISA) kit (BioChain Institute Inc., Hayward,
CA, USA), according to the manufacturer’s protocol. The concentration of compound that
reduced levels of secreted HBeAg by 50% (EC50) was determined by linear regression.

Table 5. Primers used for site-directed PCR mutagenesis of HBV core.

Pair Name Sequence Information

Core T109I Mutant c326t 5′-ctataactgtttctcttccaaaaatgagacaagaaatgtgaaaccac-3’
5′-tgtgtttcacatttcttgtctcatttttggaagagaaacagttatag-3’

Core I105F Mutant a313t 5’-ccaaaagtgagacaagaaaagtgaaaccacaagagttgc-3’
5’-gcaactcttgtggtttcacttttcttgtctcacttttgg-3’

Core T33Q Mutant 5’-atacagagctgaggcctgatctagaagatctcgtactgaaggaaaga-3’
a97c_c98a_c99g 5’-tctttccttcagtacgagatcttctagatcaggcctcagctctgtat-3’

Core L30F Mutant c88t 5’-gcggtatctagaaaatctcgtactgaaggaaagaagtc-3’
5’-gacttctttccttcagtacgagattttctagataccgc-3’

Core F23Y Mutant t68a 5’-tctcgtactgaaggaaagtagtcagaaggcaaaaacg-3’
5’-cgtttttgccttctgactactttccttcagtacgaga-3’

4. Conclusions

In this study, we assessed the ability of a computational approach containing residue
scanning and prime MM-GBSA calculations to predict resistance mutations with an opti-
mum balance between computational efficiency and accuracy. The approach successfully
validated the prediction of the resistance mutations in HIV-RT for (-)-FTC-TP and can be
used to predict the resistance mutations in HBV core protein for GLP26 and in SARS-CoV-2
3CLpro for nirmatrelvir. Three sensitivity mutations, L30F, I105F and T109I, and two
resistance mutations, F23Y and T33Q, in HBV core protein for GLP26 were studied ex-
perimentally and validated our predictions. Hence, the approach demonstrated a strong
correlation between prediction and experimental findings. Even though there are still areas
for improvement such as accurately estimating binding affinity for the prioritization of
resistance mutations, and predicting multiple drug resistance mutations, our approach
could be used to develop drug treatment strategies for different antiviral agents, taking
into account potential mutations that could arise and determining ways to minimize their
selection in culture and in humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175413/s1, Data S1: List of mutations with binding
free energy change.
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