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A B S T R A C T

5-formylcytidine (f5C) is a unique post-transcriptional RNA modification found in mRNA and tRNA at the wobble
site, playing a crucial role in mitochondrial protein synthesis and potentially contributing to the regulation of
translation. Recent studies have unveiled that the f5C modifications may drive mitochondrial mRNA translation
to power cancer metastasis. Accurate identification of f5C sites is essential for further unraveling their molecular
functions and regulatory mechanisms, but there are currently no computational methods available for predicting
their locations. In this study, we introduce an innovative ensemble approach, successfully enabling the
computational recognition of Saccharomyces cerevisiae f5C. We conducted a comprehensive model selection
process that involved multiple basic machine learning and deep learning algorithms such as recurrent neural
networks, convolutional neural networks and Transformer-based models. Initially trained only on sequence in-
formation, these individual models achieved an AUROC ranging from 0.7104 to 0.7492. Through the integration
of 32 novel domain-derived genomic features, the performance of individual models has significantly improved
to an AUROC between 0.7309 and 0.8076. To further enhance accuracy and robustness, we then constructed the
ensembles of these individual models with different combinations. The best performance attained by our
ensemble models reached an AUROC of 0.8391. Shapley additive explanations were conducted to explain the
significant contributions of genomic features, providing insights into the putative distribution of f5C across
various topological regions and potentially paving the way for revealing their functional relevance within
distinct genomic contexts. A freely accessible web server that allows real-time analysis of user-uploaded sites can
be accessed at: www.rnamd.org/Resf5C-Pred.

1. Introduction

Chemical modification plays a vital role in controlling the function of
biological macromolecules such as DNA, RNA and proteins [1]. To date,
over 170 different RNA post-transcriptional modifications have been
identified [2]. These modified residues have been identified in all RNA
types, including mRNA, rRNA, tRNA, and snRNA [3]. Among these
modifications, 5-formylcytidine (f5C) was first observed at position 34 of

mammalian mitochondrial methionine transfer RNA (mt-tRNAMet) [4].
The biosynthetic pathway of f5C34 begins with the methylation of C34
by the NSUN RNA methyltransferase (NSUN2 or NSUN3), leading to the
formation of 5-methylcytosine (m5C). Following this, ALKBH1 hydrox-
ylates m5C to produce hydroxymethylcytosine (hm5C), which is then
further oxidized to generate f5C [5,6].
f5C plays a crucial role in mitochondrial protein synthesis and may

contribute to the regulation of translation. For example, tRNA modified
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with f5C in the anticodon facilitates the translation of both AUA and
AUG as methionine [7]. Besides its presence in tRNA, f5C has also been
identified in mRNA, which further verified its physiological significance.
Moreover, recent studies have revealed that deficiencies in f5C34 are
associated with multiple diseases [8,9]. In the context of aggressive and
metastatic cancers, m5C and f5C drive the translation of mitochondrial
mRNA, thus promoting metastasis. Inhibiting mitochondrial mRNA
translation through targeting these specific RNA modifications could
potentially serve as a therapeutic strategy to combat metastasis [10].
Recent advancements in high-throughput sequencing techniques

have greatly facilitated comprehensive analysis of post-transcriptional
RNA modifications [11]. Recently, Wang et al. developed f5C-seq,
which successfully reduces f5C to 5,6-dihydrouracil through treatment
with pyridine borane [12]. Inspired by a C-to-T transition technique that
detected DNA modifications 5-methylcytosine (5mC) and 5-hydroxyme-
thylcytosine (5hmC) [13], this process involved the oxidation of 5mC
and 5hmC to 5-carboxylcytosine (5caC), followed by the conversion of
5caC into dihydrouracil (DHU) using pyridine borane, and conversion to
thymine (T) during PCR amplification. This technique enabled the pre-
cise mapping of f5C in the transcriptome through an f5C-to-T transition,
thus providing a single-base resolution identification of f5C sites across
the entire transcriptome for the first time.
Although wet-lab experiments have advanced the study of epitran-

scriptome, they can be expensive and time-consuming. Therefore,
computational approaches often served as a cost-effective avenue [14,
15]. Numerous epitranscriptome databases [16–21] and computational
approaches [22–29] have been developed for the large-scale collection
or prediction of different types of RNA modifications. Among them,
machine learning techniques like Support Vector Machine (SVM)
[30–46], Random Forest (RF) [47], Logistic Regression (LR) [48] and
eXtreme Gradient Boosting (XGB) [49] have been used for model
development and comparative analysis. For example, iRNA-m6A [50],
RAMPred [51], RNAm5CPred [52] and m7GHub [53] utilized SVM to
predict m6A, m1A, m5C and m7G sites respectively. Furthermore, deep
learning-based approaches have also emerged as powerful tools for
computational identification of RNA modification sites [54–58]. Gen-
e2vec adopted word2vec embedding to encode m6A sequences, com-
bined with a convolution network and achieved an AUROC of 0.843
[59]. MultiRM performed multi-task learning using attention-based
multi-label neural networks for predicting different types of modifica-
tions simultaneously [60]. AdaptRM was also introduced as a multi-task
computational method designed for a synergetic learning of
multi-tissue, type, and species RNA modifications from both high and
low-resolution epitranscriptome datasets [58]. Besides these
sequence-only methods, some approaches incorporated genomic fea-
tures to enhance prediction accuracy and facilitate model interpretation.
WHISTLE conducted an m6A forecast utilizing the information of both
sequence and genomic features, obtaining an AUROC of 0.904 on mRNA
[61]. Geo2vec introduced novel encoding schemes for RNA transcripts,
capturing sub-molecular geographic information and thereby enhancing
the accuracy of tissue-specific prediction of m6A RNA methylation sites
[62]. These advancements have greatly facilitated the in silico identifi-
cation of modified residues. However, to best our knowledge, there are
still no prediction tools available for the computational identification of
f5C locations, limiting the efficient selection of putative f5C sites from
multiple regions of interest.
In addition to the previously mentioned individual machine learning

and deep learning method, ensemble learning has emerged as an inno-
vative approach that combines multiple models to improve overall
performance. There are feature-based and model-based ensemble
learning. In feature-based ensemble learning, different models are
trained on distinct representations of input features, each focusing on
capturing information of specific pattern. For example, MVIL6 inte-
grated two output representations from the MG-BERT and the Trans-
former encoder to make the prediction of IL-6 induced peptide with their
fusion output [63]. 4mCBERT encoded DNA sequence segments with

Transformer and employed a CatBoost to identify DNA 4mC sites [64].
MNNEL-DTA model incorporated various neural networks, such as
graph neural network (GNN), long and short memory (LSTM), and
convolutional neural network (CNN) to identify potential therapeutic
agents for Alzheimer’s disease [65]. On the other hand, in model-based
ensemble learning, multiple algorithms are independently trained on
the same set of features, and their predictions are aggregated to enhance
model performance and robustness. For example, EnsembleDL-ATG
investigated different combinations of deep neural network (DNN),
CNN and LSTM to predict autophagy proteins from protein sequence and
evolutionary information [66]. A hybrid neural network (HNN) model
was proposed to predict the drug-target affinity, which integrated
multiple basic models such as DNN, CNN, LSTM and Transformer to
obtain embedding features of drugs and targets [67]. While ensemble
learning has shown promise in various research domains, its application
in epitranscriptome analysis remains relatively limited.
Here, we took advantage of model-based ensemble deep learning and

incorporated 32 novel genomic features to develop a computational
recognition method for f5C modification sites. Our research compre-
hensively investigated the mainstream machine learning algorithms
(SVM, LR, XGB) and deep learning algorithms (CNN, ResNet, LSTM,
Transformer). Among them, the Resf5C-Pred, inspired by ResNet block,
achieved an AUROC around 0.7492 with sequence input data, which is
the highest among the algorithms. Subsequently, through integration
with 32 domain features, it demonstrated significant improvement,
reaching an AUROC of 0.8076 in both 5-fold cross-validation and on an
independent dataset. Furthermore, by incorporating ensembles of mul-
tiple algorithms, proposed methods finally achieved an impressive
AUROC of 0.8391. Fig. 1 shows the development process of our method,
starting from data and feature generation (Fig. 1 A- C), training indi-
vidual models (Fig. 1-D), and performing ensemble learning (Fig. 1-E).
To interpret proposed models, Shapley value analysis was conducted to
analyze how different features contribute to the overall predictions and
provide insights into the putative distribution of f5C across various to-
pological regions. Moreover, to facilitate the identification of putative
f5C sites, a freely accessible web server is developed that allows real-
time analysis of user-uploaded sites. The web server can be accessed
at: www.rnamd.org/Resf5C-Pred.

2. Methods

2.1. Benchmark dataset

To develop our f5C prediction framework, the experimentally-
validated f5C sites were obtained from a recently published technique
f5C-seq [12] (See Fig. 1-A). The positive datasets (f5C sites) were
downloaded from Gene Expression Omnibus (GEO) under accession
number GSE133138. The annotation file of the yeast full genome uti-
lized in this study is sacCer3 [68]. A total of 3784 base-resolution f5C
sites were extracted from yeast mRNAs (dataset P). The negative data
(dataset N) was randomly selected from unmodified Cs located on the
same transcripts of f5C modification sites with 1:1 P-to-N ratio. The
dataset was randomly split into the training and testing part with a ratio
of 4:1.

2.2. Sequence characteristics

The length of 41 nt flanking window has been widely utilized for
extracting sequence information in numerous previous studies [69–71].
In our study, we employed the combination of one-hot encoding and
nucleotide density to extract the sequence characteristics of the 41 nt
flanking window surrounding both f5C and unmodified Cs (See Fig. 1-B).
One-hot encoding converted each nucleotide into a vector. Specifically,
four different types of nucleotides adenine (A), cytosine (C), guanine (G)
and uracil (U) can be assigned to: (A→ [1, 0, 0, 0], C→ [0, 1, 0, 0], G→
[0, 0, 1, 0], U → [0, 0, 0, 1]). Nucleotide density (ND) encodes the
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nucleotides’ distribution and cumulative frequency at each position
[72]. The density of the i-th nucleotide was defined as follows:

di =

∑i

k=1
f(sk)

i
(1)

where

f(sk) =
{

1ifsk = si
0otherwise (2)

Taking RNA sequence ‘AUUCGCU’ as an example, the nucleotide
density of A at first position can be encoded as 1 (1/1), and the Us at the
second and third positions as 0.5 (1/2) and 0.67 (2/3), respectively.

Fig. 1. Workflow of developing individual and ensemble models for f5C identification. It entailed the following steps: (A) We collected f5C modification sites
derived from f5C-seq [12] and sampled cytosine from the same transcripts as negative data. (B) We extracted the RNA primary sequence of 41 nt containing cytosine
in the middle, which is a potential f5C modification to be evaluated. Each nucleotide in sequences was encoded into a discrete vector consisting of a one-hot rep-
resentation plus nucleotide density. (C) For each potential f5C modification, we generated 32 additional domain-derived features that may contribute to the pre-
diction. A complete list of these genomic features can be found in Table S1. (D) The model architecture of individual LSTM, Resf5C-Pred, and Transformer-based
method utilized for the computational identification of f5C. (E) The ensemble model was constructed by aggregating the predictions of selected machine learning
and deep learning methods.
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2.3. Domain-derived features

To improve the performance of the model in classifying modified or
unmodified residues, domain-derived information has been included
and encoded [73]. In our research, we extracted 32 domain (genomic)
features for both f5C modified and unmodified base-resolution sites (See
Fig. 1-C). The first 13 features were dummy variables which indicate
whether the f5C sites are overlapped with specific topological regions
such as start/stop codons, transcription start sites (TSS), exons, and in-
trons on the major RNA transcripts. Features 14–15 represented the
relative position of the target f5C on two region types (i.e., coding
sequence, exon). Genomic features 16–22 calculated the length of
multiple region types, including mature transcript length, coding
sequence length, full gene length, exon transcript length and full tran-
script length. Genomics features 23–26 recorded nucleotide distances
toward the splicing junctions, nearest neighboring sites and cytosine
residues. Genomic feature 27 described the count of adjacent neigh-
boring cytosine. Lastly, features 28–32 represented genomic properties
of the genes or transcripts related to the putative f5C sites, such as GC
composition. For more details about these genomic features for model
construction, please refer to Supplementary Table S1.

2.4. Model training and method development overview

We evaluated three traditional machine learning methods: SVM, LR,
and XGB alongside four deep learning methods: CNN, LSTM,
Transformer-Encoder, and Resf5C-Pred (Residual block + CNN).
Initially, these methods were trained and evaluated using sequence in-
formation encoded in one-hot format and nucleotide density. To
enhance performance, we incorporated 32 domain characteristics into
the training and evaluation of these methods. Both sequence-only and
sequence-domain integrated approaches were employed using a
benchmark dataset with a balanced positive-negative ratio of 1:1. The
dataset was split into a 4:1 ratio for training and testing, respectively,
with five-fold cross-validation utilized during training.
Subsequently, the top five performing methods from the sequence-

domain integrated models were selected to construct ensemble
models, where the final result was obtained by aggregating the predicted
values from each model. Five different combinations of these selected
methods were evaluated and compared. The same testing dataset was
utilized for evaluating each individual combination.

2.5. Resf5C-Pred

We developed Resf5C-Pred (Fig. 1-D), a model composed by con-
volutional blocks and residual structures to determine whether a puta-
tive site is f5C modified or not. To be specific, both convolutional blocks
were configured as 1-dimensional with a kernel size of 3, stride of 1, and
padding of 1. Within the first convolutional block, the data passes
through a convolutional layer, followed by a batch normalization and a
ReLU activation. Subsequently, the processed data undergoes another
convolutional layer and a batch normalization. The number of channels
of each convolutional layer is set to [8,16]. The second block has similar
architecture as the first convolutional block. The number of channels of
each convolutional layer is set to [16,32]. Two residual blocks are
implemented after two convolutional blocks, though a shortcut
connection, adding the output from the previous layer to the output of
the current layer. Next, the output is flattened and passed through dense
layers, and fed into a sigmoid activation function for binary classifica-
tion (f5C Yes/No). Here is the formula for sigmoid activation function,
where z is the input in the last two neuron before activation.

Sigmoid(z) =
1

1+ e− z
(3)

The loss function employed in Resf5C-Pred is binary cross entropy (i.
e. BCELoss):

BCELoss = −
1
N

∑N

i=1
[yi • logpi +(1 − yi) • log(1 − pi)] (4)

where N is the total number of samples. yi is the label of each indi-
vidual sample, with a value of either 0 or 1. pi is the predicted proba-
bility that the sample belongs to class 1, as predicted by the model for
each sample. Log denotes the natural logarithm. The loss can also be
expressed as

BCELoss =
{

− log(sigmoid(z) )ify1 = 1
− log(1 − sigmoid(z) )ify1 = 0

(5)

The Adam optimizer [74] was implemented with a starting learning
rate of 0.0001, which takes advantage of the momentum strength and
adaptive learning rate simultaneously. The epoch for the training is set
to be 50.

2.6. Transformer-encoder method

Transformer [75] is a prevalent Seq2seq model first proposed for
neural machine translation and subsequently has been applied to many
NLP tasks [76–79]. It functions through an Encoder-Decoder architec-
ture. Since it has the potential to be adapted for various types of
sequence-based tasks, we involved it in our study. Here, we only
employed the Encoder module of the Transformer model. The model is
mainly comprised by three multi-head self-attention layers. In each
multi-head attention layer, multiple self-attention heads are parallel
attention structures operating on the input sequence. For each attention
head, three linear transformations of the input embeddings are derived:
Query (Q), Key (K), and Value (V). These vectors are then used to
compute the attention scores as follows:

Attention(Q, K, V) = softmax(
QKT
̅̅̅̅̅
dk

√ )V (6)

where dk is the column number of those equal-sized three matrixes, i.
e. the matrix dimension. A softmax function is used to weight the cor-
responding value vectors. The concatenation of the resulting projection
of this kind of attention head is then linearly transformed to finally
produce the output of the multi-head attention layer. The model archi-
tecture is displayed in Fig. 1-D.
Details of hyperparameters used in this study were set as follow. The

input to this model is a vector incorporating 205 sequence features
(4 ×41 nt) and 32 domain features. Additionally, three padding ele-
ments are added to these features, resulting in a total feature length of
240. The input 1-d vector was transformed into a 10 × 24 matrix,
making the input fit the model’s dimensional requirement. In each
multi-head self-attention layer, the head number is set to be 8. The
dimension of each Query, Key, and Value matrix is (24/8) × 10. The
number of Encoder layers is set to 3. The final output of the Encoder
module is flattened and passed through a fully connected layer with an
output dimension of 2 to predict whether a site is f5C modified or not.
The loss function employed in our Transformer Encoder is cross entropy.
Stochastic Gradient Descent (SGD) is selected as the optimizer with a
learning rate of 0.005 and without momentum mechanism. The epoch
for training is set to be 15.

2.7. Long short-term memory network method

LSTM [80] is a specialized variant of Recurrent Neural Network
(RNN), which has been widely used in NLP tasks such as text categori-
zation [81–83], machine translation [84–86] and language models [87,
88]. LSTMs effectively addressed the challenge of vanishing or explod-
ing gradients encountered by conventional RNNs when processing long
sequences of data. In our study, the input of LSTM was set to be a
1-dimentional input vector, consisting of 205 dimensions for
sequence-only mode and 237 dimensions for sequence-domain
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integrated mode. The hidden size was set to be 256. We utilized two
LSTM layers for model construction, followed by a linear layer to reduce
the output to a single value. A sigmoid activation function was applied at
the end to obtain a binary output. The LSTM model architecture is dis-
played in Fig. 1-D. For training, we employed binary cross-entropy loss
as the loss function and Adam optimizer. The epoch was set to be 50.
The competing methods also included SVM, LR, XGB and CNN. All

the methods were implemented using Pytorch 2.1.0. For details of the
remaining methods, please refer to our Github repository.

2.8. Ensemble learning

Ensemble learning is a technique that combines the power of mul-
tiple predictive models to improve overall performance. The ensemble
model was selected as one of our comparison methods for three reasons
including reduced overfitting, improved accuracy, and improved
robustness. Ensemble model (Fig. 1-E) considered multiple combina-
tions of methods to give a comprehensive evaluation. Sequence-domain
integrated methods with high AUROC in cross validation set and inde-
pendent test set were selected for constructing ensemble model. In
machine learning methods, LR and XGB were selected, while in deep
learning methods, CNN, LSTM and Resf5C were selected. Here we
considered five combinations following their AUROC: 1. CNN, LSTM,
LR, XGB and Resf5C-Pred (top 5); 2. CNN, LR, XGB and Resf5C-Pred (top
4); 3. CNN, LR and XGB (top 2 in ML and top 2 in DL); 4. LR, XGB and
Resf5C-Pred (top 2 in ML and top 1 in DL); 5. XGB and Resf5C-Pred (top 2
in all methods). Those ensemble models were compared with each other
under sequence-domain integrated context. The ensemble method ag-
gregates predictions from these different models by taking an average of
their output as a fusion result. Ideally, due to the combination of mul-
tiple models, the integrated model tends not to be overly dependent on
specific features of the training data, thus reducing the risk of over-
fitting. The integrated model is less sensitive to small changes and out-
liers in the data.

2.9. Performance evaluation metrics

The following evaluation metrics were applied. We used the Receiver
Operating Characteristic (ROC) curve (sensitivity against 1-specificity)
and the area under the ROC curve (AUROC). Besides AUROC, sensi-
tivity (Sn), specificity (Sp), overall accuracy (ACC), F1 score, and Mat-
thew’s Correlation Coefficient (MCC) were also included. A 5-fold cross-
validation was applied on 80 % of the data as training datasets, while the
rest of 20 % were used as testing datasets for independent testing.

Sn =
TP

TP+ FN
(7)

Sp =
TN

TN+ FP
(8)

ACC =
TP+ TN

TP+ TN+ FP+ FN
(9)

MCC =
TP× TN − FP× FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP) × (TP+ FN) × (TN+ FP) × (TN+ FN)

√ (10)

F1 =
2TP

2TP+ FP+ FN
(11)

Among them, TP represents the number of true positives, while TN
represents true negatives; FP stands for the number of false positives,
and FN stands for the number of false negatives.

2.10. Estimating the likelihood ratio of putative f5C modification sites

For each predicted putative f5C sites, we calculated the likelihood

ratio to represent how extreme the site can be a true f5C residue as
follows:

LR =
P(observation|f5C)
P(observation|C)

(12)

Following the above calculation, a site would be classified as a pu-
tative f5C site if its predictive value exceeded 0.5, i.e., a minimum LR
value of 1. A higher likelihood ratio value of a predicted result suggests
that it has a greater likelihood of being a f5C residue. In our proposed f5C
prediction website, positive sites (prediction probability > 0.5) are
categorized as follows: those with a probability greater than 0.9 are
classified as high-confidence, between 0.8 and 0.9 as medium-
confidence, and between 0.5 and 0.8 as low-confidence. Correspond-
ingly, the likelihood ratio intervals assigned to these categories are > 9
for indicating high confidence in predicting an f5C site;.

> 4 and < 9 for a medium confidence, > 1 and < 4 for a low
confidence.

3. Results

3.1. Sequence-only methods

To develop our prediction method, we first evaluate the performance
of different sequence-encoding approaches for f5C prediction using both
machine learning and deep learning methods. Three different machine
learning classifiers were included: SVM, LR and XGB. Three deep
learning methods were included: CNN, LSTM and Resf5C-Pred. Perfor-
mance evaluation of these sequence-only methods using a 41 nt
sequence has been summarized in Table 1. The comparison of model
performance with varying sequence lengths is shown in Table S2.
Methods achieved highest accuracy when using a 41 nt sequence as
input. Additionally, we demonstrated a combined ROC figure for cross
validation (Fig. 2a) and independent test (Fig. 2b). The results indicated
that deep learning methods generally outperformed machine learning
methods. However, relying solely on sequence information may not be
sufficient for achieving highly accurate predictions. Even the best
sequence-only method, Resf5C-Pred only achieved an AUROC around
0.7492 in the independent test. To improve f5C prediction, we tried to
integrate sequence-based features with domain-derived characteristics
in the subsequent section.

3.2. Sequence-domain integrated methods

We incorporated the sequence-based information (i.e. one-hot
encoding and nucleotide density) with 32 newly derived features from
the genome domain to create the final model for f5C site prediction. The
performance of all the methods was evaluated utilizing both sequence
and domain features as input. The related performance evaluation is
demonstrated in Table 2. (The performance evaluation of each method
using only 32 features as input is shown in Table S3.) The ROC curves for
cross validation and independent test are shown in Fig. 3a and b. By
combining domain-derived features, the prediction performance
improved significantly compared to using sequence alone across all
testing methods. Among these methods, Resf5C-Pred achieved the best
prediction performance, with an average AUC of 0.8074 and 0.8076
tested on 5-fold cross-validation and the independent dataset,
respectively.

3.3. Ensemble models

From Table 2, we can see that LR, XGB, CNN, LSTM and Resf5C-Pred
are the top 5 methods with the best performance. Next, we constructed
ensemble models by applying different combinations of models from
those five methods. The performance evaluation toward those methods
in independent test is summarized in Table 3 and a combined ROC figure
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for independent test is demonstrated in Fig. 3c. The ensemble method
aggregated predictions from these different models by fusing their
output to make a final decision. All ensemble methods demonstrated
improvement compared to the average AUROC of individual methods
(0.7309–0.8076). The ensemble model of XGB and Resf5C-Pred combi-
nation outperformed other combinations with an AUROC value of
0.8391.

3.4. Model interpretation

Gaining insights into the key input features and the underlying
mechanisms behind model decisions are crucial for making further

improvements to the model. However, interpreting deep-leaning models
can be challenging. To overcome this limitation, we adopted an
approach to interpret the role of domain-derived features using machine
learning alternative, following a previously published work [89]. The
Shapley additive explanations [90] were employed to assess the relative
importance of each input feature in the prediction.
We conducted SHAP analysis for model interpretation of the top 3

domain-integrated methods XGB, CNN, and Resf5C-Pred. Based on their
SHAP values, top 10 important features of each method are shown in
Fig. 4. Similar sets of top important features can be found across
different individual methods. Several important features reoccur in
these three methods, which include dist_C_p200 (distance to nearest

Table 1
Performance evaluation of sequence-only methods.

Methods & Modes Sn (%) Sp (%) ACC (%) F1 MCC AUROC

SVM Cross Validation 73.85 63.72 66.57 0.6841 0.3374 0.7320
Independent Test 70.23 64.41 66.17 0.6720 0.3254 0.7104

LR Cross Validation 69.62 63.55 66.01 0.6645 0.3228 0.7303
Independent Test 72.58 67.63 67.63 0.6941 0.3534 0.7262

XGB Cross Validation 83.98 58.39 64.33 0.6889 0.3293 0.7317
Independent Test 85.53 63.33 67.16 0.7277 0.3611 0.7265

CNN Cross Validation 65.57 67.10 66.33 0.6622 0.3268 0.7313
Independent Test 63.60 66.77 65.18 0.6477 0.3039 0.7240

LSTM Cross Validation 68.19 70.76 69.47 0.6921 0.3897 0.7478
Independent Test 67.20 64.39 65.78 0.6605 0.3160 0.7197

Resf5C-Pred Cross Validation 74.24 62.86 68.48 0.6992 0.3733 0.7574
Independent Test 79.47 55.26 67.32 0.7079 0.3578 0.7492

Fig. 2. The ROC curves of sequence-only methods. (A) The ROC curves of multiple approaches for identifying f5C modification sites under the 5-fold cross-
validation test. (B) The ROC curves of identifying f5C modification sites under the independent dataset test.

Table 2
Performance evaluation of sequence-domain integrated methods.

Methods & Modes Sn (%) Sp (%) ACC (%) F1 MCC AUROC

SVM Cross Validation 68.46 63.42 66.97 0.6584 0.3406 0.7311
Independent Test 70.38 65.97 65.84 0.6810 0.3149 0.7309

LR Cross Validation 71.91 66.03 68.64 0.6885 0.3754 0.7680
Independent Test 73.13 65.78 67.76 0.6926 0.3580 0.7509

XGB Cross Validation 78.42 68.97 68.97 0.7089 0.3914 0.7865
Independent Test 82.18 66.02 70.14 0.7322 0.4162 0.7850

CNN Cross Validation 77.73 62.73 69.96 0.7138 0.4082 0.7617
Independent Test 76.59 58.79 67.63 0.7015 0.3594 0.7566

LSTM Cross Validation 73.97 64.01 68.81 0.6956 0.3810 0.7566
Independent Test 71.27 60.62 65.91 0.6750 0.3208 0.7408

Transformer-Encoder Cross Validation 73.13 64.30 68.69 0.6988 0.3758 0.7396
Independent Test 71.80 63.77 67.76 0.6887 0.3569 0.7319

Resf5C-Pred Cross Validation 81.50 63.05 71.94 0.7368 0.4517 0.8074
Independent Test 81.11 60.62 70.80 0.7340 0.4262 0.8076
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neighboring C site within 201 bp), last_exon_400 bp (whether the site is
overlapped with 400 bp of the last exon), GC_cont_101bp (GC compo-
sition of 101 bp region around the site) and pos_cds (relative position of
the site on coding sequence). The results indicate that these features
might significantly influence the predictive occurrence of f5C modifi-
cations. On the other hand, other dummy variables, i.e., features indi-
cating whether the site overlaps with specific transcript regions, such as
start_codons, stop_codons (genomic regions surrounding start codons
and stop codons), and TSS (transcription start sites), exhibit relatively
lower SHAP values, suggesting the influence of these particular tran-
script regions on the prediction results may be limited and their func-
tional relevance related to f5C might be weak. Fig. 5.
High SHAP values indicate the importance of a feature in predicting

f5C modifications and its statistical association with f5C. However, it
does not necessarily provide direct evidence of the biological functions
or regulatory mechanisms in which the feature is involved. Specific

experiments need to be conducted to further interpreting the signifi-
cance of a feature in a complex biological system. Moreover, the synergy
between these features is not yet discussed in this study. Additionally,
we conducted a SHAP analysis for an ensemble learning model (Resf5C-
Pred + XGB). The result is shown in Fig. S1. We found similar top
important features across individual models and their ensemble, sug-
gesting consistency of feature importance and also model robustness.
For detailed information about these feature items, please refer to
Supplementary Table S1.

3.5. Web server

A user-friendly online platform has been developed for sharing our
findings (Fig. 3). Users can easily access this platform by either inputting
site coordinates or uploading a text file containing chromosome, posi-
tion, and strand information for the query sites. Our Resf5C-Pred

Fig. 3. The ROC curves of sequence-domain integrated methods. (A) The ROC curves of multiple approaches for identifying f5C modification sites under the 5-
fold cross-validation test. (B) The ROC curves of identifying f5C modification sites under the independent dataset test. (C) The ROC curves of ensemble models with
different method combinations under the independent dataset test.

Table 3
Performance evaluation of sequence-domain integrated ensemble methods.

Ensemble Methods Sn (%) Sp (%) ACC (%) F1 MCC AUROC Improvement

CNN + LSTM + LR + XGB + Resf5C-Pred 78.72 63.77 71.20 0.7308 0.4296 0.7905 ↑2.69 %
CNN + LR + XGB + Resf5C- Pred 82.93 62.76 72.91 0.6971 0.4669 0.8025 ↑4.14 %
CNN + LR + XGB 78.45 63.51 70.93 0.7283 0.4243 0.7939 ↑3.10 %
LR + XGB + Resf5C-Pred 80.58 63.58 71.99 0.7408 0.4473 0.8156 ↑5.68 %
XGB + Resf5C-Pred 86.17 63.25 74.63 0.7714 0.5073 0.8391 ↑8.32 %
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webserver provides two modes of f5C modification site prediction. One
mode is “Resf5C-Pred Only” and another mode is “Ensemble Model
(Resf5C-Pred and XGB)”. By utilizing our platform, the web server will
provide predictions for the probability of the site being an f5C: whether
the site is f5C or not (using a default threshold of 0.5) and the corre-
sponding confidence level. The results can be downloaded as an excel
table. The website is now available at www.rnamd.org/Resf5C-Pred.

4. Discussion

5-formylcytidine (f5C) is a unique modification observed post-

transcriptionally in mRNA and tRNA, playing a vital role in mitochon-
drial protein synthesis and possibly influencing translation regulation.
Identifying f5C modification sites is essential to investigate its molecular
roles and regulatory mechanisms, yet there has been a lack of compu-
tational tools for such predictions. To investigate the computational
identification of f5C sites, we investigated traditional machine learning
approaches, deep learning approaches and their ensembles. Firstly, we
trained our models with one-hot encoded 41nt sequence information but
found they only exhibited an AUROC value between 0.7104 and 0.7492.
To further improve prediction, 32 additional genomic features were
included, enabling the best model achieved AUROC 0.8047 and 0.8076
in both 5-fold cross-validation and independent dataset evaluations
respectively. We also developed ensemble models. The best ensemble
model which fuses prediction result from both XGB and Resf5C-Pred,
achieving an AUROC of 0.8391. Lastly, we explained our models using
Shapley additive explanations. The results suggested that the distance to
5′ and 3′ splicing junctions emerged as the top two predictive features,
followed by the distance to known f5C sites, demonstrating potential
association between splicing junctions and the clustering effect of f5C
modification. This possibly implied certain specific transcripts regions
with a high likelihood of f5C occurrence. Additionally, almost the same
time as our work, Wang et al. independently developed an f5C predictor
based on a multi-head attention framework. They utilized five distinct
feature extraction methods to achieve an integrated learning of f5C and
reported AUROCs of 0.807 and 0.827 on 10-fold cross-validation and
independent tests, respectively [91]. It should be noted that direct
comparison of AUROC is inappropriate due to the different strategies of
constructing benchmark datasets in both studies.
There is a theoretical possibility of confusing f5C (5-formylcytidine)

with 5caC (5-carboxylcytosine) since the experiment profiling of both
modifications undergoes a similar conversion to dihydrouracil (DHU)
using pyridine borane. The source f5C data we utilized in this study may
contain sites arise from 5caC in RNA [12]. Therefore, proposed predic-
tion model in our study might also wrongly predict 5caC sites as f5C.
Lack of labeled data makes it difficult to address this issue in the current
stage. Golden standard f5C data sites are expected to be established in
future to minimize the risk of such misidentification.
Another limitation of this study is its focus solely on f5C sites in

Saccharomyces cerevisiae mRNAs. Multi-organisms or -species pre-
dictions are not conducted due to the limited availability of specific wet-
experiment f5C epitranscriptome data. Besides the work conducted by
Wang et al. that reported f5C sites in yeast mRNA [12], a recent study by
Lyu et al. utilized f5C-seq to map f5C modifications in the tRNA and
chromatin-associated RNA (caRNA) across the HeLa cells and mouse
embryonic stem cells (mESCs) [92]. However, the number of identified
f5C sites was relatively limited (13 in HeLa tRNA, 11 in mESC tRNA, 3 in
HeLa caRNA, and 3 in mESC caRNA), which is insufficient for training a
predictive model. Additionally, f5C has previously been identified
within human mRNA, but a comprehensive dataset providing
transcriptome-wide profiling of high-confidence f5C sites is still lacking.
Despite this, these findings serve as valuable references for future studies
exploring the biological functions and mechanisms of the epitran-
scriptomic mark of f5C.

5. Conclusion

In this study, we incorporated three traditional machine learning
approaches (SVM, LR and XGB), four deep learning approaches (CNN,
LSTM, Transformer-Encoder and Resf5C-Pred) and their ensembles, to
investigate the computational identification of f5C sites. The integration
of 32 novel genomic features derived from f5C-related domain knowl-
edge and the ensemble learning framework significantly improved
prediction accuracy compared to the sequence-only methods. Shapley
additive explanations were conducted to explain the significant contri-
butions of specific genomic feature. A free-to-use web server has been
established, enabling users to conduct real-time analyses of potential f5C

Fig. 4. Model interpretation. The significance of each domain feature in the
prediction was assessed using Shapley additive explanations. The top ten
genomic features in XGB, CNN, and Resf5C-Pred were demonstrated in (A), (B)
and (C) respectively.
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sites. The work only focuses on the f5C sites in Saccharomyces cerevisiae
mRNAs due to data limitation. Future work could include training
tissue-specific models when more data is available and incorporating
features such as secondary structures and other RNA types to enhance
the model’s robustness and generalizability.

Code availability

The Resf5C-Pred, LSTM, Transformer-Encoder and all ensemble
models were implemented with Pytorch 2.1.0. Codes for model con-
struction can be available at: https://github.com/Jiaming21/F5C-
codes.git. The web server together with the completed datasets and
the parameters of two trained models (XGB and Resf5C-Pred) can be
freely accessed at www.rnamd.org/Resf5C-Pred.
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