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ABSTRACT: With a view to high-throughput simulations, we present an
automated system for mapping and parameterizing organic molecules for
use with the coarse-grained Martini force field. The method scales to larger
molecules and a broader chemical space than existing schemes. The core of
the mapping process is a graph-based analysis of the molecule’s bonding
network, which has the advantages of being fast, general, and preserving
symmetry. The parameterization process pays special attention to coarse-
grained beads in aromatic rings. It also includes a method for building
efficient and stable frameworks of constraints for molecules with structural
rigidity. The performance of the method is tested on a diverse set of 87
neutral organic molecules and the ability of the resulting models to capture
octanol−water and membrane−water partition coefficients. In the latter
case, we introduce an adaptive method for extracting partition coefficients
from free-energy profiles to take into account the interfacial region of the membrane. We also use the models to probe the response
of membrane−water partitioning to the cholesterol content of the membrane.

1. INTRODUCTION

Computational screening is important in a variety of fields,
from drug discovery1 to toxicology.2 The aim of screening is to
narrow down a large chemical search space, thereby guiding
time-consuming experimental testing toward formulations that
are likely to have the desired behavior. Computational
methods must generally be capable of high throughput to be
viable for screening.
In the field of toxicity and environmental impact, one of the

important physical quantities in screening is the membrane−
water partition coefficient or its logarithm log KMW, which is a
measure of the extent to which a molecule accumulates in
biological tissues.3−8 Computational methods for predicting
values of log KMW vary widely in their sophistication and
accuracy. Most simply, an approximate linear relationship
between log KMW and its counterpart for partitioning between
n-octanol and water, log KOW, can be used and gives acceptable
results for many molecules.9 Multiparameter linear free-energy
relationships, based on the correlation of partitioning free
energies with various molecular descriptors, have also been
used to predict partitioning of solutes between different phases,
including between lipid bilayers and water.10−13 The
COSMOmic method, based on the COnductor-like Screening
MOdel for Real Solvents (COSMO-RS),14 explicitly includes
information about solute and membrane structures and
compositions and so approximates how they interact with
each other.15 However, in more complex cases, particularly the
partitioning of ionic molecules, the inherent approximations in

these methods can break down and more accurate methods are
needed.9

Molecular dynamics simulations include a detailed descrip-
tion of the structure of the system, which is allowed to evolve
under the equations of motion rather than relying on
assumptions about how the different components affect each
other. Molecular dynamics simulations have been used
extensively to study the interactions of molecules with
membranes,16 including the calculation of log KMW directly
from simulation trajectories.17 However, atomistic molecular
dynamics simulations are computationally expensive, even
when enhanced sampling techniques are used to accelerate the
exploration of configurational space.18,19 Their use in high-
throughput screening is therefore unfeasible.
A common strategy to improve the computational efficiency

of simulations of biological and soft matter systems, including
lipid bilayers, is the use of coarse-grained (CG) models.
Coarse-graining involves removing degrees of freedom from an
atomistic model by combining groups of atoms into single
interaction sites. In such models, force calculations are cheaper
because of the reduced number of sites. The reduction in the
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number of degrees of freedom also results in a smoother
potential energy surface, allowing for longer simulation time
steps and therefore faster exploration of configurational space
than for a fully atomistic model.
There are two distinct stages to constructing a coarse-

grained model: mapping and parameterization. Mapping is the
division of the molecule into interaction sites, commonly
known as beads. The mapping scheme sets the resolution of a
coarse-grained model and thereby determines the speed-up
that can be gained. There are many possible mapping schemes
for any given molecule, even at a given level of bead resolution,
and they vary in how well they capture properties of symmetry
and structure.20,21 Mapping is often done manually but some
methods have been developed to automate the process.22,23

Methods for the parameterization step are diverse in
approach, and the models they produce have distinct strengths
and weaknesses. Bottom-up methods fit the parameters of a
coarse-grained model to a more detailed atomistic simulation
and include structure-based methods,24,25 force matching,26,27

and relative entropy.28 It is possible to achieve an excellent
representation of the atomistic system even with a much
simpler model. However, some bottom-up methods suffer from
poor transferability to conditions that are not represented in
the atomistic reference and can be time-consuming to
parameterize.29−32 Nevertheless, coarse-grained models involv-
ing more complex interaction types, such as local-density or
volume-dependent potentials, have been shown to significantly
improve transferability, often with only a small increase in
computational cost.33−36 The transferability of simple pair-
potential-based models can also be improved with appropriate
parameterization schemes.37,38 There has also been progress in
the use of machine learning methods to parameterize bottom-
up coarse-grained force fields, including the automation of
coarse-grained mapping.39−41 While this field is in its early
stages, machine learning has the potential to further advance
the efficiency and transferability of bottom-up coarse-graining.
Top-down models, in contrast, are fitted to macroscopic

experimental thermodynamic data. Such models do not always
reproduce fine structural details32 but are well suited to
calculating thermodynamic properties and phase behav-
ior.42−44 A number of top-down coarse-grained force fields
have been developed.45−48 The most commonly used,
particularly in biomolecular simulation, is Martini.49,50 Version
2 of Martini has been applied to a great variety of systems,

including lipid bilayers,51 proteins,52 and polymers.53,54 Martini
2 consists of a number of predefined coarse-grained bead types,
each of which is parameterized to represent specific types of
chemical groups according to properties such as polarity and
hydrophilicity.49 Each bead is intended to model around four
heavy (nonhydrogen) atoms. The interactions between the
beads are defined according to an interaction matrix, with
interaction strengths parameterized to match partition
coefficients of small molecules between organic solvents.
Bonded parameters in Martini are often parameterized to
match the underlying atomistic structure and can be generated
in a bottom-up fashion from an all-atom simulation.55 The
building-block approach of Martini gives the force field good
chemical transferability at a given temperature. This feature is
beneficial for high-throughput simulations, as it removes the
need to fully reparameterize interactions for each system, as is
the case in many other approaches.
The use of Martini in high-throughput screening requires a

reliable, and preferably automated, way to generate models of
organic solutes. The automartini method of Bereau and
Kremer22 provides a way of automatically mapping and
parameterizing small organic molecules within Martini.
Automartini models for a set of 653 neutral organic molecules
with up to 15 heavy atoms reproduced experimental octanol−
water partitioning free energies22 with a correlation coefficient
of 0.91 and a mean absolute error of 3.3 kJ mol−1. The method
has also been used to carry out high-throughput studies of
membrane interactions for extensive libraries of molecules56

and to investigate how well coarse-grained models cover
chemical space.57 However, automartini’s methods for
mapping and assignment of bonded interactions do have
limitations. The mapping algorithm becomes impractically
slow for molecules with more than about 25 heavy atoms due
to the cost of enumerating all possible mapping schemes. The
mappings are also not guaranteed to preserve the symmetry of
the molecule. Additionally, models generated for extended ring
compounds can require manual fine-tuning of the bonded
parameters before they are suitable for use in simulations.22

In this paper, we present a method for generating coarse-
grained Martini models that cover a wider chemical space than
other methods. Our mapping approach is scalable to much
larger molecules than previously possible, including those with
complex ring structures. The models are consistently stable in
molecular dynamics algorithms without reduction of the time

Figure 1. Flowchart outlining the three main stages of the algorithm: mapping of atoms onto beads and parameterization of nonbonded and
bonded interactions. In the mapping and bonded interaction stages, the procedure differs for ring and nonring fragments, while for nonbonded
interactions, the steps for aliphatic and aromatic fragments are distinct.
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step. This includes ring structures for which models with
poorly chosen constraints would be unstable even at low time
steps due to the practical numerical difficulty of simultaneously
satisfying multiple, interdependent constraints. Our method
also guarantees that the symmetry of the molecule is preserved
during the coarse-grained mapping. We show that the resulting
models reproduce experimental octanol−water and mem-
brane−water partitioning data with good accuracy and devise
an adaptive procedure for extracting the latter from the free-
energy profile of a given solute. Collectively, these advances
open up the use of Martini for high-throughput screening of
thermodynamic properties.
The remainder of this article is organized as follows. Section

2 describes our automated scheme for mapping and
parameterizing molecules for use with the Martini 2 force
field. In Section 3, we test models from our scheme by using
them to calculate octanol−water and membrane−water
partition coefficients. Section 4 contains a discussion of the
efficiency, strengths, and current limitations of our scheme.
Finally, Section 5 provides a summary of the main advances
presented in this article.

2. METHODOLOGY
Our automated scheme for producing a coarse-grained model
from a simplified molecular input line entry system (SMILES)
code is summarized schematically in Figure 1. The three main
stages of mapping and parameterization of nonbonded and
bonded interactions are described in Sections 2.1−2.3 in turn.
Each step in the procedure is labeled with the corresponding
subsection number in the flowchart. A self-contained
implementation of the full procedure is available to download
with the Supporting Information. The code makes use of the
open-source RDKit package,58 version 2020.09.1.
2.1. Mapping Scheme. 2.1.1. General Approach. Our

three priorities for an automated mapping algorithm are that
(1) the method must generate mapping schemes compatible
with the Martini framework, (2) the mappings must respect

the symmetry of the molecule as much as possible, and (3) the
algorithm must readily scale to large molecules.
Our approach, which meets all of these criteria, consists of

three steps. First, we isolate ring systems within the molecule
and map them using a fragment-matching algorithm. Next, we
apply a version of the graph-based method of Webb et al.23 to
systematically map nonring fragments of the molecule. Finally,
we apply a postprocessing step to deal with any individual
atoms that could not be mapped in the previous two steps.
Each of these stages of the algorithm is described in the rest of
this section.

2.1.2. Ring Structures. Within the Martini framework, ring
compounds are typically modeled by small (S) beads, which
represent 2−3 heavy atoms, joined together in a rigid structure
by a combination of LINCS constraints and virtual sites.49,52,59

The structure of such representations makes simulations more
prone to instabilities at longer time steps because of the
difficulty in satisfying a large number of constraints
simultaneously. Hence, it is harder to determine a robust
and practical mapping scheme for rigid molecules than for
flexible molecules.
Our automated framework for coarse-grained mapping of

ring compounds is designed to deal with fragments containing
combinations of fused five- and six-membered rings and is
illustrated in Figure 2. There are two steps: grouping of the
outer parts of the ring system according to predefined patterns,
followed by mapping of the remaining inner fragments using
graph-based grouping.
The outer parts are mapped by finding continuous chains of

atoms that are part of only one ring and mapping them, as
shown in Figure 2. These mapped fragments are removed, and
the process is repeated for the remaining fragments. If none of
the unmapped fragments forms a ring, then the remainder of
the ring system is mapped by applying one iteration of the
graph-based mapping system described in Section 2.1.3 but
with a maximum path length of two bonds.

Figure 2. (a) Predefined mappings for rings with examples where these fragments occur. The fragments involved are in bold, with red ellipses
indicating the coarse-grained beads. (b) The iterative mapping process for a triphenylene ring fragment.

Figure 3.Mapping scheme for trihexylamine, including two iterations of graph-based grouping followed by postprocessing to remove a single-atom
bead.
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2.1.3. Graph-Based Grouping. The graph-based mapping
method developed by Webb et al. uses only information about
the connectivity of the atoms.23 It is based on representing a
molecular structure as a graph in which atoms are the nodes
and bonds are the edges. The nodes are ranked and then
combined according to some metric. This ranking may be
done in a number of ways, and we have adapted the spectral
ordering method.23 In this approach, the whole molecule is
analyzed at once, with symmetrically equivalent fragments
treated simultaneously, ensuring that the symmetry of the
molecule is automatically respected. The whole mapping
process for an example nonring compound is shown in Figure
3, including the postprocessing step described in Section 2.1.4.
In spectral mapping, the molecule is represented by an

adjacency matrix A. Aij is 1 if nodes i and j are bonded and 0
otherwise. The diagonal terms are used to weight the nodes.
The weighting of node i in our scheme is given by

= ̅W l mi i i (1)

where li is the maximum number of bonds between any two
heavy atoms in the bead and m̅i is the mean atomic mass of all
of the nonhydrogen atoms within the bead. Using li in the
definition of weight favors the formation of beads with
branched internal structures compared to long, linear beads,
while the inclusion of m̅i is a tie-breaker for chemically distinct
beads with the same branching structure. Other weighting
functions are possible, but this simple product reliably
generates Martini-compatible mappings even for highly
branched structures. The nodes are then ranked according to
their centrality scores,23 which are obtained by diagonalization
of

= −A PDP 1 (2)

where P contains the eigenvectors of A, and D is a diagonal
matrix of its eigenvalues. The centrality scores of the nodes in
the graph are the components of the eigenvector correspond-
ing to the largest eigenvalue. Starting from the lowest-ranked
node, the nodes are grouped with their neighbors. For each
node i, all neighbors with equal or higher rank are identified
and, of those, the one with the closest ranking is grouped with
node i. If multiple nodes of the same rank simultaneously
qualify to be combined with the same neighbor, all of these
nodes are grouped together. At this stage, all ring fragments
generated by the procedure in Section 2.1.2 are excluded. If
there is no suitable neighbor, node i remains as its own group.
We have introduced an additional constraint on bead size for

compatibility with Martini. For each candidate node i, the
maximum path length, li, between any two heavy atoms within
the bead is measured. If li is greater than three bonds, the
combination step is rejected and the nodes making up the
candidate node remain as their own groups. This ensures that
no group grows too large to model using Martini while still
allowing smaller nodes to combine in other parts of the
molecule.
This procedure can be carried out iteratively until the

desired level of coarse-graining is achieved. In practice, we
iterate until no new beads are formed.
2.1.4. Postprocessing. In some cases, the mapping scheme

results in single atoms that cannot combine with others
without exceeding the size limit. There is no appropriate
Martini representation for a single heavy atom, so a
postprocessing step is needed to take care of these cases.
The nodes are ranked by centrality score as before, and the

highest-ranked neighbors of any single-atom nodes are
identified, excluding any ring beads. From each of these
neighbors, one heavy atom is transferred to the bead of the
single atom. If there are multiple neighbors with the same rank,
then a heavy atom is removed from each, ensuring that the
symmetry of the molecule is retained. If this results in new
single-atom beads, the procedure is repeated until all beads
have l between 1 and 3. An example of a molecule for which
this process is necessary is given in Figure 3.
In some cases, this process can fail to terminate because

single atoms are passed back and forth between beads. Two
constraints are placed on the procedure to prevent this. First,
nodes containing atoms that were either single-atom nodes or
bonded to a past single-atom node in previous iterations, are
tagged. If a tagged node is the highest-ranked neighbor of a
single-atom node, then it is passed over and an atom is taken
from the next highest neighbor. Second, in cases where the
single-atom node is bonded to a terminal node with path
length l = 1, the single-atom node and the terminal node are
combined to form a new bead. This prevents the formation of
terminal single-atom nodes that have no way to combine with
any other atoms.
Finally, if the only appropriate neighbor for a single-atom

node is a ring node, the two nodes are combined, effectively
absorbing the lone atom into the mapping for the ring. In cases
where there is a choice between two ring beads, the one with
the highest centrality score is chosen.

2.2. Nonbonded Interactions. 2.2.1. Aliphatic Frag-
ments. Parameterization of nonbonded interactions in the
Martini framework consists of selecting from the list of
predefined bead types that make up the force field. For
parameterizing the subset of beads that represent nonaromatic
fragments, we have adopted the bead-selection approach from
the automartini method of Bereau and Kremer, which is based
on matching to octanol−water partitioning free energies
(ΔGOW).

22

In this procedure, once a mapping scheme has been decided,
ΔGOW is predicted for each of the neutral fragments. The
prediction is preferentially done using ALOGPS, a neural
network trained to predict octanol−water partitioning; it has
been shown to produce high-quality results for a diverse range
of organic molecules.60 In cases where ALOGPS is not
applicable (e.g., for wholly inorganic fragments such as NO2),
the Wildman−Crippen approach is used; this method
determines ΔGOW from contributions by the atoms that
make up the fragment.61 The Martini bead type with the
closest ΔGOW to the ALOGPS or Wildmann−Crippen value is
chosen to represent that fragment.
In our implementation of this part of the algorithm, we have

obtained ΔGOW from ALOGPS for all organic fragments that
fit the bead size limits described in Section 2.1.3 and included
these values in a data file along with the code (see the
Supporting Information (SI)). This self-contained implemen-
tation eliminates dependence on the web server hosting the
neural network.
Some bead parameterizations also make use of hydrogen-

bonding properties. Neutral beads with a predicted ΔGOW
within ±1.0 kJ mol−1 of the Nda (nonpolar acceptor and
donor) bead type can be assigned as either Na, Nd, or Nda
beads if they include hydrogen-bond acceptors, donors, or
both. The hydrogen-bonding properties of the atoms are
determined using the RDKit library’s chemical feature module.
Otherwise, the bead type is selected based on ΔGOW, as
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described above. Bead types for charged fragments are chosen
purely based on hydrogen-bonding properties. Fragments can
be assigned as Qa, Qd, or Qda as described above, or as Q0 if
no hydrogen-bonding atoms are present.
2.2.2. Aromatic Fragments. Fragments that are part of

nonaromatic rings are parameterized in the same way as
nonring fragments. For aromatic rings, we have developed a
different approach, designed to take account of heteroaromatic
fragments and variable-resolution ring mappings (i.e., two or
three ring atoms, plus their substituents, per bead). This is
illustrated in Figure 4.

Aromatic fragments are detected automatically using the
aromaticity model in RDKit and are recognized in the
fragment’s SMILES code. For each aromatic fragment arising
from the mapping algorithm, we construct a standardized test
molecule containing the aromatic fragment along with the rest
of a six-membered ring. In cases where this does not result in a
valid structure (most commonly with nitrogen-containing
heteroaromatics), we instead form a five-membered ring. The
bead type is then chosen in a similar way to nonring fragments,
except that the ΔGOW of the whole ring is matched to that of a
Martini ring or dimer (depending on the CG resolution). The
added carbon atoms are represented by predetermined bead
types, which were chosen by finding the closest ΔGOW match
for benzene (either an N0 trimer or a C5 dimer). Note that
these bead selections do not match the types used in most
existing Martini models, but we chose the bead selections that
fitted best with ΔGOW for consistency with the approach used
for aliphatic fragments. A similar observation was made in a
recent paper by Kanekal and Bereau.57

2.3. Bonded Interactions. 2.3.1. Bond Lengths and
Angles. Bond lengths and angles are modeled using harmonic
potentials. We parameterize these contributions using atom-
istic conformers of the molecule, generated using the
experimental-torsion knowledge distance geometry
(ETKDG) method,62 which is based on information from
experimental crystal structures, followed by minimization using
the universal force field (UFF).63 We use 200 such conformers
for the parameterization to provide a balance between
computational cost and convergence, as discussed in Section
4.1. The set of conformers is mapped to a CG resolution, and
bond lengths and angles are taken as the average values across
this set. The standard values from the Martini model are used
for force constants. Further details on the effect of different
bond parameterization schemes can be found in the SI.
The CG beads involved in bond and angle interactions are

simply groups of two or three fragments that are bonded
together in the atomistic representation of the molecule. This
does not apply to pairs or triplets in which all of the beads are
part of the same ring. Bonded interactions within rings are

modeled using a network of constraints, dihedrals, and virtual
sites, as described in the following sections.

2.3.2. Virtual Sites. Simulations of coarse-grained ring
structures often suffer from instabilities at longer time steps
because of the complex networks of constraints that must be
simultaneously satisfied to enforce the correct molecular
geometry. These convergence problems can be mitigated by
representing some of the beads in aromatic systems as virtual
sites. The virtual sites exert forces on other sites as normal, but
any force acting on them is redistributed to the surrounding
beads.64 The position of a virtual site is defined as a weighted
combination of the positions of other beads, which also defines
how the force is redistributed. Because virtual sites do not
interact through normal bonded interactions, they reduce the
complexity of the bonded structure of CG ring compounds,
improving their stability in simulations. This approach has
been successfully deployed, for example, in the treatment of
sterols by Melo et al.59

We have introduced an automated procedure to include
virtual sites in coarse-grained models of large ring systems.
Fragments are split into outer and inner sets of beads, which
are designated real and virtual sites, respectively. The first stage
of this process is to define a two-dimensional coordinate
system for each ring system. The axes of this system are found
by diagonalization of the inertia tensor, I, of the ring. The
eigenvectors associated with the two smallest eigenvalues of I
define an orthogonal basis in the plane of the ring. The
coordinates of the ring system are then projected onto this
two-dimensional coordinate set. The outer beads are
determined by finding the convex hull of the ring system,65

and these are designated as real sites. The remaining ring beads
are designated as virtual sites. Any virtual site that is bonded to
a nonring substituent is moved to the list of real sites.
There are many methods for handling virtual sites within

simulations. We use a construction in which the position of
each virtual site, v, is described by a linear combination of its
four nearest neighbors within the same ring system (or three if
the system has only three real sites)

∑=
=

wv r
i

n

i i
1 (3)

where wi and ri are the weighting and position of site i,
respectively, and n is the number of sites used to express v.
Choosing appropriate weights for a set of real and virtual sites
requires finding a solution to eq 3 for a representative
configuration of the real and virtual beads. By definition, rigid
fragments have little internal variation between conformers, so
any of the conformers generated in Section 2.3.1 can be used.
When n = 3 or 4, there are infinitely many solutions of eq 3.
However, in practice, we would like the solution that gives the
most balanced distribution of forces across the constructing
sites. This is done with the aid of simple geometric
constructions, as described below.
When n = 4, there is no unique solution to eq 3. We can

choose weights that balance the force redistributed onto each
neighbor by placing the virtual site at the intersection of two
lines crossing the quadrilateral. The ends of the two lines are
defined by the parameters βh and βv, which represent fractions
of the edges of a quadrilateral, as shown in Figure 5a. The
weights are given geometrically by

Figure 4. Procedure for constructing full rings from mapped ring
fragments.
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After shifting the coordinates so that r1 is at the origin, βv can
be determined by solving the quadratic equation (see the SI for
a full derivation)
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When n = 3, as shown in Figure 5b, the procedure is simpler.
Again shifting r1 to the origin, w2 and w3 can be calculated by
solving
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The weight on r1 is then calculated from

= − −w w w11 3 2 (9)

2.3.3. Ring Geometry. The network of constraints and
dihedrals in a ring compound is designed to enforce a rigid
geometry where required while still allowing for large
simulation time steps. We therefore aim to generate a model
with the minimum number of interactions necessary to keep
the correct molecular geometry based on a hinge con-
struction.59,66 First, the real sites are connected by a closed
ring of distance constraints,67 giving an outer frame. Further
constraints are then placed in a zig-zag pattern across the ring
system, splitting it into triangles and creating a series of hinges.
Each of these hinges is kept at the correct angle using a single
dihedral. The dihedrals are placed to minimize the sharing
edges. Pseudocode for the algorithm for adding constraints and
dihedrals is included in the SI, along with examples of the
results for various ring structures and a discussion on the limits
of the dihedral generation algorithm.
The process for generating ring structures, including virtual

sites, constraints, and dihedrals, is illustrated in Figure 6 for a
warfarin molecule. This molecule includes multiple ring
systems that are treated separately from each other by the
algorithm before being joined to make the molecule.

3. PARTITION COEFFICIENTS
To test the method presented in Section 2, we use it to derive
coarse-grained models for a set of 87 molecules. We
benchmark the models by evaluating octanol−water and
membrane−water partition coefficients using simulations and
comparing them with experimentally measured values.

Figure 5. Schematic of the geometric constructions used to determine
weights for virtual sites when (a) n = 4 and (b) n = 3.

Figure 6. Schematic illustration of the process for generating virtual
sites and ring constraints for warfarin. (a) Mapping of atoms onto
coarse-grained beads (red ellipses), (b) ring constraints (thick lines),
real sites (filled circles), and a virtual site (open circle), (c) dihedral
constraint for the double ring (dashed red line), and (d) bonds
connecting the ring fragments (thick dashed lines).
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3.1. General Simulation Parameters. Coarse-grained
simulations were carried out using Gromacs 2018.2.68 The
new-rf set of molecular dynamics parameters were used; these
were proposed by de Jong et al. as providing the optimal
balance between accuracy and computational efficiency.69 A
leapfrog integrator was used, with a time step of 20 fs.
Electrostatic interactions were handled using the reaction field
method,70 with a relative permittivity of 15.0. Cutoffs for the
van der Waals and electrostatic interactions were set to 1.1 nm.
Temperatures were kept constant at 303 K using the velocity
rescale method71 with a coupling constant of 1.0 ps. The
Parrinello−Rahman barostat72 with a coupling constant of 12.0
ps and a reference pressure of 1 bar was used in constant NPT
simulations.
Coarse-grained phospholipid parameters were taken from

the library of lipids provided on the Martini website.51

Cholesterol was modeled using the virtual site representation
parameterized by Melo et al.59 Water and ions were modeled
using the standard Martini parameters, in which one bead
represents four water molecules. Ten percent of the water
molecules are the so-called antifreeze particles and prevent the
unphysical freezing of water at ambient temperatures.49

3.2. Octanol−Water Partitioning.We start by testing the
ability of models generated using our method to reproduce
octanol−water partition coefficients (log KOW). Initial struc-
tures for these calculations were created by randomly placing
400 water beads or octanol molecules into a cubic box, using
the gmx insert-molecule tool included with Gromacs. This was
followed by energy minimization and a 10 ns constant NPT
run to generate an equilibrated box of solvent.
Solvation free energies in octanol (ΔGO

solv) and water
(ΔGW

solv) were calculated using the Bennett acceptance ratio
(BAR) method.73 A solute molecule was placed at a random
position in a box of solvent. A series of simulations were
carried out in which the interactions between the solute and
the solvent were turned off, as defined by a scaling parameter λ.
Soft-core potentials were used to prevent singularities when λ
is close to 0. The octanol−water partitioning free energy was
then calculated directly from

Δ = Δ − ΔG G GOW
part

W
solv

O
solv

(10)

giving the partition coefficient

= −ΔK G RTexp( / )OW OW
part

(11)

Our test set for log KOW is a diverse set of organic molecules,
including a variety of functional groups, alkyl chain lengths,
and ring structures. A full list is given in the SI. Figure 7 shows
the simulation results against experimental measurements. For
16 of the 87 molecules, experimental values were not available,
and log KOW predictions from the ALOGPS server were used
instead.60

Overall, there is a good agreement between the experimental
and simulated values, although there are some distinct outliers.
The most hydrophilic molecules show more scattered data.
Their behavior tends to be dominated by hydrogen-bonding
and other directional interactions that are not explicitly
included in Martini. These molecules could benefit from the
polarizable Martini model74 or from the recently published
Martini 3 force field,75 and future work will focus on extending
the approach to these force fields. There is also a small,
systematic overestimation of log KOW in the more lipophilic
ring compounds. These molecules are almost exclusively

multihalogenated aromatics, especially those where a dichloro
group is mapped to a single bead.
We also tested our method against a set of existing models

from the Martini force field, namely, amino acids. We have
compared models for all 20 amino acids generated using our
method with those from the Martini 2.2 library.52 Octanol−
water partitioning data for those models are compared to
experimental values76 in Figure 8. Both sets of models

systematically overestimate log KOW, but our automated
models (root-mean-square error in log KOW, RMSE = 1.69)
outperform the standard Martini 2.2 models (RMSE = 2.26).
Of the 20 solutes, 14 have improved results with the
automated models. The systematic shift in both sets can be
traced to the limitations of the Martini 2 model. It has been
shown that using the polarizable Martini model significantly
improves the partitioning behavior of highly polar molecules
like amino acids, but this is outside the scope of the present
study.74,77 However, it is still encouraging that an automated
approach to parameterization results in some improvement

Figure 7. Octanol−water partition coefficients (log KOW) for a set of
organic molecules using coarse-grained models compared to experi-
ment (dot markers) or predicted ALOGPS values (cross markers)
where experimental data are not available.

Figure 8. Octanol−water partition coefficients (log KOW) for amino
acids calculated using Martini 2.2 and automated models compared to
experimental values.
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over handmade coarse-grained models within the limitations of
the force field itself for this set of compounds.
3.3. Membrane−Water Partitioning. We now test the

ability of our automatically generated coarse-grained models to
predict membrane−water partition coefficients (log KMW) as a
step toward high-throughput screening of organic molecules
for bioaccumulation.
3.3.1. Calculating Partition Coefficients. Initial coarse-

grained lipid structures were generated using the insane.py
tool, which constructs a solvated bilayer by placing lipids and
water beads on a cubic lattice with the z-axis normal to the
bilayer.51 All bilayers in this study consist of 128 lipid
molecules (two leaflets of 82 lipids being a convenient initial
construction). A number of water beads were replaced by an
equal number of cations and anions to give a 150 mM salt
concentration. To facilitate comparison with the experimental
data available for each solute, the simulations used either a
palmitoyloleoylphosphatidylcholine (POPC) or a dimyristoyl-
phosphatidylcholine (DMPC) membrane on a case-by-case
basis. Our simulations predict that the differences between
log KPOPC−W and log KDMPC−W are small but do vary in
magnitude between the solutes. For example, in the case of
nnn-trihexylamine, the mean value across 10 replicas with each
membrane was 6.21 for a POPC bilayer and 5.80 for DMPC.
For warfarin, the two values were 2.79 and 2.10.
Energy minimization was carried out on the initial

structures, followed by a 100 ns constant NPT molecular
dynamics run. The average x and z box lengths were calculated
from this run, and a single structure with this size was extracted
from the trajectory to be used as a starting bilayer
configuration.
In this study, umbrella sampling was used to generate

probability distributions of solutes across membranes. For each
membrane/solute combination, a series of umbrella simu-
lations were run with the distance along the z-axis between the
centers of mass of the membrane and the solute restrained at
values between 0.0 and 5.0 nm, separated by 0.1 nm. The
restraint was achieved using a harmonic potential with a force
constant of 1000 kJ mol−1 nm−2. The distance was defined
using the cylinder method, in which the center of mass of the
membrane is calculated using only the lipid molecules that lie
within a cylinder of radius 1.5 nm, whose axis is parallel to z
and passes through the center of mass of the solute. This
reduces the effect of any undulations of the lipid bilayer.78

Each simulation included two solute molecules being sampled
separately across a different leaflet of the membrane to
improve sampling without increasing simulation time.79

For each umbrella window, the two solute molecules were
inserted into the equilibrated bilayer at a fixed z-coordinate
and random x and y coordinates. A steepest-descent energy
minimization was carried out, followed by a 100 ps
equilibration simulation with a 2 fs time step. A 50 ns
simulation with a 20 fs time step was then carried out. The first
1 ns of this run was treated as additional equilibration, and the
remaining 49 ns were used for analysis. A probability profile
was generated using the weighted histogram analysis method
(WHAM).80

The membrane−water partition coefficient is defined by

=
[ ]
[ ]

K
solute
soluteMW

M

W (12)

where [solute]X is the concentration of the solute in the
membrane (X = M) or in the aqueous phase (X = W).
Extracting KMW from the probability profile requires the profile
to be split into parts associated with the solution and with the
bilayer. This is complicated by the fact that the interface region
is large in relation to the size of the membrane and often has a
significantly different interaction with solutes than either the
membrane or water. Previous studies have tackled this issue by
scaling the contribution to the membrane probability in the
interfacial region.17 Another approach is simply to use a fixed
cutoff for a particular lipid type. Both methods work well for
most molecules but can neglect important features of the
profile when a solute interacts strongly with the interfacial
region.
Our approach is based on the assumption that any

deviations from the probability in the bulk water region must
be due to interactions with the membrane, including the
interfacial region. We therefore define a hard cutoff between
the two regions but with an adjustable position that depends
on the point at which the free-energy profile of the solute starts
to deviate from the pure water value. Using this cutoff, we can
calculate KMW using

=
∑ =K

V z
M

P z

P z
( ) ( )

( )
n i

R
i

n
MW

0 sol

sol (13)

Here, the membrane−water system has been divided into
notional layers parallel to the xy plane, and zi refers to the
position of layer i, running from i = 0 at the center of the
membrane to i = n in the outermost water layer (in this work,
we have used a resolution of 100 layers). R is the index of the
outermost layer designated as part of the membrane region for
a given solute. Psol(zi) is the probability of finding a given
solute molecule in layer i. V(zn) is the volume of the outermost
water layer and M is the mass of one leaflet of the lipid bilayer.
This gives KMW in units of dm3 kg−1, in common with many
experimental studies. The deviation from bulk behavior at a
layer j is estimated using the root-mean-square deviation
(RMSD) of the free-energy profile between zn and zj. By
iterating over j between j = n and 0 and calculating the RMSD
at each point, we can define the cutoff as the layer j = R, at
which the RMSD first increases above 0.1.
The specific value for the RMSD threshold used here is

arbitrary, but we have found in most cases that the results are
insensitive to the threshold applied. This is because, in cases
where the interface is an important contributor to the
membrane partitioning, the change in free energy on
approaching the interface from the water phase is usually
quite sharp. With the exception of very hydrophilic
compounds, the calculated KMW does not significantly depend
on the way the probability distribution is split between phases
(fixed or variable hard cutoff or scaled cutoff). This is
illustrated in Figure 9 for trihexylamine and ethylene glycol.
For the former, log KMW is dominated by the well inside the
membrane, so the position of the cutoff does not affect the
result once the whole tail region is covered. In the case of
ethylene glycol, there is only a shallow, local free-energy
minimum inside the membrane, making the interfacial region
more influential on partitioning, and log KMW does not fully
converge with cutoff distance. However, this merely reflects the
fact that the free-energy density for this solute is lower in water
than anywhere in the membrane, so that artificially associating
more water with the membrane will always appear to increase
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KMW. Nevertheless, as indicated in Figure 9b, using an RMSD
threshold of 0.1 does lead to a sensible division between the
membrane and water. Overall, for these very hydrophilic
compounds, getting a precise estimate of log KMW is
challenging, but, by its very nature, this problem only arises
when log KMW is very small.
As a spot-check on the statistical uncertainty of the log KMW

values calculated by our protocols, we repeated the umbrella
sampling procedure 10 times for each of four contrasting
molecules using different randomly inserted coordinates of the
solute for the starting coordinates. The standard deviation
across the 10 calculated values of log KMW is an estimate of the
uncertainty in any one of them (i.e., the typical error present
without the repeats). The results from these simulations are
shown in Table 1. The estimated uncertainties are all below 0.2
log units. Ethylene glycol has the largest uncertainty, which is
due to the lack of a clear-cut division between the membrane
and water regions for hydrophilic molecules, as explained
above. Experimental measurements of log KMW are not always
published with error estimates, but the statistics given in one
recent study8 (using solid-supported lipid membranes) imply
that the uncertainty in an individual measurement was in the
range of ±0.03 to ±0.2 with a mean of ±0.13. This level of

statistical uncertainty is very similar to that of the spot-checks
listed in Table 1.
Figure 10a shows log KMW values for our test set from CG

simulations compared to experimental values.3,7,8,81−95 For

aliphatic compounds, the agreement between the simulation
and experiment is essentially the same as for octanol−water
partitioning (RMSEs 0.97 and 0.98, respectively), despite the
fact that membrane−water partitioning is more challenging
both experimentally and computationally. Single-ring com-
pounds also perform well. The least satisfactory results are for a
set of halogenated biphenyl compounds. The trend in
simulated log KMW for this set is similar to that in both the
simulated and experimental log KOW, but the experimental

Figure 9. (a) Convergence of log KMW with cutoff between the
membrane and water for ethylene glycol and trihexylamine. (b) Free-
energy profiles for the two compounds, with cutoff from an RMSD
threshold of 0.1 indicated by crosses. The center of the membrane lies
at r = 0.

Table 1. Mean and Standard Deviation (SD) of log KMW
Calculated from 10 Separate Replicas

solute mean SD

trihexylamine 6.21 0.12
warfarin 2.79 0.12
glycerol 0.56 0.04
ethylene glycol −0.23 0.18

Figure 10. Membrane−water partition coefficients (log KMW) for a
range of small organic molecules using coarse-grained models. (a)
Coarse-grained vs experimental in a pure phospholipid membrane and
(b) log KMW in a phospholipid + 30% cholesterol vs pure
phospholipid membrane, both from the coarse-grained models.
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log KMW data have a very small spread. It is therefore not clear
whether the discrepancy should be attributed to the models,
the experimental data, or a combination of the two. The fact
that the octanol−water trend is correct suggests that the
models themselves are basically sound, but there may be
subtleties in the interactions between halogenated fragments
and the membrane, which are not captured well by the bead
types in Martini 2.
3.3.2. Membrane Composition. The partitioning of

molecules into membranes with realistic compositions is
important for the prediction of how compounds interact
with real biological systems. A number of experimental and
simulation studies have shown that the presence of cholesterol
in a lipid bilayer has a significant impact on partitioning.96−98

Cholesterol is known to have an ordering effect on bilayer
systems,99 and this change is hypothesized to reduce the
permeability of the membrane.96,100−102 However, most
studies to date have focused only on small sets of molecules.
Automated coarse-graining could be valuable in exploring in
depth how different families of molecules interact with
different membrane compositions.
As an initial investigation, we have calculated log KMW for

our full test set in lipid bilayers containing 30 mol % of
cholesterol and compared this to our simulated values in pure
phospholipid bilayers in Figure 10b. The impact of cholesterol
in our Martini simulations varies according to the structure of
the solute. For molecules containing rigid aromatic groups,
cholesterol reduces membrane partitioning, while for small or
flexible molecules, it is increased. Figure 11 illustrates the
difference in free-energy profiles for tetrachlorocatechol and
trihexylamine, which show these contrasting behaviors. Both
profiles have a slightly lower free energy in the head-group
region of the cholesterol-containing membrane, reflecting the
lower concentration of phospholipid heads, but the partition
coefficient is dominated by the free energy further into the
membrane. Tetrachlorocatechol has a higher free energy in the
tail region of the cholesterol membrane. This follows the
pattern seen in many studies, where the increase in membrane
stiffness on adding cholesterol hinders the reorganization of
the lipids, which is required when a solute is added.96,100−102

In the case of trihexylamine, the free energy is lower in the tail
region of the cholesterol membrane. This molecule is more
flexible, reducing the lipid reorganization that is required on
insertion, and so the favorable interactions with the denser
membrane dominate the free-energy profile.
3.3.3. Ionic Molecules. Many of the molecules studied in

the previous sections have acidic or basic character, and their
protonation state, and therefore charge, will change on moving
through a lipid bilayer. We have modeled all of these molecules
using neutral Martini beads. These beads are parameterized to
match organic solvent−water partitioning data and therefore
account for these changes in protonation state in an effective,
implicit way.
Strongly ionic molecules are more difficult to model using

Martini. The polarizable Martini model, which includes a water
model with orientational polarizability, can help with some of
the issues. However, the problem remains that there is only a
limited selection of ionic bead types within Martini 2, which
limits the ionic groups that can be represented. This means our
mapping procedure is not guaranteed to work with all ionic
molecules.
With prior knowledge of which functional groups can be

represented by particular charged bead types, it is possible to

automatically generate models of molecules containing those
groups. An additional preprocessing step is added to the
mapping scheme where predefined fragments are mapped in a
similar way to the aromatic patterns. The bead type for these
mappings is also predefined. For example, the SO4

− and CSO3
−

groups in organic sulfate and sulfonates are represented well by
the Qa and Q0 bead types, respectively. This is shown in
Figure 12, where these models and models generated without
the additional preprocessing are compared to experimental
data.8 Both sets of sulfate models give good results. For the
sulfonates, the models based on predefined fragments give
significantly improved results over the standard set of models.
Care is needed when sampling the free-energy profiles of

ionic molecules. The force constant used in the restraint
potential of the umbrella sampling for neutral molecules was
weak enough that the charged group in the molecule could be
pulled away from the desired depth and toward the charged
region of the membrane. This behavior prevented convergence
of the histograms from the two molecules. The problem was
fixed by increasing the force constant from 1000 to 2000 kJ
mol nm−2, and reducing the window spacing to 0.05 nm. For
neutral molecules, the weaker force constant was sufficient to
obtain converged histograms due to the absence of electro-
static interactions between the solute and the membrane. For
those molecules, the increased computational expense of

Figure 11. Potentials of mean force between the bilayer center (r =
0.0) and bulk water (r = 5.0) for (a) tetrachlorocatechol and (b)
trihexylamine, in POPC and POPC + 30% cholesterol.
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narrower umbrella windows brings no significant improvement
in accuracy and so the weaker force constant is preferable.
Predefined mapping for ionic groups can give improved

results across specific series of ionic surfactants. However, it is
still limited by the resolution of Martini and knowledge of
appropriate bead assignments. This is one area where the
increased diversity of bead types in the new Martini 3 force
field75 could open up the chemical space that can be covered
by our automated approach.

4. DISCUSSION
4.1. Scalability. One advantage of the graph-based

mapping algorithm is its computational speed. Even for large
molecules, the division into beads takes a matter of seconds
and so the approach scales very well with molecule size. The
limiting factor for scalability of the coarse-graining procedure
as a whole is the conformer generation required for
parameterizing bonded interactions. As shown in Figure 13,
the entire process for linear alkanes with just one conformer
takes only seconds even for C50. When 200 conformers (the
default in our code) are used, the computational time becomes
noticeable. This reflects the cost of generating the conformers
using ETKDG and looping over them to calculate their
dimensions. Even so, the cost is still small compared to the
simulations that are then carried out using the model, so the
creation of the CG model would not be the limiting factor in
predicting partition coefficients. For reference, on a cluster
with 64 GB of RAM, the automartini code22,57 took 3.7 h to
parameterize a C29 molecule, and C30 could not be para-
meterized due to memory constraints. With our method, the
same molecules took 155 and 167 s, respectively.
While the mapping algorithm is, in principle, scalable to very

high molecular weights, the low availability of experimental
log KMW for very large molecules does limit the sizes that can
be included in our data set, which range from 2 to 28 heavy
atoms. Benchmarking of much larger molecules would
therefore require a different application from membrane−
water partitioning to be chosen.

Our coarse-graining method relies on a principle of
additivity, i.e., that a molecule can be constructed by joining
beads that have been parameterized to represent isolated
fragments.22 It is possible for the most appropriate Martini
bead type for a fragment to depend on its chemical
surroundings (as demonstrated, for example, in peptides103)
and the errors associated with this dependence may
accumulate as the molecular weight increases. Further work
on ways to account for a fragment’s environment when
choosing a bead type will be extremely valuable and in
combination with our mapping approach will further extend
the chemical space for which Martini can be used in high-
throughput screening studies.

4.2. Nonbonded Parameters. Martini 2 was used in this
paper because it is by far the most widely used coarse-grained
force field. However, the mapping stage of our scheme is
suitable for any force field with the same coarse-grained
resolution, such as the recently released Martini 3 model, or
any future coarse-grained models. Full automation of the
process for new force fields will likely require new approaches
to selecting bead types in the parameterization stage. Martini 3,
for example, has more bead sizes and more hydrogen-bonding
bead types than Martini 2,66,75 and differentiating between
fragments based only on ΔGOW will not be sufficient. Here, we
have concentrated on Martini 2 as the simplest version of the
force field. However, extension to new force fields can further
improve the chemical space coverage of automated coarse-
graining, particularly for charged molecules.
The intended bead size in Martini 2 is 4−5 heavy atoms but

some of our mappings contain sizes outside this range. The
criterion we used for bead size was a compromise between the
preferred Martini size and the need for the method to work for
any molecule. This includes not only linear or ring fragments
but also highly branched structures. In the most branched
molecules, such as perfluorinated alkyl chains, beads of 6−8
heavy atoms are possible. In these extreme cases, the larger
beads are smaller in radius than a linear bead representing the
same number of atoms and help to avoid excessively short
bond lengths between beads. Nevertheless, the variation in
bead size may cause artifacts in the free-energy profile for
molecules where many beads are outside the 4−5 heavy atom

Figure 12. Membrane−water partition coefficients (log KMW) for
alkyl sulfates (chain lengths 8, 10, 12, and 13) and sulfonates (chain
lengths 8, 10, and 12−14), with models generated with predefined
fragment matching (solid lines) and with the standard mapping
procedure (dashed lines). In all cases, increasing the chain length
increases log KMW.

Figure 13. CPU time of the parameterization for linear alkanes of
different chain lengths, with and without UFF minimization of the
200 atomistic conformers. Timings for automartini22 are also included
for reference.
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range for which the beads were parameterized,104 as well as
affecting other properties. Martini 2 does have small bead
types, but these are identical to the normal bead types aside
from their scaled interaction with other small beads.49

Extension to Martini 3 may alleviate these issues, as the
newer force field has more sophisticated treatment of small
bead types.75

The models generated using our method are intended for
use in screening for thermodynamic properties. However, they
may also be used as a starting point for a more detailed
parameterization. For example, bead types may need to be fine-
tuned if the automated assignment is not appropriate. This can
occur when the behavior of an individual fragment differs
significantly from the fragment within a larger molecule.103 For
example, if an ester linkage (-C(O)O-) is assigned to a bead
by the mapping algorithm, the addition of the terminal
hydrogen atoms will give formic acid, which is chemically very
different. In that example, we found that a P3 bead reproduced
partition coefficients better than the automatically assigned P1
bead.
4.3. Bonded Parameters. The bonded parameters in our

models are sufficient for calculating thermodynamic properties.
However, bulk and structural properties require a change of
priority when parameterizing intramolecular interactions.
Adjusting the automated bonded interactions based on
molecule size rather than center-of-mass distances between
beads should improve the accuracy of the model for properties
such as bulk density, particularly in combination with Martini 3
bead types.75 However, it is important to note that even with
improved bonded interactions, coarse-grained models based on
pair potentials will be limited in their ability to correctly
represent all of the structural and thermodynamic properties of
the underlying atomistic system simultaneously.30,105 While it
is desirable for a model to represent the real system as closely
as possible, the simplicity of the model will always come with
trade-offs in the properties that can be matched.
All of the automatically generated models shown in this

paper have been tested and found to produce a stable
simulation with umbrella sampling and a time step of 20 fs,
which is a similar level of performance to handmade models of
similar systems.59 For even more complex aromatic molecules
with many substituents, a shorter time step may sometimes be
necessary since keeping the correct geometry of such
molecules will require many bonded parameters acting on a
small number of beads.

5. CONCLUSIONS

We have developed an efficient, automated coarse-grained
mapping method that is compatible with Martini and other
force fields of a similar resolution. The method consists of
graph-based mapping for nonring fragments and pattern-
matching for ring fragments. Using this approach, we can
generate models for a large number of organic molecules. This
includes a wide variety of functional groups, as well as linear,
branched, and ring compounds. The resulting models
reproduce both octanol−water and membrane−water partition
coefficients of the solute molecules well. Compared to previous
approaches, we have expanded the range of ring-containing
molecules that are accessible by introducing a new method of
parameterizing virtual sites and constraints. The structures are
stable even with a 20 fs time step, which is generally difficult to
achieve for this type of molecule.

The new mapping and parameterization approach paves the
way for routine use of coarse-grained modeling in high-
throughput screening studies involving molecules of industrial
interest. Due to the large chemical space that can be covered, it
has the potential to be used as an alternative to simpler
screening approaches that make more assumptions. We have
demonstrated this point for simple lipid bilayers, including
preliminary results for membranes that contain cholesterol, but
the approach should be applicable to screening for partitioning
into other systems for which there is a well-characterized
Martini model. Further refinements of the method, including
extension to Martini 3, will continue to expand the accessible
chemical space and open up further applications.
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