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In this paper, we study application of Le Cam’s one-step method to
parameter estimation in ordinary differential equation models. This
computationally simple technique can serve as an alternative to
numerical evaluation of the popular non-linear least squares esti-
mator, which typically requires the use of a multistep iterative algo-
rithm and repetitive numerical integration of the ordinary differential
equation system. The one-step method starts from a preliminary√

n-consistent estimator of the parameter of interest and next turns it
into an asymptotic (as the sample size n →∞) equivalent of the least
squares estimator through a numerically straightforward procedure.
We demonstrate performance of the one-step estimator via exten-
sive simulations and real data examples. The method enables the
researcher to obtain both point and interval estimates. The prelimi-
nary

√
n-consistent estimator that we use depends on non-parametric

smoothing, and we provide a data-driven methodology for choosing
its tuning parameter and support it by theory. An easy implementation
scheme of the one-step method for practical use is pointed out.
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1 Introduction

Systems of ordinary differential equations (ODEs in short) are commonly used for the

mathematical modelling of the rate of change of dynamic processes (e.g. in mathemat-
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ical biology, see Edelstein-Keshet, 2005; in the theory of chemical reaction networks,
see Feinberg, 1979 and Sontag, 2001; and in biochemistry, see Voit, 2000). Statistical
inference for ODEs is not a trivial task, because numerical evaluation of standard esti-
mators, like the maximum likelihood or the least squares estimators, may be difficult
or computationally costly. Therefore, over the last few decades, first in the numerical
analysis and mathematical biology literature and lately also in the statistical liter-
ature, various alternative, primarily non-parametric smoothing-based methods have
been proposed to tackle the problem, see, e.g. Bellman and Roth (1971), Varah (1982),
Voit and Savageau (1982), Ramsay et al. (2007), Hooker (2009), Hooker et al. (2011),
Gugushvili and Klaassen (2012), Campbell and Lele (2014), Vujačić et al. (2015), Dat-
tner (2015), Dattner and Klaassen (2015), among others. These techniques typically
share the property of being computationally simpler, but often also statistically less
efficient than the maximum likelihood or the least squares methods.

The ODE systems that we have in mind take the form{
x′(t) = F(x(t), θ), t ∈ [0, 1],
x(0) = ξ (1)

where x(t) = (x1(t),… , xd(t))tr is a d-dimensional state variable, θ = (θ1,… , θp)tr
denotes a p-dimensional parameter, while the column d-vector x(0) = 𝜉 defines
the initial condition. We define 𝜂 ∶= (ξ, θ) and denote the solution to Equation 1
corresponding to the parameter 𝜂 by

x(𝜂, t) ∶= (x1(𝜂, t),… , xd(𝜂, t))tr.

Knowledge regarding the system parameters ξ and θ is of vital importance for the
study of a process that Equation 1 models. Indeed, these parameters affect the quali-
tative properties of the system, and their knowledge allows one to predict the system
behaviour. However, in practice, the parameter θ and possibly also the initial condition
ξ are unknown to the researcher. Typically, they cannot be measured directly but have
to be inferred from noisy measurements of the process under study.

Let η0 = (ξ0, θ0) be the ‘true’ parameter value that governs the underlying process.
The common statistical model considered for the noisy measurements of the process
at time instances t1,… , tn (not necessarily equally spaced) is the additive measurement
error model,

Yij = xi(η0, tj) + ϵij, i = 1,… , d, j = 1,… , n, (2)

where the random variables 𝜖ij are independent measurement errors (not necessarily
Gaussian). Based on observation pairs (tj,Yij), i = 1,… , d, j = 1,… , n, the goal is
to estimate the parameter η0.

A classical approach to parameter estimation for ODEs is the non-linear least
squares (NLS) method. Its use is based on the observation that the problem at
hand in its essence is a non-linear regression problem, where the regression function
© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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x(𝜂, ⋅) is defined implicitly as the solution to Equation 1. The least squares estimator
η̃n = (ξ̃n, θ̃n) of η0 is defined as a minimizer of the least squares criterion function Rn(⋅),

η̃n = (ξ̃n, θ̃n) = argminη
d∑

i=1

n∑
j=1

(Yij − xi(η, tj))2

=∶ argminη Rn(η).

(3)

The strongest justification for the use of the least squares estimator lies in its attrac-
tive asymptotic properties; see, e.g. Jennrich (1969) and Wu (1981). In most practical
applications, the solution x(η, ⋅) to Equation 1 is non-linear in the parameter η, and
therefore, some iterative procedure has to be used to compute the NLS estimator. Such
procedures require an initial guess for a minimizer η̃n and, then, proceed by construct-
ing successive approximations to the least squares estimator (in a direction guided by
the gradient of the criterion function, when a gradient-based optimization method,
e.g. the Levenberg–Marquardt method, is used). However, the noisy and non-linear
character of the optimization problem may lead for the procedure to end up in a local
minimum of the least squares criterion function, especially when good initial guesses of
the parameter values are not available. Furthermore, in most of the interesting applica-
tions, the system (Equation 1) is non-linear and does not have a closed-form solution.
In that case, at every step of the iterative procedure, one has to numerically integrate
Equation 1 (as well as the system of the associated sensitivity equations in order to
compute the gradient of the criterion function, in case a gradient-based optimization
method is used). Because the number of iterations made until convergence of the algo-
rithm can be ascertained is usually large, in most cases, this leads to a computational
bottleneck. This is the case especially in mathematical biology and biochemistry, where
a highly non-linear character of dependence of the solution x(𝜂, ⋅) on the parameter η
leads to ‘stiff ’ integration problems. For a penetrating discussion of these points, see,
e.g. Ramsay et al. (2007) and Voit and Almeida (2004).

Although NLS algorithms and ODE integration routines are constantly improving,
and so is the available computational power, admittedly much time and effort can be
saved with alternative, less computationally intense approaches, see Voit and Almeida
(2004). In this paper, we explore application of Le Cam’s one-step estimator (see, e.g.
van der Vaart, 1998) to parameter estimation for systems of ODEs. Some examples
of similar studies in different areas are Bickel (1975), Simpson et al. (1992), Field and
Wiens (1994), Cai et al. (2000), Delecroix et al. (2003) and Rieder (2012). In particular,
our main goal is to show that the one-step method is at least comparable with NLS,
first asymptotically and second in finite samples. We would like to stress the fact that
the one-step method is not simply a numerical approximation to an algorithm used for
numerical evaluation of NLS: It is an estimation method on its own.

The main contributions of our paper are: (i) Smoothing-based parameter estima-
tion methods for ODE systems can be upgraded to have statistical efficiency of NLS
through a computationally simple one-step method. (ii) If one wants to avoid using
NLS (as is often the case in the applied literature, see, e.g. Stein et al., 2013 and Bucci
© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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et al., 2016), one can still do this, while not losing statistical efficiency of NLS and
computational properties of smoothing-based methods. (iii) We show how to perform
smoothing in a data-driven manner and provide theory supporting our data-driven
algorithm. (iv) We point out a very simple scheme for implementing the one-step
estimator, which is readily available in any software that implements Newton-type
optimization algorithms, such as R, see R Core Team (2017), and Matlab, see The
Mathworks, Inc. (2017).

Pertaining to point (i) mentioned earlier, we highlight the extent of loss of efficiency
of smoothing-based methods compared with the NLS and the one-step method, which
in some simulation setups is of alarming degree. With high throughput, dense-in-time
data, that is becoming increasingly available in practice, specifically in molecular biol-
ogy (see Voit and Almeida, 2004; Goel et al., 2008), and that would allow an in-depth
study of underlying biological processes, such a statistical efficiency loss is clearly unde-
sirable. On the other hand, current ODE inference algorithms must also meet chal-
lenges with massive amounts of data and complex models awaiting in the near future.
Pertaining to point (ii), as noted in Chou and Voit (2009), that far no parameter estima-
tion technique for ODEs has arisen as a clear winner in terms of efficiency, robustness
and reliability in realistic data scenarios. In this sense, addition of the one-step method
(that shares some of the better properties of both the smoothing-based methods and
NLS) to a practitioner’s toolbox appears a sensible option. Concerning (iii), we note
that much of the literature dealing with smoothing-based inference methods for ODEs
in practice does smoothing either in a theoretically suboptimal or even an ad hoc way.
A distinct advantage of our proposed approach is providing theoretical guarantees
for data-depending smoothing that our procedure employs as an intermediate step.
Finally, concerning our contribution (iv), we point out an important relation between
the one-step estimator and the Levenberg–Marquardt algorithm, which leads to a very
practical and straightforward implementation of the method: When computational
time is an issue, our simulations and theory justify the use of the Levenberg–Marquardt
method with one iteration, provided it is initialized at an appropriate smoothing-based
parameter estimator, because this reduces to the one-step estimation framework.

The rest of the paper is organized as follows: in Section 2, we describe the one-step
estimator in the context of ODEs. In Section 3, we provide theoretical results for
it. Section 4 presents a detailed simulation study illustrating the performance of the
one-step method, with further examples in Section 5, while Section 6 contains numer-
ical results based on real data examples. Section 7 summarizes our contribution and
outlines potential future research directions. Finally, Appendices give a proof of our
theoretical result and some further implementational details on the methods in the
main text of the paper.

2 One-step estimate for ordinary differential equations

When one adopts an asymptotic point of view on statistics, all the estimators with
the same asymptotic variance can be considered as equivalent. We now demonstrate
how once a preliminary

√
n-consistent estimator η̂n of the parameter η is available (see
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succeeding text for our choice), one can obtain an asymptotically equivalent estimator
to the least squares estimator in just one extra step, referred to as the one-step method
in the statistical literature, see, e.g. section 5.7 in van der Vaart (1998) for the motivation
behind it and a detailed exposition.

Introduce the function

Ψn(η) =
n∑

j = 1

𝜓η(tj,Yj), (4)

where

ψη(t, y) = (x′η(η, t))
tr(y − x(η, t)), (5)

with x′
𝜂
(η, t) denoting the derivative of x(η, t) with respect to η. Specifically, the ith row

of x′η(𝜂, t) is the gradient of xi(η, t) with respect to η.
The one-step estimator η̄n of η0 is defined as a solution in η of the equation

Ψn(η̂n) +
d

dη
Ψn(η̂n)(η − η̂n) = 0.

If d
dη
Ψn(η̂n) is invertible, the estimator η̄n can be expressed as

η̄n = η̂n −
(

d
dη
Ψn(η̂n)

)−1

Ψn(η̂n). (6)

In order to implement the estimator just defined, the two essential steps that have to
be done are (i) evaluation of a preliminary estimator η̂n, and (ii) evaluation of Ψn(η̂n)
and the derivative matrix d

dη
Ψn(η̂n). The computational cost for that is very modest.

Indeed, as mentioned in Section 1, step (i) is very fast, when a smoothing-based esti-
mator is used, see examples in the succeeding text. Furthermore, step (ii) reduces to
requiring just one numerical integration of the sensitivity and variational equations
associated with the system (Equation 1), as we will now explain. This material is stan-
dard in the numerical analysis and ODE literature (cf. Schittkowski, 2002; Ramsay and
Hooker, 2017) but perhaps less familiar to statisticians, hence our decision to provide
full details. It is helpful to think of F in Equation 1 as a function of η rather than only
θ. Thus, we write the right-hand side F of Equation 1 as F(x(η, t), η). Differentiating
both sides of Equation 1 with respect to η and interchanging the order of a t-derivative
with an η-derivative, we get{ d

dt
𝜕

𝜕𝜂
x(η, t) = F ′

x(x(η, t), η)
𝜕

𝜕η
x(η, t) + F ′

η(x(η, t), η),
𝜕

𝜕η
x(η, 0) = (1, 0)tr,

(7)

where 1 and 0 in the initial conditions here and in Equations 8–9 in the succeeding
text should be understood as vectors of 1′s and 0′s of the appropriate dimensions. The
system (Equation 7) is a matrix differential equation and is usually referred to in the
© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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literature as a system of sensitivity equations. By replacing η with η̂n, we arrive at the
system {

d
dt

s(t) = F ′
x(x(η̂n, t), η̂n)s(t) + F ′

η(x(η̂n, t), η̂n),
s(0) = (1, 0)tr,

(8)

where we have defined s(t) ∶= d
dη

x(η̂n, t). Observe that x(η̂n, ⋅) is a known function,

because it can be found by integrating Equation 1 for parameter values ξ̂n and θ̂n. Con-
sequently, the system of sensitivity equations is a linear system with time-dependent
coefficients and, hence, is relatively straightforward to integrate.

By differentiating Equation 7 one more time with respect to η and replacing η
with η̂n, we arrive at the following set of variational equations (sometimes called
second-order sensitivity equations):⎧⎪⎪⎨⎪⎪⎩

d
dt

z(t) = F ′′
𝜂𝜂
(x(η̂n, t), η̂n)) + F ′′

ηx(x(η̂n, t), η̂n)s(t)
+

{
F ′′

xη(x(η̂n, t), η̂n) + F ′′
xx(x(η̂n, t), η̂n)s(t)

}
s(t)

+ F ′
x(x(η̂n, t), η̂n)z(t),

z(0) = 0,

(9)

where we have set z(t) ∶= 𝜕2

𝜕η2 x(η, t). For each zi, i = 1,… , d, the system (Equation 9)
is a matrix differential equation and again is a linear system with time-varying coef-
ficients. Here also, we can treat x and s as known, for they can be obtained through
numerical integration of Equations 1 and 8. The process of obtaining variational
equations can be made automatic through a software implementation.

Integration of Equations 1, 8 and 9 for the parameter value η̂n allows us to compute
Ψn(η̂n) and d

dη
Ψn(η̂n) and, consequently, the one-step estimator η̄n. Note that numerical

integration of the variational equations (or at least the sensitivity equations) is usually
required when computing the least squares estimator via gradient-based optimization
methods (unless the gradient is available analytically). However, in our approach, we
need to do this only once.

Remark 1. A seemingly more general non-autonomous system than the autonomous
system (Equation 1),{

x̃′(t) = F(x̃(t), t, θ), t ∈ [0, 1],
x̃(0) = ξ̃,

may and will be reduced to Equation 1 by a simple substitution x(t) = (x̃tr(t), t)tr, t ∈
[0, 1], and ξ = (ξ̃tr, 0)tr.

3 Theory for the one-step method

The one-step estimation methodology described in the previous section requires the
user to first obtain a preliminary

√
n-consistent estimator of parameter of interest.

© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.



132 I. Dattner and S. Gugushvili

Obviously, one would like such an estimator to be cheap in computational cost. In the
context of ODEs, such preliminary estimators were suggested in Bellman and Roth
(1971) and Varah (1982), who use non-parametric smoothing techniques to bypass
numerical integration of the ODEs required in evaluation of the maximum likelihood
or the least squares estimators. This approach was studied rigorously from the theoret-
ical point of view in Gugushvili and Klaassen (2012) (other relevant references are, e.g.
Brunel, 2008; Dattner and Klaassen, 2015; Vujačić et al., 2015). As mentioned, such
methods use non-parametric smoothing techniques, and therefore, their good perfor-
mance crucially depends on an appropriate choice of a ‘tuning parameter’, such as
the bandwidth in the case of kernel smoothing, or the number of basis functions in
the case of splines. Moreover, this dependence on the bandwidth choice propagates to
performance of the one-step estimator. In this section, we describe one of the possi-
ble preliminary estimators, provide a data-driven scheme for the choice of the tuning
parameter and derive the relevant theory for the one-step method.

The preliminary estimation works as follows. The observations are first smoothed,
which results in an estimator x̂n(⋅) for the solution x(η0, ⋅) of the system, and by differ-
entiation, in an estimator x̂′n(⋅) for x′(η0, ⋅) . Then the estimator for θ0 is defined as the
minimizer θ̂n over θ of the function

∫
1

0
∥ x̂′n(t) − F(x̂n(t); θ) ∥2 w(t) dt, (10)

where w is an appropriate weight function and ∥ ⋅ ∥ denotes the standard Euclidean
norm. Hence, this approach bypasses the need to integrate the system numerically, and
as a result, the parameter estimates can be computed extremely quickly, especially when
F in Equation 1 is linear in θ. Under regularity conditions, Gugushvili and Klaassen
(2012) show that this smooth and match estimator (SME) θ̂n has the

√
n-rate of conver-

gence to θ. By the general statistical theory, the
√

n-rate of convergence is in fact the
best rate one can expect in the present context. This result thus puts the smooth and
match method on a solid theoretical ground.

Note that execution of this method does not require the knowledge of the initial
values in Equation 1. However, it cannot be used to estimate them. If estimation of
initial values is of interest, then once the estimator θ̂n is at hand, one may obtain an
estimator ξ̂n by minimizing with respect to ξ the criterion

∫
1

0
∥ x̂n(t) − ξ − ∫

t

0
F(x̂n(s); θ̂n)ds ∥2 dt.

Notice that this is a linear least squares optimization problem and hence is easy to
execute.

Actually, approaches as mentioned earlier are criticised for not being statistically
efficient. In informal terms, this means that the resulting estimators do not squeeze
as much information out of the data as the least squares estimator does. In more for-
mal terms, their asymptotic variance is larger than that of the least squares estimator.
Hence, sometimes it is suggested (see, e.g. Swartz and Bremermann, 1975, for an early
© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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reference) to use this method only for generating preliminary estimates that should
be used later as initial guesses for more accurate methods. Thus, the SME described
earlier is a natural candidate for serving as a preliminary estimator to be used by the
one-step method. Now, we describe our data-driven methodology for choosing the
tuning parameter.

Let η̂𝜌n
denote an estimator of the ODE parameter η0 that depends on smoothing

parameter 𝜌n (we make the dependence on the sample size n explicit in our notation).
As one specific example, η̂𝜌n

may be a smooth and match or an integral estimator (see
Appendix B), in which case 𝜌n is the bandwidth hn. Alternatively, 𝜌n may also stand
for the number of basis functions. Now, consider two sequences of positive numbers
Rn ≤ R̄n that for every n define an interval n = [Rn, R̄n]. This will be an interval in
which a user selects his or her smoothing parameter (in a data-dependent way), when
the sample size is equal to n. More specifically, let N be an arbitrary fixed positive
integer. For every n, consider a grid of size N of smoothing parameters in n:

Rn = {𝜌n(k) ∈ n, k = 1,… ,N}.

Here, k indexes smoothing parameter values contained in the candidate set Rn of
smoothing parameter values available to a user.

Now, a data-driven one-step estimator can be defined through the following proce-
dure:

1. Compute N preliminary estimators η̂𝜌n(k) for 𝜌n(k) ∈ Rn.
2. Compute N one-step estimators η̄n = η̄n(η̂𝜌n(k)).
3. Set

η̄∗n = argminη̄n(η̂𝜌n(k))

d∑
i = 1

n∑
j = 1

(Yij − xi(η̄(η̂𝜌n(k)), tj))2. (11)

In Section 4, we demonstrate that this procedure results in an excellent practical
performance of the estimator η̄∗n. In the theorem below, we show that it has a sound
theoretical basis as well.

Theorem 1. Assume that the following conditions hold true:

(i) Observation times t1,… , tn are i.i.d. with a distribution function FT supported
on the interval [0,T].

(ii) Measurement errors 𝜖ij’s are i.i.d. with mean zero and variance σ2 > 0, and are
also independent of observation times tj’s.

(iii) The parameter set H is a compact subset of Rd+p.
(iv) For all η ∈ H and t ∈ [0,T], the third partial derivatives x′′′ηjηkηl

(η, t) of the ODE
solution x(η, t) exist and are continuous functions of η and t.

(v) The matrix

I(η) = 1
σ2

d∑
i = 1

∫
T

0

( d
dη

xi(η, t)
)tr( d

dη
xi(η, t)

)
d FT (t) (12)

© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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is non-degenerate.
(vi) For every choice of a deterministic sequence of smoothing parameters 𝜌n ∈ n,

the resulting estimator η̂𝜌n
is
√

n-consistent.

Then √
n(η̄∗n − η0)

d
→  (

0, I(η0)−1) , (13)

where
d
→ denotes convergence in distribution.

Remark 2. Under conditions of Theorem 1, the limit covariance matrix in Equation
13 coincides with the limit covariance matrix of the least squares estimator; compare
with Example 5.27 in van der Vaart (1998). In our examples, the distribution function
FT will typically be uniform on [0,T].

Remark 3. For a smooth and match or an integral estimator,
√

n-consistency for
any deterministic choice of the bandwidth hn ∈ Rn can be achieved, e.g. by taking
Rn = cn−r, R̄n = c̄n−r̄, for suitably chosen constants c, c̄, r̄, r > 0. Certain freedom in
their choice is in fact allowed. As a specific example, the theoretical analysis of Dattner
and Klaassen (2015) shows that in order to have the

√
n-rate for the integral estimator,

one should take a bandwidth b = O(n−1∕3). Thus, in our practical implementation in
subsequent sections, we set B = n−1∕3 × (c1,… , cN), where the cj’s depend on the grid
of points on which we evaluate the kernel estimator.

Remark 4. The one-step method as described in Section 2 requires evaluation of the
second derivative x′′ηη(η, t) of the ODE solution x(η, t) as part of evaluation of the matrix
d

dη
Ψn(η̂n). A standard argument, compare with pp. 71–72 in van der Vaart (1998),

shows, however, that Theorem 1 still holds true if in the definition of the one-step
estimator 𝜂̄n in Formula 6, the matrix d

dη
Ψn(η̂n) is replaced by the matrix

−
n∑

j = 1

(x′η(η̂n, tj))trx′η(η̂n, tj). (14)

This version of the one-step method is useful when large numerical errors or numeri-
cal instability are expected when evaluating x′′ηη(η, t). A further refinement is to employ

damping and to replace the derivative matrix d
dη
Ψn(η̂n) with

−
n∑

j = 1

(x′η(η̂n, tj))trx′η(η̂n, tj) − λnI ,

where λn > 0 is a damping parameter and I is an identity matrix of appropriate
dimensions. The assumption for the asymptotic theory to go through is that λn∕n →
0 as n → ∞. The idea of this version of the one-step method is that it numerically
robustifies the one-step procedure in case the matrix (Equation 14) is nearly singular
© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.
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(which is not uncommon in practice). We use this version of the one-step method in
our simulation example in Section 5.

3.1 Confidence intervals

Clearly, confidence intervals for parameter 𝜂0 can be generated using Equations 12
and 13. However, the Fisher information matrix in Equation 12 depends on the true
values of the parameters, initial values and σ2, which are not known in practice.
Fully data-driven confidence intervals can be constructed by estimating the Fisher
information matrix. To that end, we estimate σ2 by

σ̂2 = 1
d(n − 1)

d∑
i = 1

n∑
j = 1

(Yij − xi(η̄∗n, tj))2,

where x(η̄∗n, ⋅) stands for the solution of the system (Equation 16) using the estimated
parameters and initial values obtained from the one-step method. Then, an estimate
for the asymptotic variance of the estimator of the parameter ηj is given by I−1

jj (η̄
∗
n)∕n,

where I−1
jj (η̄

∗
n) stands for the jth diagonal element of the inverse Fisher information

matrix evaluated in point η̄∗n. When s(⋅) has no closed form, the integral in Equation 12
is evaluated using numerical integration (in our examples, we will use the trapezoidal
rule). Specifically, an approximate 1 − α level confidence interval for η0j is given by

[η̄∗j,n − z1 − α∕2I−1∕2
jj (η̄∗j,n)∕

√
n, η̄∗n + z1 − 𝛼∕2I−1∕2

jj (η̄∗j,n)∕
√

n], (15)

where z1 − α∕2 is the 1 − α∕2 quantile of the standard normal distribution.

4 Simulation study

In this section, we present the results of an extensive simulation study comparing the
one-step method with the classical NLS approach. The models that we use are standard
test examples for parameter inference in ODEs, as indicated in the references that we
will supply in the relevant places. Our goal is to exhibit that the one-step algorithm
provides statistical accuracy comparable with the NLS method in practical scenarios.

All computations in the present section were carried out using Matlab (the code will
be sent by the first author upon request). The algorithms that we used for computing
the NLS and one-step estimators are ‘default’, in the sense that we did not attempt
to tweak them to fit better in specific problems. Specifically, the NLS estimator was
computed using the Levenberg–Marquardt (1963) algorithm of Matlab. The variant of
SME η̂n that we used in the present and next sections to compute the one-step estimator
𝜂̄n is detailed in Appendix B. The local polynomial estimator in some of our examples
was based on the implementation from Cao (2008). Further software and hardware
details are Windows 8.1 Pro, Intel ® Core™ i7-4550U CPU @ 1.50 GHz (Santa Clara,
California, USA).
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4.1 Linear ordinary differential equation

We start with illustrating the performance of the one-step estimator when used to esti-
mate the parameter and initial value of a one-dimensional linear ordinary differential
equation{

x′(t) = θ0x(t), t ∈ [0,T],
x(0) = ξ0.

(16)

This is a toy example, but it allows us to explore the practical performance of the
one-step method in great detail and to compare it with the theoretically expected
results. Advanced examples will be considered later on.

The solution of the initial value problem (Equation 16) is x(t) = x0 exp(θ0t). We
generate (pseudo) random observations from the model

Yj = ξ0 exp(θ0tj) + ϵj,

where tj ∈ {0(0.1)10} (n = 101), and ϵj ∼ N(0, 0.052), j = 1… , n. We consider

θ0 ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0.1, 0.3, 0.5, 0.7, 0.9}

and ξ0 ∈ {0.5, 1}. For each pair (ξ0, θ0), we run a Monte Carlo study of 500 samples
of Y1… ,Y101, where in each sample, we apply both the one-step method and the NLS
method. This simulation study enables us to estimate the asymptotic variance of the
least squares and the one-step methods. We then compare the results with the true
asymptotic variance. The true and estimated asymptotic variances can be obtained for
each set of parameters and initial values by inverting the Fisher information matrix
(Section 3.1). The optimal bandwidth b used to compute SME was chosen in the set

n−1∕3 × (0.02, 0.3511, 0.6822, 1.0134, 1.3445, 1.6756, 2.0067, 2.3378, 2.6689, 3),

using the procedure outlined in Remark 3; compare with Theorem 1. We also note
that in order not to overload the paper with reporting various tuning constants that
depend on specific experimental setups, we will not indicate c1,… , cN from Remark 3
in our subsequent examples but will supply them to the reader by email, should he or
she want to know them.

A direct computation gives that in model (16), the asymptotic variance of ξ̄n depends
on θ but is independent of the values of ξ itself. In Figure 1, we plot the estimated vari-
ance of the one-step estimators (plus signs) and that of the NLS (circles), for estimating
ξ0 based on 500 simulation runs. The estimates are superimposed on the theoretical
asymptotic variance (dashed line). The left plot is for ξ0 = 0.5, and the right one is for
ξ0 = 1. As the theory suggests, independently of the values of ξ, the true asymptotic
variance is the same. Note that in this specific numerical example, the estimated vari-
ances of the one-step and NLS estimators are the same. This is not surprising, because
in order to apply the NLS, we used as the initial point in the parameter space the SME
(resulted from using the bandwidth 3 × n−1∕3; this choice was arbitrary). The estimated
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Fig. 1. The estimated variance of the one-step (plus signs) and non-linear least squares (circles) estimators
ξ̄n and ξ̃n, respectively, based on 500 simulations with n = 101 and ϵj ∼ N(0, 0.052), j = 1… , n. The
estimates are superimposed on the theoretical asymptotic variance (dashed line). The left plot is for ξ0 = 0.5,

and the right one is for ξ0 = 1.
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Fig. 2. The estimated variance of the one-step (plus signs) and non-linear least squares (circles) estimators
θ̄n and θ̃n, respectively, based on 500 simulations with n = 101 and ϵj ∼ N(0, 0.052), j = 1… , n. The
estimates are superimposed on the theoretical asymptotic variance (dashed line). The left plot is for ξ0 = 0.5,

and the right one is for ξ0 = 1.

variances agree with the asymptotic one. We note that the grid of θ0 does not include
0, where the asymptotic variance equals zero.

In Figure 2, we see similar plots corresponding to estimating the asymptotic vari-
ances of θ̄n. Here, the variance has different order, depending on the value of ξ0. Again,
the estimated variances of the one-step (plus signs) and NLS (circles) estimators are
the same, and both agree with the asymptotic one (dashed line). Similar plots were
obtained when considering other values for σ2, and therefore, we do not present them
here.

In Table 1, we present the empirical coverage of various confidence intervals based
on a Monte Carlo study with 500 simulations for different experimental setups.
The results should be compared with the nominal coverage of 95%. We consider
four setups denoted by A,B,C and D according to (ξ0 = 1∕2, θ0 = −
1), (ξ0 = 1∕2, θ0 = 1), (ξ0 = 1, θ0 = − 1), (ξ0 = 1, θ0 = 1), respectively. Each
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Table 1. Means of point estimates and actual coverage of interval estimates for
the parameters of model (Equation 16) according to four different experimental
setups. The results are based on 500 simulation runs. The observations are gen-
erated according to Yj = ξ0 exp(θ0tj) + ϵj , where tj ∈ {0(0.5)10} (n = 21), or
tj ∈ {0(0.2)10} (n = 51 ) and ϵj ∼ N(0, 0.052), j = 1… , n. The point estimates
are given by Equation 6; the interval estimates are defined in Equation 15

One-step NLS

Setup Mean Coverage Mean Coverage

n = 21 A ξ0 0.500 0.501 0.942 0.501 0.942
θ0 −1.000 −1.002 0.946 −1.002 0.946

B ξ0 0.500 0.500 0.928 0.500 0.928
θ0 1.000 1.000 0.938 1.000 0.938

C ξ0 1.000 0.999 0.932 0.999 0.932
θ0 −1.000 −0.997 0.940 −0.997 0.940

D ξ0 1.000 1.000 0.944 1.000 0.944
θ0 1.000 1.000 0.948 1.000 0.948

n = 51 A ξ0 0.500 0.500 0.944 0.500 0.944
θ0 −1.000 −0.998 0.944 −0.998 0.944

B ξ0 0.500 0.500 0.946 0.500 0.946
θ0 1.000 0.999 0.958 0.999 0.958

C ξ0 1.000 0.999 0.932 0.999 0.932
θ0 −1.000 −0.999 0.938 −1.000 0.938

D ξ0 1.000 1.000 0.948 1.000 0.948
θ0 1.000 1.001 0.952 1.001 0.952

Note: NLS, non-linear least squares.

scenario is tested for n = 21 and n = 51. Table 1 presents the point and interval esti-
mates for the parameters of each scenario. We see that the coverage of the confidence
intervals is satisfying across the different experimental scenarios.

4.2 Lotka–Volterra system

The Lotka–Volterra system of ODEs (Edelstein-Keshet, 2005) is a population dynam-
ics model that describes evolution over time of the populations of two species, predators
and their preys. The system takes the form{

x′1(t) = θ1x1(t) − θ2x1(t)x2(t),
x′2(t) = − θ3x2(t) + θ4x1(t)x2(t).

(17)

Here, x1 represents the size of the prey population and x2 of the predator population.
In Table 2, we see the empirical coverage of the 95% confidence intervals based on a
Monte Carlo study consisting of 500 simulation runs for different sample sizes.

The experimental setup is as follows: The observed time points are equidistant on
[0, 10]; the errors are normal with zero mean and standard deviation σ = 0.05; the
initial values are ξ0 = (1, 1∕2)tr, and the parameters are θ0 = (1∕2, 1∕2, 1∕2, 1∕2)tr.
The point estimates are given by Equation 6, while the interval estimates are defined in
Equation 15. As expected, the coverage is much better when the sample size is larger.
The performance of the one-step and NLS methods is similar.

In Table 3, we present the square root of the average of the estimates of the asymp-
totic variance over the 500 simulations (denoted by ‘ASYM’). Next to that, we present
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Table 2. Means of point estimates and actual coverage of interval esti-
mates for the parameters of model (17), where the initial values are
ξ0 = (1, 1∕2)tr and the rate parameters are θ0 = (1∕2, 1∕2, 1∕2, 1∕2)tr.
The results are based on running 500 simulations. The observed time
points are equidistant on [0, 10], and the errors are normal with zero
expectation and σ = 0.05. The one-step point estimates are given by
Equation 6; the interval estimates are defined in Equation 15

One-step NLS

Setup Mean Coverage Mean Coverage

n = 21 ξ1 1.000 1.000 0.932 0.999 0.928
ξ2 0.500 0.500 0.936 0.500 0.934
θ1 0.500 0.502 0.942 0.501 0.942
θ2 0.500 0.502 0.932 0.501 0.938
θ3 0.500 0.500 0.910 0.501 0.916
θ4 0.500 0.500 0.918 0.501 0.922

n = 51 ξ1 1.000 1.000 0.958 1.000 0.966
ξ2 0.500 0.500 0.954 0.500 0.948
θ1 0.500 0.502 0.964 0.500 0.968
θ2 0.500 0.501 0.968 0.500 0.964
θ3 0.500 0.500 0.958 0.500 0.958
θ4 0.500 0.500 0.952 0.500 0.958

Note: NLS, non-linear least squares.

Table 3. Standard errors of the point estimates as calculated based
on the 500 simulations (denoted by ‘STE’). Square root of the average
of the estimates of the asymptotic variance, over the 500 simulations
(denoted by ‘ASYM’). The experimental setup is as in Table 2

SME One-step NLS

Setup STE STE ASYM STE ASYM

n = 21 ξ1 0.033 0.025 0.023 0.025 0.023
ξ2 0.022 0.020 0.019 0.020 0.019
θ1 0.030 0.027 0.026 0.027 0.026
θ2 0.024 0.022 0.021 0.022 0.021
θ3 0.025 0.022 0.020 0.022 0.020
θ4 0.021 0.020 0.018 0.020 0.018

n = 51 ξ1 0.021 0.015 0.016 0.014 0.016
ξ2 0.014 0.013 0.013 0.013 0.013
θ1 0.019 0.016 0.017 0.016 0.017
θ2 0.015 0.013 0.014 0.013 0.014
θ3 0.014 0.013 0.013 0.013 0.014
θ4 0.013 0.012 0.012 0.012 0.012

Note: NLS, non-linear least squares; SME, smooth and match esti-
mator.

standard errors of the point estimates as calculated based on the 500 simulations
(denoted by ‘STE’). The results for both the NLS and one-step methods agree with
each other. Note also the first column of this table, where we report the standard errors
of the SME, which are larger than those of the one-step, as expected. In this experi-
mental setup, the loss of statistical efficiency of SME in comparison with the one-step
method and NLS is relatively small, given moderate sample sizes (n = 21 and n = 51).
See, however, the next subsection.
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Table 4. The rows in the table correspond (respectively) to the means of point estimates, Monte
Carlo empirical standard deviation, means of estimated asymptotic standard deviation, true
asymptotic standard deviation and actual coverage of interval estimates (using the estimated
asymptotic standard deviation) for the parameter θ0 = 1 in the linear ordinary differential
equation case (Equation 16) (initial value ξ0 = 1 was estimated as well). The results are based on
1000 Monte Carlo simulations. The observed time points are equidistant on [0, 10], and the errors
are normal with zero expectation and σ as in the table. The one-step point estimates are given by
Equation 6; the interval estimates are defined in Equation 15

n = 250 n = 500 n = 1000
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

1.0010 1.0010 0.9990 1.0000 1.0000 1.0010 1.0000 1.0000 1.0000
0.0130 0.0260 0.0400 0.0090 0.0190 0.0280 0.0070 0.0130 0.0200
0.0130 0.0280 0.0390 0.0090 0.0180 0.0290 0.0070 0.0130 0.0200
0.0130 0.0270 0.0400 0.0100 0.0190 0.0290 0.0070 0.0130 0.0200
0.9460 0.9540 0.9610 0.9540 0.9520 0.9530 0.9430 0.9550 0.9470

4.3 Comparison with other methods

The main theme of this paper is not to compare various parameter estimation meth-
ods for ODEs, but to show how a non-efficient estimation method such as SME can be
improved statistically, to an efficient one, and to test its practical performance. Indeed,
this point was demonstrated earlier by comparing the variance of the one-step estima-
tor with that of the least squares, which is not considered as a competitor but serves as a
‘gold standard’ for efficient estimation. For completeness, however, we report results of
a small scale comparison that can shed some additional light on the statistical effects of
the one-step correction on SME. In Table 4, we present the results of a simulation study
for several experimental setups of the linear ODE case (cf. Equation 16). The results
should be compared with table 1 of Hall and Ma (2014), where a different variant of
SME is studied. The one-step estimator is uniformly (over all experimental setups) bet-
ter than the method developed in the aforementioned paper, even though unlike that
work we estimate both the initial value and the parameter and, hence, have to deal with
greater uncertainty. The reduction in standard error achieved by the one-step estima-
tor over the SME is in the range of 30–50% in this example. Such an improvement of
an efficient parameter estimation method over SME is not an isolated instance: Hall
and Ma (2014) report results of a Monte Carlo comparison between their version of
SME and the generalized smoothing (or profiling) approach of Ramsay et al. (2007)
and find out that the latter produces twice as small standard errors for parameter esti-
mates in a specific experimental setup in the FitzHugh–Nagumo model; this despite the
fact that the SME in Hall and Ma (2014) relies on a fully observed FitzHugh–Nagumo
model, whereas Ramsay et al. (2007) assume only one state variable out of two is mea-
sured. A lesson to be drawn from this discussion from the statistical efficiency point of
view is that one should be very careful when using SME so as to fully utilize precious
information contained in observations.
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4.4 Computational times

We close this section by reporting one more comparison. Namely, we compare ‘default’
implementations of one-step and NLS with respect to computational time. Voit and
Almeida (2004) consider a test example that was introduced in Robertson (1966) and
point out that it is now frequently used as a benchmark for the efficiency of stiff solvers.
The system is given by

x′1(t) = θ1x2(t)x3(t) − θ2x1(t),
x′2(t) = θ2x1(t) − θ1x2(t)x3(t) − θ3(x2(t))2,
x′3(t) = θ3(x2(t))2,

(18)

with initial values ξ0 = (1, 0, 0)tr and parameters θ0 = (104, 0.04, 3 × 107)tr. We
take the observational time interval to be (in seconds) [0(0.5)10], implying that we
have n = 21 equispaced observations at our disposal. The variance of the noise is
set to be 0.01 times the mean values of the (true) solutions corresponding to the sys-
tem just defined. The actual coverage of the confidence intervals for the parameters
(θ1, θ2, θ3)tr for a nominal level of 95% and using the one-step and NLS estimator based
on 100 Monte Carlo simulations was (1, 0.97, 1)tr × 100%. The widths of the confidence
intervals for one-step and NLS were comparable. A single evaluation of the one-step
estimator took about 26 s on average, while that of the NLS took about 78 s.

However, one should keep in mind that a completely objective comparison of com-
putational costs for various ODE inference techniques is hardly possible, as this
depends on factors like software and hardware used, as well as the skill of the user in
tailoring the methods to specific applications. Also, one cannot expect that a single best
method (as far as the computational cost is concerned) will emerge across all possible
experimental setups (different ODE systems, sample sizes, time scales and resolutions,
noise levels).

5 Further comparison

In this section, we additionally study a notoriously difficult test example in parameter
inference for ODEs. In particular, we illustrate the fact why it might be advantageous
to use the one-step method instead of a ‘default’ implementation of NLS, such as the
Levenberg–Marquardt algorithm in Matlab. Our take-home message is that overre-
liance on ‘default’ implementations of NLS estimation routines for ODEs is perhaps a
strategy to be critically reconsidered. We also point out a very simple practical scheme
for implementing the one-step method.

5.1 Goodwin’s oscillator

Goodwin’s oscillator, see Goodwin (1963), Goodwin (1965) and Griffith (1968), is a
simple ODE system for modelling feedback control in gene regulatory mechanisms.
Various versions of this model have been used as test examples for Markov Chain
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Fig. 3. Components of the solution x1 and x2 of the system (19) (red and blue solid lines) with a typical
realization of noisy observations (purple and yellow crosses).

Monte Carlo (MCMC) samplers in the Bayesian approach to inference in ODE mod-
els, see, e.g. Girolami (2008), Calderhead and Girolami (2009), Oates, Niederer, Lee,
Briol, and Girolami (2017) and Oates, Papamarkou, and Girolami (2016). Standard
Metropolis-Hastings samplers encounter severe difficulties in this setting because of a
highly complex shape of the likelihood the Goodwin oscillator typically produces, with
Markov chains getting trapped in local maxima of the likelihood surface. Not surpris-
ingly, similar behaviour can be observed also in the case of default implementations of
the least squares routines, as we will now demonstrate.

The following version of Goodwin’s model is described, e.g. in Murray (2002), while
the experimental setup mimics the one in Oates et al. (2016). The ODE system we
consider is⎧⎪⎨⎪⎩

x′1(t) = θ1

1 + θ2x3(t)10 − θ5x1(t),
x′2(t) = θ3x1(t) − θ5x2(t),
x′3(t) = θ4x2(t) − θ5x3(t).

(19)

We used the following parameter values,

θ1 = 1, θ2 = 3, θ3 = 2, θ4 = 1, θ5 = 0.5,

and zero initial conditions. Initial conditions and all the parameters except θ1 and θ5

were assumed to be known in the estimation problem. We compare the performance of
the NLS and the one-step method through 100 Monte Carlo simulations for estimating
the parameter θ = (θ1, θ5)tr. We consider the case when Equation 19 is observed only
partially, with observations on x3 not available; observed are the variables x1, x2 subject
to additive Gaussian errors, with n = 50 noisy observations spread uniformly over
the time interval [0, 80]. The solution to Equation 19 shows a characteristic oscillatory
behaviour, and we plot it in Figure 3 together with corresponding observations in one
simulation run.

We consider three scenarios corresponding to three noise levels σ = 0.01, 0.15, 0.25,
respectively. It turned out that in this specific example, the version of the one-step
method that we described in Section 3 in Remark 4 produced better results than the
core one-step method from Section 2, so that we decided to perform a comparison
of this version to a default implementation of the Levenberg–Marquardt method in
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Matlab. Numerically, the one-step method in this case reduces to one iteration of
the Levenberg–Marquardt algorithm, but with a difference that it is initialized at the√

n-consistent preliminary parameter estimator and not an arbitrary initial guess. The
default (starting) value for the damping parameter λ of the Levenberg–Marquardt
algorithm in Matlab is λ = 0.01, which is also the one we used for the one-step method.
Matlab successively increases the damping parameter until a proposed parameter move
of the Levenberg–Marquardt method results in a decrease of the criterion function
(the total number of proposals in one optimization run can be controlled by setting the
maximal number of function evaluations for the algorithm). This then constitutes one
iteration of the Levenberg–Marquardt method in Matlab.

We let the optimization for NLS to start from a random initial guess generated from
a gamma distribution. Specifically, the initial guess for θ1 is generated from a gamma
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Fig. 4. Simulation results for Goodwin’s oscillator in Section 5. The y-axis gives the logarithm of the sum
of mean square errors of parameter estimates (non-linear least squares results plotted with a solid line, the
one-step method ones with a dashed line). The noise level is σ = 0.01, 0.15, 0.25 in the upper, middle and
bottom plots, respectively. The x-axis is the scale parameter of the gamma distribution used to generate
initial guesses for non-linear least squares, with large values corresponding to initial guesses farther away

from the true parameters values.
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Fig. 5. Simulation results for Goodwin’s oscillator in Section 5. The y-axis gives the logarithm of the sum
of squares of model fits (non-linear least squares results plotted with a solid line, the one-step method ones
with a dashed line). The noise level is σ = 0.01, 0.15, 0.25 in the upper, middle and bottom plots, respectively.
The x-axis is the scale parameter of the gamma distribution used to generate initial guesses for non-linear
least squares, with large values corresponding to initial guesses farther away from the true parameters values.
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distribution with shape parameter θ1∕scale, where the scale parameter is according to
the x-axis of Figures 4–5, and similarly for θ5, the shape will be θ5∕scale. The one-step
method, on the other hand, employs the

√
n-consistent estimator, namely, the direct

integral estimator (although the system (19) we consider is partially observed, the direct
integral approach still applies, as we explain in Appendix C). In Figure 4, we plot on
y-axis the logarithm of the sum of mean square errors of parameter estimates (over
100 Monte Carlo simulation runs): NLS with a solid line, the one-step estimator with
a dashed line. The noise level is σ = 0.01, 0.15, 0.25 in the upper, middle and bottom
plots, respectively. The x-axis gives the scale parameter of the gamma distribution used
to generate initial guesses for NLS; large values of the scale parameter correspond to a
diffuse prior information on the true parameters, with initial guesses likely to be farther
away from the true parameter values. In Figure 5, we show a similar setup, where now
the y-axis gives the logarithm of the sum of squares of model fits (averaged over 100
Monte Carlo simulation runs).

We can see that the mean square error and the sum of squares of NLS grow together
with the distance of the initial guess from the true parameter. For initial guesses close
to the true parameter values, the NLS does better than the one-step method, but starts
to deteriorate very quickly. Because in practice, informative prior information on true
parameters is rarely available, we conclude that the one-step method is in general better
in terms of both the mean square error of parameter estimates and the sum of squares
of model fits than the NLS initialized at a random initial guess. This despite the fact
that we allowed the Levenberg–Marquardt implementation of NLS to run for 100 iter-
ations, while for the one-step method, we used only one iteration (as its name actually
suggests). From the plots, we also see that larger the measurement error is, the more
similar the two methods are in terms of the mean square error and the sum of squares.
This is not surprising, because for large noise level, the direct integral estimator used
as an initial input for the one-step estimator will be farther away from the true param-
eter (as any other estimator), and hence, the numerical performance of the one-step
method will start to resemble that of the NLS initialized at a guess that is far from the
true parameter.

We finally remark that the pattern observed in this low-dimensional simulation
example (three-dimensional system with two unknown parameters) will readily extend
to the case of more complex and realistic ODE models (depending on a particular
experimental setup, in an even more pronounced form).

6 Real data examples

In this section, we study several real data examples. To check the limits of applicability
of the one-step method, our emphasis is on examples with small and moderate sample
sizes.
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Table 5. Parameter estimates for model (Equation 20) obtained in the literature

Paper Estimate of θ1 Estimate of θ2

Bellman et al. (1967) 0.4577 × 10−5 0.2797 × 10−3

Van Domselaar and Hemker (1975) 0.45 × 10−5 0.27 × 10−3

Esposito and Floudas (2000) 0.4593 × 10−5 0.28285 × 10−3

Kim and Sheng (2010) 0.46 × 10−5 0.28 × 10−3

Tjoa and Biegler (1991) 0.4604 × 10−5 0.2847 × 10−3

Varah (1982) 0.46 × 10−5 0.27 × 10−3

6.1 Nitrogene oxide reaction

The system{
x′(t) = θ1(126.2 − x(t))(91.9 − x(t))2 − θ2(x(t))2,
x(0) = 0

(20)

describes the reversible homogeneous gas phase reaction of nitrogene oxide,

2NO + O2 ⇌ 2NO2.

For additional chemical background, see Bodenstein (1922). Based on the exper-
imental data from Table 39 in Bodenstein (1922), parameters of Equation 20 were
estimated via different methods in Bellman et al. (1967); Van Domselaar and Hemker
(1975), see pp. 18–19; Esposito and Floudas (2000), Section 7.4; Kim and Sheng (2010);
Section 3.1; Tjoa and Biegler (1991), Problem 6 on p. 381; and Varah (1982), see pp.
37–38. The results obtained in these papers are summarized in Table 5.† We also remark
that this problem is one of the six test problems in parameter estimation for ODEs that
were included in Floudas et al. (1999).

Our interest in this example first went in the following direction: We used the realistic
estimated parameter values from the literature, generated an artificial set of data from
Equation 20 and checked how well the one-step estimator performs in this case. We
also present the estimation results using the NLS estimator. Accordingly, we took the
parameter estimates θ1 = 0.4577 × 10−5 and θ2 = 0.2797 × 10−3 from Bellman et
al. (1967) together with the initial condition ξ = x(0) = 0, thus η0 = (ξ, θ1, θ2)tr.
Then we generated observations uniformly over tj ∈ {0(2)40}, (n = 21), according
to Equation 2, where the i.i.d. measurement errors ϵj were generated from the normal
distribution N(0, σ2) with mean zero and variance σ2 = 0.25.

This setup was chosen to mimic the real data scenario related to this model, as
described later on. The fact that θ1 and θ2 are small numbers, combined with the fact

†Note that Varah (1982) gives five different parameter estimates corresponding to different val-
ues of the smoothing parameter used in his method. Of these estimates, we report only the first
pair and refer to Table 4 in Varah (1982) for the remaining ones. Note also that Esposito and
Floudas (2000) use two approaches (collocation method and integration method in their ter-
minology) and with the second of them identify another local solution to the problem, namely,
θ1 = 0.1306 × 10−2, θ2 = 0.90393 (see Table 11 in Esposito and Floudas, 2000), which we did
not report in Table 5.
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Table 6. Means of point estimates and actual coverage of interval estimates for
the parameters of model (Equation 20), where the initial value ξ is zero and the
parameters are θ1 = 0.4577 × 10−5 and θ2 = 0.2797 × 10−3. The results are
based on 500 simulation runs. There are 21 observations given on a uniform grid
on [0, 40], and the errors are normal with zero expectation and σ2 = 0.25. The
one-step point estimates are given by Equation 6, while the interval estimates are
defined in Equation 15

One-step NLS

Setup Mean Coverage Mean Coverage

n = 21 ξ1 0 1.491e-02 0.938 7.960e-03 0.942
θ1 4.577e-06 4.576e-06 0.954 4.577e-06 0.952
θ2 2.797e-04 2.788e-04 0.932 2.798e-04 0.930

Note: NLS, non-linear least squares.

Table 7. Point estimates for the parameters of model (Equation 20) based on the
real data of table 39 in Bodenstein (1922). We consider the initial value to be zero.
The one-step point estimates are given by Equation 6; the confidence intervals were
generated according to Equation 15. The left and right interval points are denoted by
CI(L) and CI(R), respectively

One-step NLS

Point CI(L) CI(R) Point CI(L) CI(R)

θ1 4.579e-06 4.255e-06 4.903e-06 4.577e-06 4.253e-06 4.901e-06
θ2 2.791e-04 1.923e-04 3.658e-04 2.796e-04 1.928e-04 3.665e-04

Note: NLS, non-linear least squares.

that their magnitudes are rather different, renders their estimation a difficult task, com-
pare with p. 1303 in Esposito and Floudas (2000). In Table 6, we see the empirical
average of point estimates and the empirical coverage of interval estimates based on
Monte Carlo study consisting of 500 runs. The point estimates are given by Equation
6, while the interval estimates are defined in Equation 15.

We note that when estimating θ = (θ1, θ2), unlike Bellman et al. (1967), Van
Domselaar and Hemker (1975), Tjoa and Biegler (1991) and Varah (1982), we did
not assume that the initial condition x(0) = 0 was known, but estimated it as well.
Notice also that our method exploits linearity in the parameters, and therefore, it is not
required to supply an initial guess in the parameter space (in Bellman et al.,1967, and
other related papers the initial guesses θ1 = 10−6 and θ2 = 10−4 were used). We see
that even with a small sample as 21 observations, the point and interval estimates are
satisfying, and again, we do not observe a substantial difference between the one-step
and NLS methods.

We next tested our approach on the real data for the model (Equation 20) given
in Table 39 in Bodenstein (1922) and reproduced in Table I in Bellman et al. (1967).
There are in total 14 observations available on the interval [0, 39], excluding the initial
condition x(0) = 0.‡ This time, we did not estimate the initial condition and considered

‡Note that in Table 39 in Bodenstein (1922) and in Table I in Bellman et al. (1967), the observa-
tion 48.8 corresponding to the time instance t = 19 appears to contain a typo: We tentatively
corrected it to 38.8. The same correction was applied in Table 24 in Esposito and Floudas (2000)
and in Table 1 in Kim and Sheng (2010).

© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.



Estimation in ODE models 147

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

time

Fig. 6. The solution to Equation 20 (given by the solid line) and the observations (indicated by pluses).
The parameters were estimated using the real data from Bellman et al. (1967). The initial value is considered

to be known and equals zero.

it to be zero, which agrees with the physical phenomenon that the model describes. The
estimation results are displayed in Table 7. Both point and interval estimates obtained
from the one-step and NLS methods are presented.

A comparison with the results given in Table 5 shows that this is essentially the
same result as already reported in the literature using the least squares estimator: This
illustrates the fact that one-step is an asymptotically equivalent estimator to the least
squares estimator, provided a preliminary estimator it uses is already within the n−1∕2

range of the true parameter. In Figure 6, we plot the data from Bellman et al. (1967)
and the solution to Equation 20 evaluated with one-step fitted values of θ1 and θ2. The
fit appears to be satisfactory given a simplistic character of the model (Equation 20).

6.2 α-Pinene problem

We now consider ‘problem 8’ of Tjoa and Biegler (1991). The system is given by

x′1(t) = − (θ1 + θ2)x1(t),
x′2(t) = θ1x1(t),
x′3(t) = θ2x1(t) − (θ3 + θ4)x3(t) + θ5x5(t),
x′4(t) = θ3x3(t),
x′5(t) = θ4x3(t) − θ5x5(t).

(21)

This system characterizes a reaction that describes the thermal isomerization of
α-pinene x1 to dipentene x2 and alloocimene x3, which in turn yields α-pyronene and
β-pyronene x4 and a dimer x5. The data that we use are taken from Table 2 in Box
et al. (1973). For each state of the system, the data include only eight observations in
time. This is a challenging problem to deal with, a point raised also in Tjoa and Biegler
(1991), Rodriguez-Fernandez et al. (2006Nov) and Brunel and Clairon (2015). In Table
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Table 8. Point estimates for the parameters of model (Equation 21) based
on the real data from Box et al. (1973). We consider the initial values to
be known. The one-step point estimates are given by Equation 6; the con-
fidence intervals were generated according to Equation 15. The left and
right interval points are denoted by CI(L) and CI(R), respectively

Point CI(L) CI(R) Tjoa and Biegler (1991)

θ1 5.869e-05 5.771e-05 5.967e-05 5.926e-05
θ2 2.830e-05 2.740e-05 2.920e-05 2.963e-05
θ3 1.745e-05 1.305e-05 2.186e-05 2.047e-05
θ4 2.132e-04 1.770e-04 2.494e-04 2.744e-04
θ5 2.137e-05 1.037e-05 3.236e-05 3.997e-05
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Fig. 7. The solution to Equation 21 based on the one-step estimate; the observations are indicated by
different symbols, corresponding to the system state that they represent. The parameters were estimated

using the real data from Box et al. (1973).

8, we see the resulting point and interval estimates based on the real data, using the
one-step method. We do not present the results of the Monte Carlo study for the NLS
method, because it could not be completed in a reasonable amount of time using the
Levenberg–Marquardt method (as we did in all examples in our paper). In the last col-
umn of Table 8, we present the estimation result from Tjoa and Biegler (1991). The
solution of the system (Equation 21) corresponding to the one-step estimate is dis-
played in Figure 7. Unlike Tjoa and Biegler (1991), our approach does not require
to provide an initial guess in the parameter space. The parameter estimates that we
obtained are similar to those in Tjoa and Biegler (1991), except for parameters θ4, θ5:
The estimates computed in Tjoa and Biegler (1991) are not contained in our confidence
intervals. As explained in detail in Brunel and Clairon (2015), these two parameters
are the most difficult to estimate, and those authors also raise a question whether the
values obtained in Tjoa and Biegler (1991) are reliable and speculate the estimates in
their own work could be in fact more accurate. Without offering a resolution of this
difficult question, here we simply remark that alternative estimates computed in Brunel
and Clairon (2015) are contained in our confidence intervals.
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Table 9. Means of point estimates and actual coverage of interval estimates for the
parameters of model (Equation 21), where the initial value ξ is considered as known.
The results are based on 500 simulation runs; see the experimental setup in the text.
The one-step point estimates are given by Equation 6; the interval estimates are defined
in Equation 15. Standard errors of the point estimates as calculated based on the 500
simulations (denoted by ‘STE’). Square root of the average of the estimates of the
asymptotic variance, over the 500 simulations (denoted by ‘ASYM’)

Setup True Mean Coverage STE ASYM

σ = 0.02 θ1 5.926e-05 5.920e-05 0.758 6.539e-07 3.913e-07
θ2 2.963e-05 2.958e-05 0.806 5.246e-07 3.615e-07
θ3 2.047e-05 2.042e-05 1.000 5.789e-07 1.815e-06
θ4 2.744e-04 2.709e-04 1.000 7.847e-06 2.099e-05
θ5 3.997e-05 3.878e-05 0.998 2.793e-06 6.060e-06

σ = 0.1 θ1 5.926e-05 5.910e-05 0.768 3.265e-06 3.026e-02
θ2 2.963e-05 2.945e-05 0.820 2.669e-06 2.717e-03
θ3 2.047e-05 1.993e-05 0.998 2.755e-06 9.746e-06
θ4 2.744e-04 2.452e-04 0.946 8.382e-05 1.406e-04
θ5 3.997e-05 3.103e-05 0.940 2.569e-05 9.688e-05

Next, we conducted two simulation studies, corresponding to two different measure-
ment error variances. Specifically, we generated observations according to Equations
2 and 21 under the following experimental setup: The time grid is the same as in the
real data, namely,

tj ∈ {1230, 3060, 4920, 7800, 10 680, 15 030, 22 620, 36 420},

resulting in a total of 8 observation points. Initial values are set to the observations at
the first time point,

ξ = {88.35, 7.3, 2.3, 0.4, 1.75}.

The errors are normal with expectation zero and standard deviations

σ = a × {44.6833, 36.4111, 4.9570, 1.6339, 12.4147},

corresponding to σi, i = 1,… , 5. Here, the value a is multiplied by the mean value of
each state, as calculated from the solutions based on the real data example. In the first
study, we set a = 0.02,while in the second, we take a = 0.1. We note that the variance
σ2 that corresponds to a = 0.02 is the order of the variance that we observed in the
real data example. For each scenario, we repeat the experimental setup 500 times and
calculate the average of point estimates and actual coverage of the confidence inter-
vals. We also provide the standard error of the one-step estimator as calculated based
on 500 simulations (‘STE’), as well as the square root of the average of estimates of the
asymptotic variance (‘ASYM’). The results are presented in Table 9. We see that the
actual coverage is not too poor but, nevertheless, deviates noticeably from the nom-
inal level of 95%. Further, we see a considerable difference between estimates of the
asymptotic variance and the actual finite sample variance as calculated based on 500
simulations. All these results are not surprising, if we recall that we have at hand only
eight observations on each system state, so that asymptotic approximations are not
accurate enough yet.
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7 Conclusions

Parameter estimation for ODEs is a challenging problem. In this paper, we have
explored performance of Le Cam’s one-step method in the ODE context both from
applied and theoretical sides. Using real and simulated data examples, we have demon-
strated that execution of a one-step correction on a preliminary smoothing-based
estimator leads to rather satisfactory estimation results, that are comparable with those
in the ‘gold standard’ least squares estimation. In particular, we can argue that already
for small and moderate sample sizes, the one-step method yields results compara-
ble with the NLS estimation in terms of the statistical accuracy, as suggested by the
asymptotic statistical theory. The empirical coverage of the confidence intervals that
we provide is good even for samples as small as n = 21 in the examples that we con-
sidered. On the other hand, for very small sample sizes, the NLS method appears to
perform better than the one-step method, although the latter remains reasonable. Fur-
thermore, we note that the one-step approach discussed in this work was applied for
both fully and partially observed ODE systems (Section 5).

The relation between the one-step method and the Levenberg–Marquardt method
that we pointed out in Section 5 leads to a very simple practical implementation:
When computational time is an issue, our simulations and theory justify the use of
the Levenberg–Marquardt algorithm with only one iteration, if its starting point is
SME or the integral estimator. In particular, as evidenced by the results presented in
Section 5, the performance of the one-step estimator is as good as or even better than
that of the NLS starting from a random initial guess and using 100 iterations. This is
a useful practical observation: Tuning the number of iterations is possible in software
implementations of optimization algorithms, such as the one in Matlab, and hence,
the one-step correction on the SME or the integral estimator is straightforward to
implement.

Appendix A: Proof of Theorem 1

Note that η̄∗n = η̄n(η̂ρ̄n
) for some data-dependent (random) smoothing parameter ρ̄n

taking values in the set n; more formally,

ρ̄n = argminρn(k)∈Rn

d∑
i =

n∑
j = 1

(Yij − xi(η̄(η̂ρn(k)), tj))2.

Observe that the estimator η̂ρ̄n
is

√
n-consistent. This claim appears to be

self-evident, but nevertheless, we still provide its proof. Thus, for every fixed ε > 0, we
have to show existence of a constant Kε, such that

P(
√

n|η̂ρ̄n
− η0| ≥ K𝜀) ≤ 𝜀
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for all n ≥ nε, where nε is some integer, possibly depending on ε and Kε. We have

P(
√

n|η̂ρ̄n
− η0| ≥ Kε) ≤ P

(√
n

N∑
i = 1

|η̂ρn(i) − η0| ≥ Kε

)

≤
N∑

i = 1

P
(√

n|η̂ρn(i) − η0| ≥ Kε

N

)
.

√
n-consistency of η̂ρ̄n

now easily follows from the above inequality and√
n-consistency of each η̂ρn(k), k = 1,… ,N.
Now that we know the estimator η̂ρ̄n

is
√

n-consistent, the proof of our theorem
consists in application of Theorem 5.45 and Addendum 5.46 in van der Vaart (1998),
which in turn can be reduced to verification of conditions of Theorem 5.41 there. This
amounts to verification of the following conditions:

(i) It must hold that
√

nΨn(η0) converges in distribution. Here,Ψn is as in Formula 4.
(ii) It must hold that for every fixed (t, y), the function ψη(t, y) is twice continuously

differentiable with respect to η. Here, ψη(t, y) is as in Equation 5.
(iii) It must hold that E[ψη0

(T1,Y1)] = 0, E[|ψη0
(T1,Y1)|2] < ∞, and the matrix

E

[
d

dη
ψη(T1,Y1)|η = η0

]
must be non-singular. Here, Y1 is a shorthand notation for the vector
(Y11,Y21,… ,Yd1).

(iv) It must hold that the second-order partial derivatives of the function ψη with
respect to ηj, ηk are dominated by an integrable (with respect to its distribution)
function of (T1,Y1).

Arguments for verification of these conditions are quite standard and follow from
the regularity assumptions in the statement of our theorem. The limit covariance
matrix in Equation 13 is obtained in the process of verification of (i)–(iv) mentioned
earlier.

Appendix B: Integral estimator

Given observations Yij’s, the one-step method requires first to have at hand a√
n-consistent estimator of θ0 and ξ0. As mentioned in the previous sections, the SME

provides us with such an estimator. However, this method is based on estimating the
derivative x′, which is hard to do accurately in practice for small or moderate sam-
ple sizes. In the case where the symbol F of the system of ODEs is linear in functions
of the parameter θ, one can avoid estimation of derivatives and use an integral SME.
Indeed, in such cases, one can use some version of the so called ‘integral approach’
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(Himmelblau et al., 1967) as was studied in Dattner and Klaassen (2015). The idea
works as follows: Note that for systems whose symbols are linear in parameters,
F(x(t); θ) = g(x(t))θ holds, where the measurable function g ∶ R

d → R
d×p maps the

d-dimensional column vector x into a d × p matrix. Let x̂n(⋅) be an estimator of x(η0, ⋅),
and denote Ĝn(t) = intt

0g(x̂n(s), s) d s, Ân = ∫ T
0 Ĝn(t) d t, B̂n = ∫ T

0 ĜT
n (t)Ĝn(t) d t,

and let Id be the d × d identity matrix. Then Dattner and Klaassen (2015) show that
the direct estimators,

ξ̂n =
(

Id − ÂnB̂−1
n Â

T

n

)−1

∫
T

0

(
Id − ÂnB̂−1

n ĜT
n (t)

)
x̂n(t) dt, (B.1)

θ̂n = B̂−1
n ∫

T

0
ĜT

n (t)
(

x̂n(t) − ξ̂n

)
dt, (B.2)

are
√

n-consistent. In case the initial value ξ0 is known, Appendix B.2 may be used with
ξ̂n replaced by ξ0. Besides the required statistical properties, the extensive simulation
study presented in the aforementioned paper suggests that this approach is much more
accurate in finite samples compared to the derivative-based SME. Thus, we use the
integral SME (Equations B.1– B.2) whenever applicable and the derivative-based SME
otherwise.

We choose to estimate the solution x using local polynomial estimators, which are
consistent and ‘automatically’ correct for the boundaries. Under the assumption that
x are Cα-functions for some real α ≥ 1, we will approximate them by polynomials of
degree 𝓁 = ⌊α⌋ as follows (Tsybakov, 2009, Section 1.6): let

U(u) =
(

1, u, u2∕(2!),… , u𝓁∕(𝓁!)
)T
, u ∈ R,

𝜈(t) =
(
x(t), x′(t)b, x′′(t)b2,… , x(𝓁)(t)b𝓁

)
, t ∈ R,

where b = bn > 0 is a bandwidth, the (𝓁 + 1)-vector U(u) is a column vector and 𝜈(t)
is a d × (𝓁 + 1)-matrix. Let K(⋅) be some appropriate kernel function and define

𝜈̂n(t) = arg min
𝜈∈Rd×(𝓁+1)

n∑
i=1

{
Y (ti) − 𝜈U

( ti − t

b

)}T

×
{

Y (ti) − 𝜈U
( ti − t

b

)}
K
( ti − t

b

)
.

The local polynomial estimator of order 𝓁 of x(t) is the first column of the
d × (𝓁 + 1)-matrix 𝜈̂n(t), i.e. x̂n(t) = 𝜈̂n(t)U(0).

We applied the estimation procedure described earlier to a set of bandwidths B ∶=
{bmin,… , bmax}, and for a given b ∈ B , we denote the resulting one-step parameter
estimator by η̄n,b. We then select η̄n = η̄n,b̄ for some b̄ ∈ B, the choice of which is
discussed in Remark 3 of the main text. Last, we use local estimators polynomials of
order 1, with K(t) = 3∕4(1 − t2)1{|t| ≤ 1} (cf. Dattner and Klaassen (2015), where
1{⋅} stands for the indicator function. Other kernels are also possible.
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Appendix C: Goodwin’s oscillator

In Section 5, we applied the direct integral method on a partially observed Goodwin’s
oscillator,⎧⎪⎨⎪⎩

x′1(t) = θ1

1 + 2x3(t)10 − θ5x1(t),
x′2(t) = 2x1(t) − θ5x2(t),
x′3(t) = x2(t) − θ5x3(t).

(C.1)

The integral estimation approach works as follows in this case: First, apply the inte-
gral estimation method from Appendix B on the second equation of Equation C.1
and obtain a

√
n-consistent estimator of θ5 (this is possible, because the state variables

x1, x2 are observed in the setting of Section 5). Next, integrate the equation{
x′3(t) = x̂2(t) − θ̂5x3(t),
x3(0) = 0,

to get an estimator x̂3 of the component x3 of the solution to Equation C.1. Finally,
apply the integral estimation method on the first equation of Equations C.1 to get a√

n-consistent estimator of θ1 (this is possible, because estimators x̂1 and x̂3 of x1 and
x3 are available).
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