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Pruritus is a common, but very challenging symptom with a wide diversity of

underlying causes like dermatological, systemic, neurological and psychiatric diseases.

In dermatology, pruritus is the most frequent symptom both in its acute and chronic

form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging.

Affected patients who suffer from moderate to severe pruritus have a significantly

reduced quality of life. The underlying physiology of pruritus is very complex, involving a

diverse network of components in the skin including resident cells such as keratinocytes

and sensory neurons as well as transiently infiltrating cells such as certain immune

cells. Previous research has established that there is a significant crosstalk among the

stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells,

basophils, eosinophils and mast cells. In this regard, interactions between receptors on

cutaneous and spinal neurons or on different immune cells play an important role in

the processing of signals which are important for the transmission of pruritus. In this

review, we discuss the role of various receptors involved in pruritus and inflammation,

such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and

H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers

and different immune cells. Emerging evidence shows that neuro-immune interactions

play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as

atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional

neuro-immune interactions and the involved pruritus-specific receptors is likely to

contribute to novel insights into the underlying pathogenesis and targeted treatment

options of pruritus.

Keywords: pruritus, inflammation, neuro-immune, sensory neurons, skin disease, atopic dermatitis (AD), psoriasis,

chronic spontaneous urticaria (CSU)

INTRODUCTION

The complex symptom of pruritus shows up in several diseases which ranges from numerous
inflammatory skin diseases, metabolic disorders, liver and kidney diseases, or lymphoproliferative
and myeloproliferative disorders (1). The most common chronic inflammatory skin diseases
include atopic dermatitis (AD), psoriasis and chronic spontaneous urticaria (CSU). These patients
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often suffer from moderate to severe pruritus and experience
a reduced quality of life (2, 3). Chronic pruritus in these
patients remains a challenge regarding effective anti-pruritic
treatments (4). The physiology of pruritus is transmitted by
a complex interaction network of cutaneous and neuronal
cells (5–7). Thus, it is very important to understand this
network and dynamic processes to identify novel signaling
pathways and pruritus mediators. Particularly, immune and
neuronal systems are not acting separately, but interact rather
closely with each other. Neurons modulate the function of
immune cells by releasing neurotransmitters and neuropeptides
leading to the transmission of pruritus and inflammation.
In turn, activation of immune cells leads to the production
and release of proinflammatory mediators including several
cytokines, chemokines and neuropeptides that trigger neuronal
pruritus response and inflammation in the skin (8, 9). These
neuro-immune interactions arise not only from an intense
biochemical crosstalk between immune cells and neurons,
but also from sharing many properties, including receptor
and ligand expression, which enables efficient communication
between these two systems (10, 11). Thus, linking immune
and neuronal systems provides a powerful way to gain insight
into complex interactions associated with the neuro-immune
interaction mechanism in pruritus. In this review, we highlight
recent discoveries and approaches concerning interaction of
pruritus receptors and channels in a neuro-immune manner in
the field of pruritus research. We set our focus on transient
receptor potential (TRP) channels, such as TRP vanilloid
1 (TRPV1) and ankyrin 1 (TRPA1), the heterodimer IL-31
receptor A (IL-31RA) and oncostatin-M receptor (OSMR),
thymic stromal lymphopoietin receptor (TSLPR) and different
G protein-coupled receptors (GPCR). These GPCRs comprise
protease-activated receptor-2 (PAR-2), neurokinin-1 receptor
(NK1R), histamine receptors H1 and H4 (H1R/H4R) and
mas-related G-protein coupled receptors (MRGPRs) as well
as tropomyosin receptor kinase A (TrkA) receptor (Figure 1,
Table 1). These receptors and channels have been found on
sensory neurons and play a crucial role in pruritus and neuro-
immune pathways as well as pruritus associated inflammatory
skin diseases (4, 12, 13). Here, we put emphasis on inflammatory
skin diseases including AD, psoriasis and CSU that are highly in
context with symptom of pruritus. In previous research, several
treatment options for patients suffering from these pruritus-
associated disorders were described (14–17). Additionally, we
outline current therapeutic options in correspondence with these
pruritus-associated receptors and channels (Table 2). Targeting
neuro-immune pathways may open up new perspectives in terms
of the development of more effective pharmacological treatment
options for patients suffering from chronic pruritus.

RECEPTORS IN NEURO-IMMUNE
INTERACTIONS

Transient Receptor Potential Channels
TRPV1 and TRPA1
TRP channels are non-selective calcium-permeable cation
channels comprising 28 members in mammals that can be

categorized in six related protein families including TRPA,
TRPC, TRPM, TRPML, TRPP, and TRPV (18, 19). TRP
channels are involved in various sensory functions, such
as mechanosensation, olfaction, osmolarity, pain, taste and
thermoception (20–22). Several studies presented evidence
showing that TRPV1 and TRPA1 play crucial roles in pruritus
transmission (23–27). TRPA1 is essential in the signaling
pathways that promote histamine-independent pruritus (22,
24), whereas TRPV1 is presumed to be required for both
histaminergic and non-histaminergic pruritus (23, 28–31).
These recent studies used knockout (KO) mice models and
corresponding inhibitors and led to the conclusion that TRP
channels are necessary in the pruritus pathways initiated by
GPCR agonists like chloroquine and histamine (24, 29, 31). On
the other hand, Ru et al. (32) demonstrated that TRPV1 and
TRPA1 channels are not required for chloroquine activation
of nerves by using dorsal skin-nerve preparation of healthy
mice. This indicated that these TRP channels could affect
other than primary afferent terminals (32). However, both
ion channels are well-expressed in primary afferent sensory
neurons, but also in non-neuronal cells like keratinocytes
(33, 34), monocytes and macrophages (35–38), mast cells (39,
40), neutrophils (41, 42) and T cells (25, 43–45). TRPV1 is
additionally expressed in dendritic cells (46, 47) and eosinophils
(48). Besides neuro-immune interactions, crosstalk between
the channels TRPV1 and TRPA1 and other receptors has
been established in previous studies (5, 24, 47, 49, 50). An
experimental study of Oh et al. (40) has described a case
of complex interactions among nerve fibers and mast cells
with the TRPA1 channel. The study demonstrated a neural
TRPA1 dependent mechanism comprising interactions between
TRPA1+ dermal mast cells and TRPA1+ dermal afferent
nerves in a TH2-dominated inflammatory environment, which
is responsible for the pruritogenesis of chronic pruritus in
AD (40). Another example of neuro-immune interactions
highlights the involvement of TRPV1 in the crosstalk between
neurons and T-lymphocytes (25). Experiments revealed that IL-
31 induces pruritus by binding to IL-31RA that is exclusively
expressed on TRPV1+/TRPA1+ DRG neurons indicating TRP
channels as key mediators of T-cell mediated IL-31-induced
pruritus. Interestingly, only around 4% of DRG neurons were
observed to be IL-31RA+ (25, 51). Surprisingly, IL-31 was
shown to be a potential pruritogen, since injection of IL-31
into the cheek of mice induced profound pruritus, but not
pain. This implicates that pruritus and pain may be induced
by different subsets of unmyelinated afferents and pruritus
specific afferents might exist (25). Interestingly, several studies
reported a delayed pruritus after IL-31 injection in mice (52)
as well as in patients with AD and healthy volunteers (53).
These studies have led to great interest in targeting TRPV1
and developing potential drugs to treat pruritus, especially
in AD. In that regard, a topical TRPV1 antagonist termed
asivatrep, has shown to significantly improve symptoms (e.g.,
pruritus, sleep disturbance) of patients with mild-to-moderate
AD (54, 55). Further investigations will be needed to unravel
the neuro-immune axis involving TRP channels TRPA1 and
TRPV1, neurons and different immune cells for new anti-pruritic
therapeutic options.
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FIGURE 1 | Involvement of different receptors/channels in neuro-immune interactions in pruritus. There is a complex interplay between neurons and immune cells in

transmission of pruritus and inflammation. Several receptors act as a bridge between the neuronal and immune network and function as pruritus mediators. These

receptors are located on neurons, but also expressed by different non-neuronal cells (e.g., basophils, dendritic cells, eosinophils, keratinocytes, mast cells,

macrophages and monocytes, neutrophils or T cells): Transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), IL-31 receptor A (IL-31RA) and the

oncostatin-M receptor (OSMR), thymic stromal lymphopoietin receptor (TSLPR), protease-activated receptor 2 (PAR-2), neurokinin-1 receptor (NK1R), histamine

receptors H1/H4 (H1R/H4R), mas-related G-protein coupled receptor X2 (MRGPRX2), tropomyosin receptor kinase A (TrkA).

IL-31 Receptor A and Oncostatin-M
Receptor
The novel cytokine IL-31 signals through a heterodimeric
receptor composed of IL-31RA and the OSMR. IL-31 is a
TH2-cell-derived cytokine and the only known ligand for IL-
31RA (56–58). It has previously been observed by Cevikbas
et al. (25) that TH2 cells are main producers of IL-31. Besides
TH2 cells, other immune cells like basophils, eosinophils or
mast cells can produce and release IL-31 (59–62). The IL-
31 receptor complex is not only expressed by DRG neurons
(63), but also located on non-neuronal cells, such as basophils
(62), eosinophils (61, 64), monocytes and macrophages (65–
67), mast cells (13), dendritic cells (68), keratinocytes (69, 70),
and T cells (25, 57, 71). IL-31/IL-31RA interaction activates
signal transduction pathways leading to expression and release
of various chemokines, proinflammatory cytokines, regulation
of cell proliferation and stimulation of DRG neurons that play
important role in pruritus induction and inflammatory diseases
(72–74). A number of researchers observed an association
between IL-31 and inflammatory skin diseases with severe
pruritus including AD (61, 75), bullous pemphigoid (76),
cutaneous T-cell lymphoma (77), CSU (78) and psoriasis (79).
Regarding treatment approaches, a successful therapy of urticaria

using omalizumab led to decreased serum levels of IL-31 (80).
Previous research has established a neuro-immune crosstalk
between IL-31 receptor, T cells and sensory nerves in pruritus
(25). Cevikbas et al. (25) have shown that TH2-derived IL-31 is
able to activate IL-31RA on TRPV1+/TRPA1+ sensory nerves in
the skin causing the pruritus associated with AD. Furthermore,
it was shown that the TH2-related and atopy-associated cytokine
IL-31 directly induces nerve fiber elongation in vitro and in vivo

in mice, suggesting that IL-31-associated nerve fiber elongation

could be involved in skin hypersensitivity of AD patients (57).
In this regard, IL-31 has been shown to correlate with disease

severity and pruritus in AD patients (75). More recent findings
have demonstrated that nemolizumab, an anti-IL-31RA antibody
that binds to IL-31RA with subsequent inhibition of IL-31

signaling effectively relieves AD-associated pruritus (81, 82).
The first clinical study revealed a statistically significant reduced
pruritus visual analog scale (VAS) score to about 50% at week 4
compared with 20% with placebo in patients with AD (81). In
a subsequent phase II study 264 adults with moderate to severe
AD were treated every 4 weeks with nemolizumab in doses of
0.1, 0.5, or 2.0 mg/kg. Treatment led to decrease of pruritus
VAS by 43.7% to 63.1% in a dose-dependent manner over a
12-week period compared with a 20.9% decrease with placebo
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TABLE 1 | Expression of receptors/channels on various non-neuronal cells.

Receptors/channels Non-neuronal cells References

TRPV1/TRPA1 Dendritic cells (only TRPV1) (46, 47)

Eosinophils (only TRPV1) (48)

Keratinocytes (33, 34)

Macrophages and monocytes (35–37)

Mast cells (39, 40)

Neutrophils (41, 42)

T cells (25, 43–45)

IL-31RA/OSMR Basophils (62)

Dendritic cells (68)

Eosinophils (61, 64)

Keratinocytes (69, 70)

Macrophages and monocytes (65–67)

Mast cells (13)

T cells (25, 57, 71)

TSLPR Basophils (89)

Eosinophils (90)

Dendritic cells (91)

Keratinocytes (92)

Macrophages and monocytes (94, 95)

Mast cells (93)

T and B cells (96, 97)

PAR-2 Dendritic cells (125, 126)

Keratinocytes (124)

Macrophages and monocytes (125–127)

Mast cells (128, 129)

Neutrophils (130)

NK1R Dendritic cells (148)

Eosinophils (149)

Keratinocytes (154, 155)

Macrophages and monocytes (151)

Mast cells (150)

T and B cells (152, 153)

H1R/H4R Basophils (185)

Dendritic cells (186, 187)

Eosinophils (13)

Keratinocytes (183, 184)

Monocytes (187)

Mast cells (188)

T cells (28, 189–191)

MRGPRX2 Basophils (206)

Eosinophils (206)

Mast cells (205)

TrkA Basophils (238)

Eosinophils (233)

Keratinocytes (228)

Macrophages and monocytes (239)

Mast cells (231, 232)

T and B cells (240, 241)

(82). Further, a long-term extension study based on phase II trial
resulted in reduced pruritus up to 90%, whereby it was limited
by a placebo group (83). Another approach is provided by a

human monoclonal antibody KPL-716, which specifically targets
the OSMRβ chain and simultaneously inhibits both IL-31 and
OSM signaling. Therefore, blocking OSMRβ with KPL-716 may
be a potential treatment option of inflammatory skin diseases
(e.g., AD) and needs to be clarified in further experiments (84).
These studies indicate that IL-31 is an important cytokine for
regulating pruritus and AD disease activity.

Thymic Stromal Lymphopoietin Receptor
TSLP is a four-helix bundle, IL-7-like cytokine, and a member
of the IL-2 cytokine family that contributes to the initiation
of type-2 inflammation. It is primarily produced by epithelial
cells including keratinocytes, fibroblasts and stromal cells, but
also by dendritic cells and mast cells (85, 86). TSLP signaling
requires a heterodimeric receptor complex that consists of the
IL-7 receptor α-chain (IL-7Rα) and the TSLP receptor chain
(TSLPR) (87, 88). TSLP receptor is expressed by a variety of
cell populations including non-neuronal cells, such as basophils
(89), eosinophils (90), dendritic cells (91), keratinocytes (92),
mast cells (93), macrophages and monocytes (94, 95), B and
T cells (96, 97), but also by neurons (11, 98). The expression
of TSLP from these different target cells can be triggered by
various stimuli comprising respiratory viruses (99), cigarette
smoke extracts (100) as well as several cytokines, such as TNF-
α and IL-1β (101). TSLP is known to be involved in various
allergic diseases such as AD (102, 103), bronchial asthma (104)
and eosinophilic esophagitis (105). There is a growing evidence
indicating that TSLP may also play role in other diseases
including autoimmune, chronic inflammatory disorders and
cancer (86, 106, 107). In terms of AD several studies show
that TSLP serum level as well as TSLP level in the skin of AD
patients is elevated (102, 103, 108). An overexpression of TSLP
in mice models resulted in the development of AD (109, 110).
Wilson et al. (98) have demonstrated that intradermal injection
of TSLP led to scratching behavior in mice. Additionally, their
data confirmed that TSLP released from keratinocytes acts
directly on sensory neurons to induce itch-evoked scratching
that was depended on TSLPR. Further it was evidenced that
both functional TSLPRs and TRPA1 channels are required for
TSLP-induced pruritus. A crosstalk between TSLP and PAR-
2 was also observed. PAR-2 activation by its agonists SLIGLR
and tryptase induced scratching behavior and Ca2+-dependent
release of TSLP (98). However, the mechanism behind the
TSLP-induced pruritus remains to be elucidated in further
experimental studies. Targeting TSLP-TSLPR signaling via anti-
TSLP therapy like with tezepelumab, a human monoclonal
antibody targeting circulating TSLP, might be a promising tool
to prevent and treat several diseases associated with elevated
TSLP such as AD (111, 112). Contrarily, a phase II clinical
trial tezepelumab treatment of patient with moderate to severe
AD showed limited efficacy and insignificant pruritus reduction
(111). More recently, Fitoussi et al. (113) demonstrated that a
topical spray containing Tambourissa trichophylla leaf extract
(TTLE) and 18β-glycyrrhetinic acid (GA), which inhibits TSLP
secretion, efficiently decreases pruritus in AD patients and
improves their quality of life.

Frontiers in Medicine | www.frontiersin.org 4 February 2021 | Volume 8 | Article 627985

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ruppenstein et al. Neuro-Immune Interactions in Pruritus

TABLE 2 | Emerging therapeutic targets for treatment of pruritus associated inflammatory skin diseases in humans.

Receptors/channels Therapeutic agents Indications References

TRPV1/TRPA1 Asivatrep/PAC-14028 (TRPV1 antagonist) Atopic dermatitis (54, 55)

IL-31RA/OSMR Nemolizumab/CIM331 (IL-31RA antagonist) Atopic dermatitis (83)

Vixarelimab/KPL-716 (OSMR antagonist) Atopic dermatitis (84)

TSLPR Tezepelumab/AMG-157/MEDI9929 (anti-TSLP antibody) Atopic dermatitis (111)

Topical spray containing TTLE and GA (TSLP inhibitor) Atopic dermatitis (113)

PAR-2 currently not available in humans – –

NK1R Aprepitant (NK1R antagonist) Atopic dermatitis (168, 169)

Serlopitant/VPD-737 (NK1R antagonist) Atopic dermatitis, Psoriasis (173)

Tradipitant/VLY-688 (NK1R antagonist) Atopic dermatitis (174)

H1R/H4R Bilastine (H1R antagonist) Chronic spontaneous urticaria (195)

Adriforant/ZPL-3893787 (H4R antagonist) Atopic dermatitis (193)

JNJ-39758979 (H4R antagonist) Atopic dermatitis (202)

MRGPRs currently not available – –

TrkA Pegcantratinib/CT327 (TrkA inhibitor) Psoriasis (255)

Protease-Activated Receptor-2
The PAR family consists of four members, PAR-1, PAR-2,
PAR-3, and PAR-4. All together they belong to G-protein
coupled receptors activated by proteolytic cleavage of amino-
terminal exodomain (114–117). Furthermore, an activation by
different proteases generated by endogenous (e.g., proteases
from endothelium, epithelium, fibroblast or immune cells) or
exogenous sources (e.g., allergens, dust mite and various plants)
is possible (118, 119). Existing research recognizes the critical
role played by PAR-2 in skin neurogenic inflammation and in
pruritic skin diseases such as AD (119–123). PAR-2 is expressed
by various cell types including endothelial cells and keratinocytes
(124), dendritic cells, monocytes and macrophages (125–127),
mast cells (128, 129), neutrophils (130) and sensory nerve fibers
(123, 131, 132). Steinhoff et al. (120) reported an increased
signaling through PAR-2 that comprises an increased release
of endogenous PAR-2 agonist mast cell tryptase followed by
a higher occurrence of PAR-2+ nerve fibers in AD patients
(120, 133). In addition to the crosstalk between nerve fibers,
mast cells and PAR-2, it was shown that PAR-2 synergistically
interact with TRPV1 channel resulting in pruritus sensation
(134, 135). A key role of TRPV1 channel in PAR2-evoked
Ca2+ release in differentiated human primary keratinocytes
was shown by Gouin et al. (136). They demonstrated that
TRPV1 independently regulate the production of inflammatory
mediators, such as IL-1β, TNF-α, and TSLP via Ca2+ and
NF-kB signaling (136). Overexpression of these inflammatory
mediators is in connection with inflammatory skin diseases, such
as AD or psoriasis (137–141). In a very recent follow-up study
Buhl et al. (119) found that PAR-2 regulates neuro-epidermal
communication in AD using a mouse model with epidermal
overexpression of PAR-2. The research results indicate that PAR-
2 signaling in keratinocytes causes epidermal responses leading
to neuronal sensory and inflammatory responses in their AD
model (119). A promising therapeutic approach presents a PAR-2
pepducin, termed PZ-235. Barr et al. (142) examined the capacity
of PZ-235 to suppress skin lesion thickening, inflammation, and

pruritus in acute and chronic models of AD. For this, MA-
1, a mast cell-degranulating peptide from wasp venom, was
utilized to induce severe scratching in mice. Subsequent PZ-
235 treatment significantly reduced scratching behavior in mice
up to 50%. Further results demonstrated that targeting PAR-2
via PZ-235 application attenuated production of inflammatory
factors, leukocyte infiltration, skin thickening as well as severity
of skin lesions. Therefore, PZ-235 may have potential in the
effective treatment of patients with AD (142). More studies and
clinical trials in humans are currently lacking and needs to
be investigated.

Neurokinin-1 Receptor
Neurokinin receptors belong to G protein-coupled receptors
and consists of three members, neurokinin-1-3 receptors (NK1-
3R) that are implicated in afferent neuronal signal transduction.
There are various ligands for these receptors like neurokinin
A (NKA), neurokinin B (NKB), neuropeptide K (NPK),
neuropeptide-γ (NKγ), endokinin, hemokinin 1 as well as
substance P (SP), belonging to tachykinin family, whereas SP
binds with high affinity to the NK1R (143–146). Especially,
NK1R is known to mainly contribute to transmission of pruritus
(4, 12, 147). NK1R is widely expressed by different immune
cells, such as dendritic cells (148), eosinophils (149), mast cells
(150), macrophages and monocytes (151) and T and B cells
(152, 153), but also by keratinocytes (154, 155) and sensory
nerve endings (11, 156, 157). Activation of NK1R via SP leads to
multiple signaling cascades involvingmast cell degranulation and
release of proinflammatory mediators, such as histamine, nerve
growth factor expression and leukotriene B4 in keratinocytes and
neurogenic inflammation resulting in induction of inflammation
and pruritus (145, 146, 158). Several studies investigated the
role of SP and NK1R in the pathogenesis of pruritus in various
diseases like AD, psoriasis and CSU (7, 159–163). Recently, it
was reported that SP and its receptor NK1R are overexpressed
in pruritic AD and psoriatic lesional skin (164). A previous study
demonstrated that increased serum levels of SP in AD patients
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correlate with pruritus intensity (165, 166). Interestingly, oral
treatment with the NK1R antagonist aprepitant led to reduced
serum levels of immunoglobulin E (IgE) and SP levels in tissue
as well as decreased cutaneous infiltration of regulatory T cells
in an NC/Nga mouse model (167). In contrast, clinical studies
revealed no significant differences between aprepitant treatment
and placebo concerning reduction in pruritus, improvement in
pruriginous lesions or quality of life (168, 169). However, another
clinical study has shown that the NK1R antagonist serlopitant
has potential as a therapeutic agent for the treatment of patients
with chronic pruritus by significantly reducing the pruritus
symptom (170–172). A phase II clinical study concluded that
serlopitant reduced pruritus in patients with mild to moderate
psoriasis (173). Another NK1R antagonist, tradipitant, was
examined in terms of reduction of pruritus associated with AD
through inhibition of SP-mediated itch signaling. Tradipitant
treatment improved pruritus and sleep in mild AD (174). Several
NK1R antagonists that potentially reduce pruritus activity in
dermatological diseases are reviewed by Pojawa-Goła et al. (146)
and Reszke et al. (172). Thus, targeting SP and/or NK1R with
regard to neuro-immune crosstalk seems to be a promising
approach in the treatment of pruritus. In a previous research
it was established that Mas-related GPCR X2, which is also
activated by SP, induced inflammation (175). Further, it was
suggested that SP-induced pruritus may bemediated byMRGPRs
rather than NK1R, since SP-induced pruritus was not decreased
in Nk1r KO mice. Co-injection of QWF and SP in both Nk1r
KO and wild-type mice led to significantly decreased SP-induced
pruritus. Interestingly, an NK1R antagonist termed QWF was
shown to have a dual action on MRGPRX2 (176). However, not
only the crosstalk between different immune cells, neurons and
NK1R, but also the interaction of NK1R with other receptors
is an interesting approach for a better understanding of the
pathogenesis of pruritic diseases.

Histamine Receptors H1 and H4
One of the well-characterized pruritogens is histamine.
Histamine is released from mast cells and basophils via
activation of histamine receptors, which belong to the G protein-
coupled receptor superfamily. While four histamine receptor
subtypes (H1–H4) exist, notably histamine receptors H1 and H4
are known to modulate pruritus (13, 177–181). Both histamine
receptors (H1R and H4R) are extensively expressed in a wide
range of cell types involving sensory neurons (182), epithelial
cells like keratinocytes (183, 184), but also immune cells, such
as basophils (185), dendritic cells (186, 187), eosinophils (13),
monocytes (187), mast cells (188) and T cells (28, 189–191).
Especially, the H4R is predominantly expressed by immune
cells and is in conjunction with lots of functional histamine-
mediated inflammatory responses like modulation of cytokine
and chemokine release, chemotaxis and cell recruitment as well
as upregulation of adhesion molecule expression (192, 193).
However, both the H1 and the H4 histamine receptors play
pivotal roles in various pruritic skin diseases, such as AD or
CSU (188, 194–196). Various H1R antihistamines like ebastine,
cetirizine, and levocetirizine were shown to decrease pruritus
symptom of patients with CSU by 60–70% (197). A very recent

clinical study presented a switch to bilastine, a H1R antagonist,
as an optional treatment for patients with CSU, who are
unresponsive to H1R antihistamines at the licensed doses (195).
Although H1R antihistamines demonstrated convincing anti-
pruritic effects in urticaria, they show limited efficiency in other
pruritic skin diseases such as AD (11, 197, 198). In the study
of Gutzmer et al. (190), it was demonstrated that AD patients
express increased levels of H4R on T cells. Upon stimulation of
the H4 receptor pruritogenic IL-31 is up-regulated leading to
pruritic response (190). H4R antagonists were shown to reduce
TH2 cytokine production, pruritus and skin inflammation in
AD-associated animal models (199, 200). Therefore, new clinical
trials using novel H4R antagonists might a promising treatment
for patients with AD such as the H4R antagonist JNJ-39758979,
which led to an improvement of inflammatory skin lesions
in AD patients (193, 201). In addition, marked effects against
pruritus in Japanese patients with AD could be observed in a
phase II clinical trial, but the development of agranulocytosis by
2 subjects resulted in early trial termination (202). More recently,
H4R antagonist adriforant was shown to improve inflammatory
skin lesions in patients with AD. Although adriforant treatment
cause a 3-point reduction (scale, 1–10) in pruritus, there was no
significant difference in comparison to reduced pruritus with
placebo (193). Interestingly, a combined treatment of both H1R
and H4R antagonists demonstrated an anti-inflammatory effect
in an AD mice model that might be a good strategy to treat
patients with AD (203).

Mas-Related G-Protein Coupled Receptors
MRGPRs are G-protein coupled receptors that comprise at least
50 family members in mice, divided into subgroups MRGPRA-
H and 8 members in humans named MRGPRX1-X4, D, E, F,
and G. Several members of MRGPRs have emerged as critically
important receptors in histamine-independent pruritus. They are
mainly expressed by sensory neurons and some also by mast
cells (5, 8, 204, 205). Recently, human basophils and eosinophils
were reported to express MRGPRX2 (206). However, the
MRGPRs can be activated by various endogenous and exogenous
peptides or molecules, such as antimicrobial host defense or
opioid peptides, SP or eosinophilic granules, but also by drugs
like vancomycin or chloroquine (CQ) (12, 207). Particularly,
MRGPRA3 and MRGPRC11 in mice as well as the human
ortholog MRGPRX1 got into the focus of pruritus researchers
over the past decade (12, 208). It was shown that CQ activated
MRGPRA3 leading to a pruritus signal via the activation of
TRPA1 (24). Furthermore, it was demonstrated that expression
of MRGPRA3 establishes a subset of nociceptors that specifically
mediate pruritus, but not pain in a mouse model. In addition,
a deletion of MRGPRA3+ sensory neurons significantly inhibits
scratching behavior (209, 210). A recent study by Lee et al.
(211) determined that Korean RedGinseng water extract (KRGE)
inhibits CQ-induced pruritus by blocking theMRGPRA3/TRPA1
pathway. Interestingly, KRGE has also anti-pruritic effects on
the histamine-dependent H1R/TRPV1 pathway, which might
provide a dual anti-pruritic candidate agent for the treatment
of pruritus patients (211, 212). Moreover, KRGE treatment
significantly decreased hyperplasia and hyperkeratosis in the
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epidermis, infiltration of inflammatory cells and suppressed the
overexpression of cytokines in the AD-like skin lesions of AD
mice model (167). MRGPRC11 is in addition to MRGPRA3
co-localized and expressed in a subset of TRPV1+ afferents
and mediates pruritus induced by BAM8-22 (24, 209, 213). Liu
et al. (204) has proven that activation through MRGPRC11-
specific agonist BAM8-22 induces scratching in murine models.
In a following clinical study, BAM8-22 triggered pruritus and
nociceptive sensations in humans in a histamine-independent
manner as topical antihistamine-containing cream did not
attenuate scratching behavior (214). This indicates BAM8-22 as
an endogenous pruritus mediator and MRGPRX1 antagonists
may present potential anti-pruritic therapies. The synthetic
peptide SLIGRLwas long believed tomediate scratching behavior
via the PAR-2. However, intradermal injected SLIGRL caused
scratching behavior in PAR-2 KOmice similar to that of wild-type
mice. Liu and colleagues (215) proved that the pruritus induction
of SLIGRL was mediated by MRGPRC11 while its hyperalgesic
mode of action was derived from PAR-2 (2, 215). Furthermore,
MRGPRX1 is responsible for neuronal activation and scratching
behavior induced by both CQ and BAM8-22 (204, 213, 216).
To date, there is a lack of knowledge about the involvement
of MRGPRX1 in the pathology in chronic pruritic diseases
such as AD and the potential role of MRGPRX1 antagonists in
affected patients. Recently, researchers have shown an increased
interest in MRGPRX2 in terms of pruriceptive receptor and
its involvement in pruritic diseases like AD or psoriasis (164,
176, 217, 218). MRGPRX2 is expressed in mast cells and an
activation of MRGPRX2 by peptides such as SP results in
mast cell degranulation leading to release of proinflammatory
factors as well as modulation of neurogenic inflammation and
pruritus (219, 220). Previous research has established that both
the percentage of MRGPRX2+ mast cells and MRGPRX2+
skin mast cells of patients with CSU were significantly higher
in comparison to non-chronic urticaria subjects. It was further
shown that SP-induced histamine release from human skin
mast cells through MRGPRX2 contributing to neurogenic
inflammation (221). Interestingly, Green et al. (222) found out
that SP-mediated inflammatory responses were independent of
its canonical receptor NK1R and identified MRGPRX2 and its
mouse homolog MRGPRB2 as an important neuro-immune
modulator and a potential target for treating inflammatory pain.
Involvement in pruritus transmission and anti-pruritic treatment
therapies remain elusive and needs to be clarified in further
studies (222). In a recent study, increased MRGPRX2 mRNA
expression in pruritic skin of patients with AD and psoriasis was
demonstrated as well (164). However, research has consistently
shown that only few endogenous agonists for most of these
receptors are known so far and their role in the pathogenesis
chronic pruritus diseases such as AD remains still unclear.

Tropomyosin Receptor Kinase A
Trk receptors were firstly described in 1986 and three members
of the tyrosine kinase receptor family, TrkA, TrkB, and TrkC,
have been identified so far. Trk receptors are activated by
various neurotrophins including nerve-growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3

(NT-3) and neurotrophin-4 (NT-4) (223–226). The main source
of NGF are keratinocytes in the skin (227, 228), but it is also
expressed and secreted by other immune cells, such as basophils
(229), monocytes and macrophages (230), mast cells (231, 232)
and eosinophils (233) as well as by neurons (234, 235) during
inflammation. NGF binds with high affinity to its receptor TrkA
as well as the low-affinity neurotrophin receptor p75NTR. TrkA
is widely expressed across the airway smooth muscles, the lung
epithelium and sensory neurons (236, 237), but also located
on various non-neuronal cells like basophils (238), eosinophils
(233), keratinocytes (228), monocytes and macrophages (239),
mast cells (231, 232) as well as B and T cells (240, 241). Both
NGF and its receptor TrkA are suggested to play important
roles in pruritus and allergic inflammation. Several studies
reported that NGF in the skin and NGF serum levels of AD
and psoriatic patients as well as serum levels of patients with
asthma are increased (227, 242–245). Additionally, an increased
TrkA expression in keratinocytes of patients with AD has been
observed during inflammation (228). In AD it was shown, that
increased peripheral serum levels of BDNF significantly correlate
with disease severity and pruritus (246, 247). Also scratching
activities were significantly correlated to increased levels of
BDNF as shown by Hon and colleagues (248) which used a
DigiTrac model to assess scratching activities in children with
AD. In this regard, it has been shown that eosinophils are a
source of BDNF and release BDNF and are functionally activated
by BDNF with induction of chemotaxis (246–248). Thus, the
question arises if BDNF which is released by eosinophils of AD
patients is also capable to stimulate nerves. This has recently
been shown in a study by us in which we could see that BDNF
released by peripheral blood eosinophils of patients with AD
led to a significant sprouting of peripheral nerves derived from
spinal neurons of mice (247). Thus, also BDNF seems to have
an important impact in neuro-immune interaction mechanisms
and pruritus. However, NGF affects neurite outgrowth and
neuronal survival (236, 249). Interestingly, sprouting of itch-
sensitive nerve fibers, promoted by increased NGF levels, has
been observed in the skin of patients with AD (242) and in
AD-associated mice models (250, 251). Since NGF is known
to increase cutaneous innervation in AD models and might
contribute to the development of chronic pruritus, NGF and
its receptor TrkA could be targets for future treatment of
pruritus and allergic inflammation in pruritic diseases like AD or
psoriasis. A clinical study demonstrated a promising treatment
of AD by neutralizing antibodies against NGF that inhibited
the development of skin lesions and epidermal innervation
as well as scratching behavior in AD mice model (252). In
human sensory neurons, NGF up-regulated the expression and
sensitivity of TRPV1 channels by activating TrkA (253, 254).
Interestingly, TrkA inhibitor CT327 was shown to significantly
reduce chronic pruritus in patients with psoriasis as measured
by VAS in a phase II clinical study. The results demonstrated
that 62, 46, and 61% of patients treated with CT327 0.05, 0.1,
and 0.5%, respectively, had at least a 50% decrease in pruritus
VAS in comparison to 32% on vehicle (255). Further trials are
necessary to prove the anti-pruritic effects of CT327 in AD.
There is growing evidence that cutaneous NGF-TrkA-TRPV1
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signaling might be a key mechanism contributing to neurogenic
inflammation and pruritus in different dermatological
diseases (147, 255).

CONCLUSION

Our understanding of the pathogenesis of pruritus has
significantly evolved in recent years. There is a growing
body of literature on the complex crosstalk between neuronal
and immune cells that are involved in the development of acute
and chronic pruritus. Neurons directly communicate with and
regulate the function of various immune cells, such as mast cells,
dendritic cells, eosinophils and T cells in pruritus transmission
and inflammation. Immune cells release proinflammatory
mediators including cytokines, chemokines, neurotrophins,
and neuropeptides that activate sensory neurons to mediate
pruritus. Activation of these neurons leads to a release of
neurotransmitters and neuropeptides that vice versa have
a direct impact on the functional activity of immune cells.
The literature on neuro-immune crosstalk has emphasized
several key mediators and neuronal pathways involved in the
transmission of pruritus. Potential mediator and promising

receptor therapeutic targets in the skin as well as in peripheral
nerves comprises TRPV1, TRPA1, IL-31RA, TSLPR, PAR-2,
NK1R, H1R andH4R,MRGPRs and TrkA, which are highlighted
in this review (Figure 1, Tables 1, 2). Future studies targeting
neuro-immune interactions will help to unravel the underlying
mechanisms of pruritus and to develop specific therapies.
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