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Abstract: Cardiovascular-related diseases are one of the leading causes of death worldwide.
An understanding of heart movement based on images plays a vital role in assisting postoperative
procedures and processes. In particular, if shape information can be provided in real-time using
electrocardiogram (ECG) signal information, the corresponding heart movement information can
be used for cardiovascular analysis and imaging guides during surgery. In this paper, we propose
a 3D+t cardiac coronary artery model which is rendered in real-time, according to the ECG signal,
where hierarchical cage-based deformation modeling is used to generate the mesh deformation used
during the procedure. We match the blood vessel’s lumen obtained from the ECG-gated 3D+t CT
angiography taken at multiple cardiac phases, in order to derive the optimal deformation. Splines for
3D deformation control points are used to continuously represent the obtained deformation in the
multi-view, according to the ECG signal. To verify the proposed method, we compare the manually
segmented lumen and the results of the proposed method for eight patients. The average distance
and dice coefficient between the two models were 0.543 mm and 0.735, respectively. The required
time for registration of the 3D coronary artery model was 23.53 s/model. The rendering speed to
derive the model, after generating the 3D+t model, was faster than 120 FPS.

Keywords: 3D+t modeling; coronary artery; non-rigid registration; cage deformation; 4D CT

1. Introduction

Cardiovascular disease (CVD) is one of the primary causes of death worldwide, with 22.2 million
deaths expected by 2030. According to National Health and Nutrition Examination Survey (NHANES)
data from 2013 to 2016, the prevalence of CVD was 48.0% in adults over the age of 20. The prevalence
of CVD has a positive correlation with an increase with age [1]. The resulting social cost is estimated to
have been 351.3 billion dollars in the U.S. alone, from 2014 to 2015. In particular, cardiovascular disease
accounted for 14% of total medical spending in U.S., the highest rate among other major diagnostic
groups—even higher than cancer. In the global population, the burden of expenditure is even more
serious [1].

Providing sufficient information through image analysis acquired in the pre-operative diagnosis
stage eliminates unnecessary examination and helps in developing patient-specific treatment plans.

Sensors 2020, 20, 5680; doi:10.3390/s20195680 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9083-4089
https://orcid.org/0000-0001-6305-4442
https://orcid.org/0000-0002-1041-8035
https://orcid.org/0000-0001-7340-897X
http://dx.doi.org/10.3390/s20195680
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/19/5680?type=check_update&version=2


Sensors 2020, 20, 5680 2 of 26

As the heart is a continuously beating organ and there may be unexpected movements in patients (e.g.,
arrhythmia), if information on this movement can be obtained in advance, coronary artery and heart
procedures may be more efficient.

As shown in Figure 1, the ECG signal is a change in potential that is correlated with the movement
of the heart muscle. Motion of the heart produces changes in volume and pressure in the cardiac
chambers; therefore, ECG provides important information about the movement of the heart. When
CT is reconstructed by performing retrospective ECG synchronization, the movements of the heart
and coronary arteries (according to the cardiac cycle) can be obtained geometrically, and movement
information (e.g., coronary artery distortion), as well as characteristics of the coronary stenosis, can
be obtained.

Figure 1. The ECG signal and volume of the ventricle during the different phases of a cardiac cycle.

Patient-specific 4D heart shape information facilitates the following applications: accurate
coronary artery structure acquisition [2,3], analysis of 4D blood flow and stenosis [4–6], removal
of motion artifacts in the vascular region [7–9], surgical simulation for each patient [10], postoperative
evaluation and analysis [5,6], atrial motion analysis [11,12], vascular motion analysis [13,14], and
real-time deformation prediction during surgery combined with 2D images [8].

In particular, cardiac CT angiography (CTA) has an isotropic spatial resolution of less than 0.5 mm
and, so, can be used to observe the movement of the coronary artery and trabeculae of the ventricle.
In addition to grading the degree of calcification of the coronary artery and the total amount of
plaque from the CT image, it is also possible to measure the torsion of the coronary artery at a high
resolution [15]. This high-resolution spatial information can help the operator perform a procedure
appropriate for each patient before and after surgery. However, despite the high spatial resolution
of the CTA, its temporal resolution is 50–200 ms, which is lower than that of 4D echocardiography
(30–100 Hz) and cardiac MRI (30–50 ms). Therefore, proper shape interpolation for restoring high time
resolution information from CTA imagery is essential for co-operation with the other applications
while preserving high-precision anatomical details.
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One of the essential requirements of cardiac modeling in many of these applications is that
the topology of the mesh model constituting the cardiac model must be consistently preserved.
In particular, in the case of a 4D heart model, the mesh should not cause new problems (e.g.,
self-intersection or mesh degeneration), even if the positions of the vertices constituting the shape
change over time. To address these requirements, many researchers have employed the template-based
registration scheme.

The registration process matches a template model to a target model through geometric
shape deformation. The most popular registration algorithm is the iterative closest point (ICP)
method, which consists of finding the correspondence between two models and finding the optimal
transformation [16]. However, the ICP method is sensitive to the initial position and noise, while
the shape registration is limited up to rigid transformation. Non-rigid registration deals with
the deformation of the shape in addition to rigid transformations. Non-rigid registration is more
challenging, however, as non-rigid transformations not only require more correspondences to be
defined, but the solution space is much more extensive [17]. Research into the registration of 3D
non-rigid shapes has been actively conducted using the methods of delineating shape deformation
and shape correspondence.

To describe the deformation of an object, with respect to its dynamics and material properties,
many researchers have assumed shape deformation to be a physical model, such as a linear elastic
model [18], non-linear elastic model [19,20], viscous fluid [21], or diffusion model [22,23]. In
particular, the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework provides
robust deformation as a massive flow consisting of diffeomorphisms [24]. However, the physical
models are computationally expensive and sensitive to mechanical properties. On the other hand, the
statistical shape deformation model (SSM) uses a low-dimensional statistical model, in which shape
deformation is inferred from a training data set [25,26]. Although SSM reduces the computational
cost, the shape of variability is limited by the training data. Therefore, the deformation is hardly
representative of the inter-variability of patients, such as the topological discontinuity of coronary
arteries. Nora et al. described the motion modeling problem using the coronary arteries attached to
the SSM of muscles [27]. Due to the representation of the coronary artery, the deformation poorly
described the lumen diameter. Instead of modeling a priori physical and statistical information, there
have been attempts to estimate the shape transformations with landmarks and coherent motions.
Radial basis function methods express shape deformations as weighted sums of distance function for
control point changes [28]. In particular, the thin-plate spline method minimizes the bending energy,
which has a closed-form solution [29]. The most popular form of deformation is known as B-spline
free-form deformation (FFD) [26,30,31]. Rueckert et al. [32] have proved the conditions for FFD to have
diffeomorphic deformation. This method has disadvantages, however: the numerical cost increases
with the number of control points and the degree of freedom of shape deformation is fixed. Therefore,
the deformation has limited representation capacity.

In addition to deformation modeling, establishing correspondences between shapes is a critical
problem in registration. The one-to-one correspondence of the ICP method is sensitive to the
initial position and shape loss. To determine many-to-many correspondence points, Chui et al. [33]
used the fuzzy correspondence between two shapes. The problem of selecting a robust point
matching the correspondence has been interpreted as a combination of a Gaussian mixture model
(GMM) and Expectation Maximization [34]. In the GMM model, one point is the centroid of the
Gaussian distribution for the points constituting the shape, while the other point is regarded as
the data to generate [35]. The variations of GMM have different deformation models, according to
the obtained transformation parameters and the regularization term. For example, regularizing
the second derivative of the transformation leads to a thin-plate spline transformation, while
regularizing according to motion coherence theory leads to a coherent point drift transformation [36,37].
The variations of GMM have been generalized using the generalized Gaussian radial basis function [38].
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To represent the local spatial representation, an L2E estimator has been proposed, which creates a
robust sparse–dense correspondence [39,40].

However, the mixture model requires a high computational cost, as it generates a Gaussian
distribution for each of the points. Furthermore, each Gaussian distribution shares its standard
deviation among the points. The mixture model is thus sensitive to noise and shape loss. Especially
for coronary arteries, narrow and tangled structures are very challenging to model in 3D+t. This
is because the loss of blood vessel morphology can be observed in different heartbeats of the same
patient, through motion artifacts and geometrical deformations.

In this paper, we propose a 3D+t coronary artery model that can be inferred in real-time, according
to ECG signals. The overall structure of the proposed method is shown in Figure 2. The proposed
patient-specific 3D+t coronary artery motion model is divided into two processing blocks, according
to the timing of data processing; (1) a preoperative processing block, and (2) an intraoperative
usage block.

Figure 2. General framework of the proposed method.

At the preprocessing step, we first perform the segmentation of 4D CTA volumes to generate
artery models. After we have multiple coronary artery models, hierarchical cage-based registration is
performed to construct a patient-specific 3D+t model with hyperelastic regularization. The proposed
hierarchical cage deformation model more robustly/accurately registers coronary artery models in
different cardiac phases. When updating the control points of the coronary artery model, we gradually
increase the degrees of freedom of the deformation model. A modified hyper-elastic regularization
term prevents mesh degeneration problems during the control point optimization step. After the
optimal cage control point is obtained—which minimizes the shape dissimilarity of the source shape
and the target shape—we interpolate the shape control point to build a continuous 3D+t model.
The interpolated shape model provides fast shape-inference for intraoperative usage.
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In the intraoperative usage step, the ECG phase can be assessed from the patient’s real-time
signal, which is then correlated to the geometric deformation of cardiac muscles, as shown in Figure 1.
Therefore, the 3D shape of the coronary artery is provided by a continuous 3D+t model, according to
change of the ECG signal and time.

The contributions of the proposed method consist of the following:

1. A hierarchical deformation method to perform robust shape registration, even with incomplete
coronary artery models;

2. Rapid shape interpolation that enables restoring small and complex geometry in a time-varying
coronary artery model;

3. The modified hyper-elastic regularization prevents mesh degeneration during shape registration; and
4. Evaluation of the proposed method using retrospective data for eight patients, both qualitatively

and quantitatively.

2. Pre-Processing ECG-Gated 4D CT Images

In this study, we reconstructed CTA volumes for eight patients at 0% to 95% intervals (in 5%
intervals) between the RR peaks of the heart rate. We took the volumes using a 256-slice multi-detector
CT scanner (BRILLIANCE ICT 256 SLICE, Philips Healthcare) at the Cardiovascular Center of Seoul
National University Bundang Hospital. This retrospective study was approved by the Institutional
Review Board of Seoul National University Bundang Hospital (IRB No. B-2009-637-103).

The cross-sectional size of the image was 512 × 512 pixels, the average number of slices in the
Z-axis direction was 298, and the volume voxel resolution was 0.35 × 0.35 × 0.45 mm. The left
ascending and circumflex coronary arteries were segmented using the ITK-Snap software [41].
The segmented arteries were converted to mesh models using Poisson surface reconstruction, where
the average number of nodes was 10,638. We selected 75% phase mesh models as templates, as the
left ascending and circumflex coronary arteries are most clearly observed at 75% phase [42]. Figure 3
shows the models of the template and other phases.

(a) (b) (c)
Figure 3. Left ascending and circumflex coronary arteries of: (a) patient 1; (b) patient 2; and (c) patient
4. The template phase model is a white solid model, while the other phases are colored with respect to
their cardiac phases.

3. Hierarchical Cage-Based Shape Registration Method

In this section, we address the non-rigid registration method to find the optimal deformation
between coronary artery models. This section is organized as follows: (1) shape representation and
registration problems; (2) gradient descent for shape control point optimization; (3) multi-resolution
cage deformation representation; and (4) diffeomorphism supported by hyper-elasticity regularization;
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3.1. Shape Representation and Registration Problems

This section provides the basic concepts of representation and registration of shapes. Let a shape
V be V = {vi|vi ∈ R3, i = 0, . . . , n− 1}, which contains n of vertices. If Vs and Vt are source and target
shapes, respectively, the registration problem is to find an optimal transformation that minimizes
the dissimilarity between the shapes. Here, an arbitrary transformation T maps the source shape Vs

to the target shape Vt. Through the optimization process, the optimal transformation parameters x∗

minimize disparity measure as follows:

x∗ = arg min
x

d(T(x) ◦Vs, Vt). (1)

The transformation T is a mapping such that

T : Vs → V̄ = Vs + U(Vs, x), (2)

where V̄ is the deformed shape, x are the local deformation parameters, and U(V, x) is a vertex-wise
mapping.

The shape transformation T may be represented through the modification of a coarse cage mesh
that envelops the source shape. Let a region Ω bound the shape Vs in 3D. The sub-region Ωr is a
sub-divisions of Ω, where Ω =

⋃
∀r Ωr and Ωi ∩Ωj = ∅, i 6= j. If we create the m×m×m regular

lattice grid on the region Ω, the sub-divisions of Ω contain (m− 1)3 control vertices and m3 sub-regions.
Hereby, the sub-region Ωr is defined as an 8-point cuboid. The eight corner points of Ωr are given
as Pr = {pi|pi ∈ R3, i = 0, . . . , 7}. The linear combination of cage control points and their local
coordinates represent the vertices of the shape Vs. If the vertex v ⊂ Ωr, then the representation of the
vertex by the sub-region control point is given as below:

v = F(v; Pr) =
7

∑
i=0

ϕi(v)pi, (3)

where φi is a trilinear shape function for assigning local coordinates, such as

ϕ0(vx, vy, vz) = (1− vx)(1− vy)(1− vz)/8

ϕ1(vx, vy, vz) = (1 + vx)(1− vy)(1− vz)/8

ϕ2(vx, vy, vz) = (1 + vx)(1 + vy)(1− vz)/8

ϕ3(vx, vy, vz) = (1− vx)(1 + vy)(1− vz)/8

ϕ4(vx, vy, vz) = (1− vx)(1− vy)(1 + vz)/8

ϕ5(vx, vy, vz) = (1 + vx)(1− vy)(1 + vz)/8

ϕ6(vx, vy, vz) = (1 + vx)(1 + vy)(1 + vz)/8

ϕ7(vx, vy, vz) = (1− vx)(1 + vy)(1 + vz)/8. (4)

From the previous definition of a cage representation, the motion of vertex v in the direction v̄ is
given as follows:

u(v, Pr) = v̄− v

=
7

∑
i=0

ϕi(v)(pi + ∂pi)−
7

∑
i=0

ϕi(v)pi

=
7

∑
i=0

ϕi(v)∂pi,
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where u(v, x) is the motion of vertex v and ∂pi is the motion of control point pi. Therefore, the shape
deformation is only dependent on the change of control points, as shown in Figure 4. Therefore, the
parameter of the cage representation of the transformation T is given as follows:

x = {∂pi|∂pi ∈ R3, i = 0, . . . , 7}. (5)

(a) (b) (c)

(d) (e) (f)
Figure 4. Hierarchical registration with different deformation depths. (a–c) Level 1; (d–f) Level 2
registration. (a,d) show cage partitioning at different levels. (b,e) show correspondence searching,
while (c,e) show the gradient descent-based deformation update.

3.2. Gradient Descent for Shape Control Point Optimization

The optimization of the transformation is defined as the process of minimizing a metric. If we set
the disparity measure as the squared Euclidean distance between the correspondence pair, then

d(vs, vs, P) = ‖T(P) ◦ vs − vt‖2 (6)

= ‖F(vs; P)− vt‖2 (7)

= ‖
7

∑
i=0

ϕi(vs)pi − vt‖2, (8)

where vs ∈ Vs, vt ∈ Vt, and vs, vt is correspondence pair.
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Thus, the gradient can be denoted as the sum of the difference vector of the corresponding pair
multiplied by the weight of each control point. Therefore, the partial derivative of the disparity
measure for a cage control point pi = (pix, piy, piz) is

∂

∂pi
d(vs, vt, P) =

∂

∂pi
‖vs − vt‖2 (9)

= 2‖vs − vt‖ ·
∂

∂pi
‖

7

∑
i=0

ϕi(vs)pi − vt‖ (10)

= 2‖vs − vt‖ · ϕi(vs). (11)

The Jacobian matrix for the disparity measure of one correspondence pair is

∂

∂P
d(vs, vt, P) =


∂

∂p0
d(vs, vt, P)

∂
∂p1

d(vs, vt, P)
...

∂
∂pm

d(vs, vt, P)

 =


∂p0x ∂p0y ∂p0z
∂p1x ∂p1y ∂p1z

...
∂pmx ∂pmy ∂pmz

 . (12)

The update of cage control points uses the distribution of the differences of corresponding pairs,
which are the vectors from sources to targets generated inside the sub-regions Ωr. At this time, the
robust correspondence selection potentially supports the update of cage control points. To establish
the correspondence pair robustly, we constrain the correspondence searching process using orientation
filtering, as follows:

{vs, vt} =
{

Paired, if θ(~ns, ~nt) < θThreshold

Not paired, otherwise
, (13)

where θ(·, ·) is angle between the two vectors, and ~ns and ~nt are the vertex normals of vs and vt,
respectively. We set θThreshold = 30◦. The Jacobian matrix for the sum of the squared Euclidean
distance is:

∑
{vs ,vt}∈∀IVs

∂

∂P
d(vs, vt, P) =


∑ ∂p0

∑ ∂p1
...

∑ ∂pm

 , (14)

where IVs is the set of correspondence pairs.

3.3. Multi-Resolution Cage Deformation Representation

In this section, we present a cage deformation method using multi-resolution to represent a
gradual deformation. In the registration process, the resolution of the cage determines the degree of
freedom of shape deformation. With increasing resolution of the cage, the deformation model can
represent a more detailed shape change. However, a dense cage has the disadvantage that it can
lose the overall shape. A method for maintaining local shape features through multi-resolution or
hierarchical data structures is, thus, used as a complementary method.

We assumed the generation of the cage based on a regular lattice grid. The primitive shape of
the cage obtained from the lattice structure is a cube with eight vertices and six quadrilateral faces,
where the points inside the cage can be represented as linear combinations of cage control vertices. As
shown in Figure 4, the cage can be partitioned into the inner sub-regions, where the control points
of this sub-region can be created using the control points of the outer region. We denote the vertex v
using cage control points Pn at the deformation depth of n as follows:
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v = F(v; Pn) =
7

∑
i=0

ϕi(v)pn
i , (15)

where pn
i is ith cage control point at the deformation depth n. If we recursively acquire the sub-region

of the region Ω that surrounds the source model, we can denote the higher-level control points using
the lower level control points. The generalized formula presents the corner points of the sub-division,
which are recursively described in the multi-resolution process below:

Pm = F(Pm; Pn) =
7

∑
i=0

ϕi(Pm)pn
i , (16)

where m > n and m, n ∈ N. Thus, if we represent the shape using a chain of cage deformations, the
deformed vertex v̄, with respect to the level n deformation, is

v̄ = F(v; Pn, ∂Pn) =
7

∑
i=0

ϕi(v)(pn
i + ∂pn

i ). (17)

Similarly, the deformed vertex v̄ by level n deformation after level n− 1 deformation is

v̄ = F(v; Pn, Pn−1) (18)

=
7

∑
i=0

ϕi(v)(
7

∑
j=0

ϕj(pi)(pn−1
j + ∂pn−1

j ) + ∂pn
i ).

To cooperate with the gradient descent, we reformulate ∂
∂pi

d(vs, vt, P) as a multi-resolution process.

The partial derivative of the given cost function at the (n− 1)th level is given as follows:

∂

∂pn−1
i

d(vs, vt, P) =
∂

∂pn−1
i

‖
7

∑
i=0

ϕi(vs)pn
i − vt‖2

=
∂

∂pn−1
i

‖
7

∑
i=0

ϕi(vs)
7

∑
j=0

ϕj(pn
i )pn−1

j − vt‖2

= 2‖vs − vt‖ · ‖
7

∑
i=0

ϕi(vs)ϕj(pn
i )‖. (19)

Modification of the control point ∂pi in the multi-resolution cage sub-division is carried out by

∂pi = ∂pn
i + ∂pn−1

i + · · ·+ ∂p1
i . (20)

3.4. Diffeomorphism Supported by Hyper-Elasticity Regularization

Although hierarchical cage deformation recursively represents shape deformation to avoid local
minima, dense cages possibly lead to more cage degeneration. Therefore, an appropriate regularization
process is required when applying hierarchical transformations. For plausible deformation, we used
hyper-elastic regularization, which prevents unexpected partial deformation. We utilized and modified
the study of Burger et al. [20], which can be easily extended to the cage deformation setting. As shown
in Figure 5, the 24 sub-regions of the cage were defined using corner points pi and seven auxiliary
points, which are the volume points pV and face points pF. Tetrahedral sub-regions are defined by the
span of a volume point and corresponding face points. Regularization ensures that the transformation
is a diffeomorphism; that is, it is reversible and smooth. Hyper-elastic regularization, as defined by
Burger et al. [20], is given by
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Shyper(x) =
∫

α1ηvol(x) + α2ηsur(x) + α3ηlen(x)dΩ. (21)

where αi are balancing parameters. The functions ηvol , ηsur, and ηlen penalize changes of volume,
surface, and length, respectively. Here, we set the balancing parameter as 10.0 for all experiments.
Burger et al. [20] utilized the average points to delineate the volume point pV and six face points pF.
However, if the cage is concave (i.e., due to large deformations), the face and volume points are not
maintained inside the cage, as shown in Figure 5. As a result, the functions ηvol and ηsur may have
negative values, which can lead to the failure of gradient descent.

(a) (b) (c) (d)
Figure 5. Cage sub-division with hyper-elastic regularization: (a) A tetrahedral sub-division of the 3D
cage volume, which is the span of face (blue) and volume (green) points; (b) sub-division of cage face;
(c) the average points (red) located outside of the cage and their negative areas (red triangles); and
(d) the equal-area points (blue) located inside of cages despite large deformations and their positive
areas (yellow triangles).

To achieve robust regularization, we define the face and volume vertices of each cage to have the
same sub-area and sub-volume inside of the cage. Assuming that the face point pF = (pFx , pFy , pFz) is
located inside the quadrilateral, the position pF of the points dividing the areas4p0 p1 pF,4p1 p2 pF,
4p2 p3 pF, and4p3 p0 pF is defined as follows;

4pi pi+1 pF = (pi+1 − pi)× (pF − pi)/2 = [pi+1 − pi]×(pF − pi)/2, (22)

where i = {0, 1, 2, 3}. The least-squares solution of the above conditions for all triangles is
[p1 − p0]×
[p2 − p1]×
[p3 − p2]×
[p0 − p3]×


pFx

pFy

pFz

 =


[p1]×p0

[p2]×p1

[p3]×p2

[p10]×p3

 . (23)

Similar to the face point, we assume that the volume point is located inside the hexahedron.
The volume point pV = (pVx , pVy , pVz) partitions 24 sub-tetrahedra of the cage. The volume of a single
tetrahedron is given as

Vpi,j pi+1,j pFj
= (pi+1,j − pi,j)× (pFj − pi,j) · (pV − pi,j)/6, (24)

where pFj is jth face point of the hexahedron and pi,j is the ith corner point of the jth face.
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The volume point pV is obtained by solving the following least-squares problem:

[p1,0 − p0,0]×pF0 − [p1,0]×p0,0

[p2,0 − p1,0]×pF0 − [p2,0]×p1,0

[p3,0 − p2,0]×pF0 − [p3,0]×p2,0

[p0,0 − p3,0]×pF0 − [p0,0]×p3,0
...

[p0,5 − p3,5]×pF5 − [p0,5]×p3,5


pVx

pVy

pVz

 =



−[p1,0]×p0,0 · pF0

−[p2,0]×p1,0 · pF0

−[p3,0]×p2,0 · pF0

−[p0,0]×p3,0 · pF0
...

−[p0,5]×p3,5 · pF5


. (25)

The robust face/volume points improve the numerical stability of the cage deformation. The cost
function is a combination of the dissimilarity measurement and regularization functions.

4. Interpolation of Shape Control Points

In this section, we introduce the shape interpolation and restoration for real-time usage of the 3D+t
coronary artery model. According to Equation 3, the shape of the coronary artery relies on the locations
of the control points. Therefore, as we derive the intermediate positions of control points among
cardiac phases, the corresponding shape is restored. To interpolate the positions of control points, we
consider a set of control point at the kth phase as a vector Pk, such that Pk = {p0, p1, . . . , pn−2, pn−1},
where pi ∈ R3 and n is the number of cage control points. From the registration results, we interpolate
the given sets of control points using periodic cubic spline interpolation [43], due to the (cyclic) nature
of the heart’s motion. The number of knots is the same as the number of reconstructions from 4D CTA.

Let a phase-varying vector S(t) = {s0(t), . . . , sn−1(t)} be the set of interpolated control points,
where si(t) is the ith control spline for the cardiac phase t. The spline vector S(t) has C2 continuity
with respect to the phase t. The spline function S(t) maps phase t to the set of cage control points, such
that S : R→ R3×n. Then, the vertices of shape are restored using the following equation:

v(t) = F(v; S(t)) = ∑
i∈IV

ϕi(v)si(t). (26)

5. Evaluations and Results

We evaluated the proposed method both qualitatively and quantitatively on data from eight
patients. The proposed method was tested on an Intel (R) Xeon (R) W-2133 workstation with
CPU@3.60 GHz and 32 GB ram. We partially multi-threaded the computation of cost function
measurements using OpenMp [44] and Thread building block [45] during the optimization process.
The proposed method and comparison target methods were written in C++.

5.1. Quantitative Evaluations

In the quantitative evaluation of non-rigid registration, we used metrics considering: (1) the
closest point-mesh Euclidean distance (ED) from the target model to the matching result and (2) the
dice coefficient (DC) obtained from the mesh boolean operation. As we set the number of iterations to
300/maxDepth for each depth, the total number of iterations for different max depths was set to be
the same.

5.1.1. Trade-off between Deformation Depth and Computation Time

First, we observed the trade-off between the degrees of freedom of deformation and computation
time. As shown in Table 1, we compared the different depths of deformation incrementally, from
1 to 5. As shown in Figure 6, the ED and DC worsened, as the phases were far from the template
phase. As the shape of the blood vessel was a thin tube shape, the ED and DC values noticeably
deteriorated with slight movement. As the deformation depth increased, the ED values gradually
decreased and the DC values increased more prominently; both metrics flattened for the other cardiac
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phases. The metrics converged after deformation depth 4. The comparison results for the other patients
are given in Appendix A.

Table 1. Trade-off between computation time and accuracy.

Method Cage Resolution Computation Time (s) Average Distance (mm) Dice Coefficient

HierCage [1, 1, 1] 21.73 0.668 ± 0.255 0.655 ± 0.096
HierCage [2, 2, 2] 23.05 0.597 ± 0.234 0.696 ± 0.077
HierCage [3, 3, 3] 22.91 0.566 ± 0.227 0.721 ± 0.068
HierCage [4, 4, 4] 23.52 0.543 ± 0.222 0.735 ± 0.064
HierCage [5, 5, 5] 33.00 0.534 ± 0.221 0.741 ± 0.064

GRBF_KC [4, 4, 4] 40.99 0.615 ± 0.218 0.666 ± 0.088
GRBF_L2 [4, 4, 4] 40.92 0.600 ± 0.207 0.671 ± 0.084
TPS_KC [4, 4, 4] 33.00 0.553 ± 0.191 0.681 ± 0.080
TPS_L2 [4, 4, 4] 32.21 0.530 ± 0.17 0.690 ± 0.075
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Figure 6. Effect of cage deformation depth for patient 1 in different cardiac phases: (a) dice coefficients;
and (b) average distance from target to deformed model.

5.1.2. Comparison with Other Methods

In the second experiment, the proposed registration method’s performance was compared with
that of other non-rigid matching algorithms. As the comparison target of non-rigid registration, we
selected the variations of GMM methods, which are combinations of a deformation model and a cost
function. The deformation models were thin-plate spline (TPS) and generalized radial basis function
(GRBF), while the cost functions were kernel correlation (KC) or L2 distance. The comparison targets
used L-BFGS-B as an optimization method.

For comparison, each deformation model had the same number of deformation control points.
Considering the convergence of accuracy from the previous analysis, we set the number of grid and
control points as 16× 16× 16 and 4913, respectively. As shown in Figure 7, the proposed method
had higher DCs than the comparison targets at the interval [15%, 35%] of cardiac phases, where the
interval had a DC value of less than 0.2 before registration. Although the ED metrics showed a similar
trend, compared with other methods, a significant improvement in DC was observed. The comparison
results for the other patients are given in Appendix A.
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Figure 7. Comparison with other algorithms for patient 1 at the different cardiac phases: (a) dice
coefficients; and (b) average distance from target to deformed model.

5.1.3. Interpolation Accuracy

Furthermore, we evaluated the accuracy of the interpolated 3D+t coronary artery models
by comparing them with the segmented models. The proposed method created a smooth and
non-degenerate 3D model by interpolating the cage control points over sampled cardiac phases,
as shown in Figure 8. Our data sets were evenly reconstructed from 4D CT within the R-R peak with
5% sampling interval. Thus, we had 20 keyframes (V0%, V5%, . . . , V95%). To evaluate the effect of
sampling the cardiac phases, we chose phase sets from the given 20 keyframes as follows: (1) Odd 10:
[5, 15, 25, . . . , 85, 95]; (2) Even 10: [0, 10, 20, . . . , 80, 90]; (3) Odd 5: [5, 25, 45, 65, 85]; and (4) Even 5:
[0, 20, 40, 60, 80]. Figure 9 shows the differences among the phase selections. Although the sampled
phase became sparse, the DC of the interpolated result showed that the results had a lower bound.
The ED still showed a flattened value, when compared to that before registration. The comparison
results for the other patients are given in Appendix A.

(a) (b) (c) (d)
Figure 8. Comparison of the registered model and interpolated model for patient 5: (a) Template
(green) and 40% coronary artery (red); (b) registered model (blue); (c) interpolated model (yellow); and
(d) comparison of registered model and interpolated model.
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Figure 9. Comparison of interpolation sampling for patient 1 in the different cardiac phases: (a) dice
coefficients; and (b) average distance from target to deformed model.

5.2. Qualitative Evaluations

In the qualitative evaluation, the role of the visualization effect of hyper-elastic regularization,
geometrical comparison with other algorithms, comparison of the matching result and interpolation
result model, and the limitations of the interpolation model were investigated.

5.2.1. The Effect of Hyper-Elastic Regularization and Hierarchical Deformation

High-order deformation models often converge to a local minimum, which may look visually
implausible. Figure 10a,b show examples of shape shrinkage when the target model contains loss
of shape. The hyper-elastic regularization constraints lead to shape preservation, thus providing a
plausible result, as shown in Figure 10c,d.

When compared with the other algorithms, Figure 11 shows an example where shape registration
is defective at the excessively deformed and twisted parts. As the registration process converged to
a local minimum, the deformation model represents the further details of local deformation. On the
other hand, hierarchical cage deformation gradually acquired an optimal solution, passing from coarse
to dense resolution, to avoid local minima, as shown in Figure 12. In this process, the low degree of
freedom deformation serves as the initial value for the deformation in the next step. Therefore, local
minima can be avoided more efficiently.

(a) (b) (c) (d)
Figure 10. The effect of modified hyper-elastic regularization. We aligned the source model to the target
model (red), which contains a loss of branch. The figures show effects: (a,b) without regularization
(yellow) and (c,d) with regularization (blue).
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(a) (b) (c)
Figure 11. Qualitative comparison of GMM and the proposed method: (a) Initial template model
(green) and target coronary artery (red); (b) result of the proposed method (blue); and (c) result of
Gaussian mixture modeling with TPS+L2 (yellow).

(a) (b) (c)

(d) (e) (f)
Figure 12. Qualitative comparison of the proposed method while changing the deformation resolution:
(a) Initial template model (blue) and target model (red); (b–f) the results of registration (blue) at
different cage resolutions from [1, 1, 1] to [5, 5, 5], respectively.

5.2.2. The Representation Power of Interpolated Model

The proposed shape interpolation method may have limited representation ability for intermediate
shapes. This limited shape representation is due to the recurring shape of the adjacent phases.
We observed that the shape interpolation method restrictively delineates the intermediate shape.
The shapes of the neighboring phases to the target phase resemble each other, but the target shape and
the neighbor shapes are considerably different, as shown in Figure 13e.
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(a) (b) (c) (d) (e)
Figure 13. Comparison of the registered model and interpolated model for patient 8: (a) Template
(green) and 95% coronary artery (red edges); (b) registered model (blue); (c) interpolated model
(yellow); (d) comparison of registration interpolation; and (e) comparison of neighboring coronary
artery models (90%, dark blue; 0%, light green).

6. Discussion and Conclusions

In this paper, we proposed a method for generating a 3D + time vessel model from 4D CT
images that can be used in real-time. Our purpose was to create a 4D vascular model without mesh
degeneration, interpolate the model at high speed, and express a more precise shape.

To create a 4D vascular model, we matched the diastolic coronary artery model with the coronary
artery model in other phases through hierarchical cage deformation. During the registration process,
hyper-elastic regularization was used as a shape preservation constraint. The shape control points
obtained as a result of registration were interpolated into a cyclic cubic spline to create a 3D+t model.
The shape change depends only on the control points of the cage. The rapid deformation application
and the preservation features of the local information are beneficial in the shape registration process.

To evaluate the precision of the proposed method, quantitative and qualitative evaluation
was performed on 160 CTA volumes acquired from eight patients. In the quantitative evaluation,
we assessed:

1. The trade-off between the shape matching accuracy and calculation time according to the
hierarchical deformation;

2. The comparative evaluation with other methods;
3. The accuracy of the shape interpolation model, according to the time sampling interval.

In the step of measuring the shape matching precision according to the hierarchical deformation,
we observed that the matching precision converged in the fourth step of the hierarchical deformation,
where the calculation time was 23.53 s on average. In the fifth deformation depth of hierarchical
transformation, the matching accuracy slightly increased, but the required time increased by 28.70%
(to 33.00 s). In the hierarchical transformation of the cage creation stage, the control points constituting
the cage increased exponentially, as a regular grid was used. We obtained the mean distance with
precision of a 0.543 mm and standard deviation 0.222 in step 4 of the hierarchical transformation,
where the Dice coefficient obtained an average of 0.754 and a standard deviation of 0.064.

Compared with other algorithms, the GMM method requires the creation of a mixture model for
each point and, so, even with the same degree of freedom of transformation, the calculation time was
as high as 40 s for the GRBF model and 33 s for the TPS model. In addition, in the average distance
index, TPS_L2 was 0.530 mm, which had an error lower than that (0.543) of the proposed method;
however, when comparing the Dice coefficient, TPS_L2 was observed to be 0.690, 0.045 points lower
than the index of the proposed method (0.735).

If the indicators of DC and AD values conflict with each other, it is necessary to determine which
indicator is better to express the accuracy of the matching result; for example, (1) high DC value and
high AD value or (2) low DC Value and low AD value. At this time, we decided case (1) was a better
indicator. This was because, in the vascular model between 15% and 35%, which showed a great
difference with the 75% phase, a difference in AD values between the algorithms was not significantly
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observed, but the difference in DC values was noticeable. This was not only consistently observed in
the quantitative evaluation of patient data, but also explains the differences arising from inappropriate
deformations occurring in excessively twisted blood vessels during the qualitative evaluation.

The precision of the shape interpolation model was measured with different phase-sampling sets,
where the accuracy was worsened with a larger phase-sampling interval. However, this limitation
may be resolved by increasing the temporal resolution and by co-operating with the other real-time
imaging systems, such as X-ray angiography or 4D US.

A qualitative evaluation was performed to support the quantitative evaluation mentioned above,
as well as to observe the effect of the proposed model on the visualization stage. In the qualitative
evaluation, (1) the effect of the modified hyper-elastic regularization and hierarchical transformation,
and (2) the limitations in shape interpolation were observed.

When we observed the effect of hyper-elastic regularization, the shape was transformed to be
visually plausible when hyper-elastic regularization was used. This phenomenon was particularly well
seen in the coronary artery model with loss of shape. This is a characteristic obtained by minimizing
the excessive deformation by robustly obtaining face points and volume points against the rapid
degeneration of the cage mesh due to incorrect correspondence pairs. Compared with other non-rigid
algorithms, the proposed method was able to cope with the local minima that occur during the
optimization process by hierarchically performing the transformation effectively. In particular, it
was shown that, in the vascular model with an excessive twist, optimal deformation was gradually
obtained from low-dimensional deformation.

In summary, the proposed 3D+t vascular modeling method utilized hierarchical deformation
for robust shape registration, while interpolation of the registered vascular structure enabled the
restoration of small and complex geometries due to the cardiac cycle.

The electric potential of the myocardium generates the ECG signal, and the electric potential
of the myocardium is related to movement and contraction of the heart. As an observation tool of
the myocardium, the proposed method can provide an alternative to real-time imaging by using the
ECG signal and 4D CT. In intraoperative situations, invasive coronary angiography is a method for
monitoring the movement of the coronary artery, which provides limited deformation information
(up to the 2D plane). With the proposed method, we expect that 3D contraction and strain of the
myocardium, according to the ECG signal, can be observed, as the coronary arteries are attached to the
epicardium. The ability of motion monitoring is directly related to the evaluation of the physiological
function of the myocardium.

In addition, the modified hyper-elastic regularization prevented implausible deformation and
mesh degeneration, which must be avoided in the analysis of 4D blood flow. We demonstrated the
accuracy of the proposed method by presenting qualitative and quantitative evaluations using data
from eight patients.

Therefore, we expect that the proposed 3D+t vascular model can be utilized in real-time
applications such as (1) pre-operative blood flow analysis, which requires rapid shape creation without
mesh degeneration; and (2) 2D invasive coronary angiography-3D shape registration during the
intervention, where it can be used as an image guidance tool that provides real-time shape information
according to the ECG signal during percutaneous coronary intervention.

As a limitation of this study, since the deformed model of the proposed model is limited to a 3D
mesh, blood vessel segmentation is required in phases other than the template model. In a future study,
we will conduct a study on a volume–template mesh model matching method which can be applied to
volumetric data, including shape loss, in order to eliminate unnecessary repetitive processes.
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Appendix A. Patient-Wise Evaluations

Appendix A.1. Dice Coefficients at Different Levels of Deformation
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Figure A1. (a–h) Dice coefficients at different levels of deformation from patient 1 to patient 8.



Sensors 2020, 20, 5680 19 of 26

Appendix A.2. Average Distances at Different Levels of Deformation

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Av

er
ag

e 
di

st
an

ce
(m

m
)

Cardiac phase

 Initial
 Depth 1
 Depth 2
 Depth 3
 Depth 4
 Depth 5

(a)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(b)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(c)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(d)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(e)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(f)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(g)

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e 

di
st

an
ce

(m
m

)

Cardiac phase

(h)
Figure A2. (a–h) Average distances between target model and deformed models for Patients
1–8, respectively.



Sensors 2020, 20, 5680 20 of 26

Appendix A.3. Dice Coefficients for Different Methods
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Figure A3. (a–h) Dice coefficients between target model and deformed models for the different
cardiac phases.
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Appendix A.4. Average Distances for Different Methods
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Figure A4. (a–h) Average distances between target model and deformed models for the different
cardiac phases.
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Appendix A.5. Dice Coefficients for Different Phase Sampling Methods

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0
D

ic
e 

C
oe

ffi
ci

en
t

Cardiac Phase (%)

 Initial
 Full
 Odd10
 Even10
 Odd5
 Even5

(a)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(b)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(c)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(d)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(e)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(f)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(g)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(h)
Figure A5. (a–h) Dice coefficients between target model and deformed models for the different
cardiac phases.
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Appendix A.6. Average Distances for Different Phase Sampling Methods
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Figure A6. (a–h) Average distances between target model and deformed models for the different
cardiac phases.
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