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Abstract

Background: Gene regulatory networks play essential roles in living organisms to control growth, keep internal
metabolism running and respond to external environmental changes. Understanding the connections and the activity
levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms
that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks,
they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability
of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network
reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element.

Results: This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms
to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This
method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different
combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient
combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide
gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the
predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF
binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The
reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In
addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have
been detected by using our reconstructed network.

Conclusions: The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene
regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network
reconstruction algorithms significantly improves both detection of new links and reduces that rate of false
positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links
with promising biological significance for isobutanol stress and other conditions.

Background

Gene regulatory networks play an essential role in con-
trolling gene expression and ensuring that the right
genes are expressed or silenced at the right time in the
right place to make the organism function appropriately.
Better understanding of gene regulatory structure aids
biological researchers and biochemical engineers in
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obtaining more complete views of the complex gene
expression and regulatory mechanisms in organisms.

In the gene regulation process, an active transcription
factor (TF) can bind DNA and control gene expression.
However, many TFs are not inherently active. Complex
mechanisms, such as forming dimers, interacting with
signal metabolites or binding specific micro-RNAs, are
needed in order to control the activities of these TFs
[1]. The activities of TFs also differ in different environ-
ments or during specific periods of cell development.
This activation level is called transcription factor activity
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(TFA) [1] (Figure 1). Thus, TFA is an essential compo-
nent of gene regulatory networks. It regulates gene
expression in response to internal and external signals
to ensure appropriate gene expression.

Since TFA is governed by various complex molecular
interactions, it is difficult to determine directly from
experiments, especially if the activation mechanism is
unknown. However, it is possible to computationally pre-
dict the change of TFAs relative to a reference state
using transcriptome data and a known TF-gene network
architecture [1,2]. Network Component Analysis (NCA)
developed by Liao et al. defines the problem of calculat-
ing TFAs as optimization of a linear least square matrix
decomposition. Liao et al. solve the problem using an
expectation maximization (EM) approach [3]. Fast Net-
work Component Analysis (FastNCA) uses singular value
decomposition (SVD) and a matrix projection technique
to approximate the linear least square matrix decomposi-
tion problem defined in NCA[4]. Similarly, Alter and
Golub use SVD and pseudo-inverse projection, and inte-
grate ChIP and microarray data to calculate the hidden
TFA layer between TFs and genes [5]. ChIP data provides
additional information on proteins’ DNA binding occu-
pancy. Gao et al. developed an algorithm that combines
microarray data for mRNA expression and transcription
factor occupancy to define the regulatory network (MA-
Networker algorithm) to predict TFAs based on ChIP
and transcriptome data using multivariate regression and
backward variable selection [6]. With the predicted
TFAs, Gao et al. calculate the TF-gene coupling factor
using Pearson Correlation [6]. Boulesteix et al. applied
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statistically inspired modification of the partial least
square (SIMPLS) algorithm to find TFAs [7]. Many more
complex models are also applied to predict TFAs. For
example, Nachman et al. apply the Bayesian Network
approach to provide a probabilistic model to predict
TFAs [8]. The State-space model by Li et al. assumes the
TFEAs are affected by the TF gene expressions of previous
time points [9]. Probabilistic dynamical models by San-
guinetti et al. consider the possibility of the same TF hav-
ing different activities on different target genes [10]. A
Gaussian process model developed by Gao et al. uses the
Bayesian marginalization approach to predict TFAs [11].
Besides predicting TFAs from gene expression data and
TF network structures from experiments and literature
data, DNA sequence motif information is also widely
used (e.g. searching for DNA binding site of TFs) in
many methods to infer potential TF-gene links to obtain
a more complete TF network structure and improve the
prediction of TFAs [2]. However, compared to matrix
decomposition and regression approaches, these complex
models require more computational power. Thus, these
complex models either cannot deal with large scale TFAs
or they predict large scale TFAs by converting TFAs into
binary.

High-throughput technologies have led to many algo-
rithms for the reconstruction of large scale gene regulatory
networks [12]. For example, many sequence analysis
approaches which identify potential TF binding sites have
been developed [13]. However, many of the predicted
potential TF binding sites are not functional (false positive
predictions) [12]. From ChIP-chip technology, potential
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Figure 1 Gene regulatory network model. In this gene regulatory network model, a layer of Activated Transcription Factors added between
the Transcription Factors layer and Gene layer. Only activated transcription factors can regulate the expression of genes through the gene
regulatory links, inactivated transcription factors do not have regulatory links to the target genes. And the expression level of genes regulated by
activated transcription factors changes by the effect of regulation, and the changed expression levels of genes affect the amount of the
translated transcription factors.
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gene regulatory effects can be derived by identifying the
portions of a genome that are bound by a particular TF in
vivo [14]. Transcriptome data (also known as gene expres-
sion data) measured by genome-wide DNA microarrays
are widely used for gene regulatory network reconstruc-
tions. For instance, Stuart et al. use correlation coefficients
between mRNA levels of genes as relevance scores to
reconstruct correlation networks [15]. The interacting
genes are predicted by detecting the correlation score
above some set threshold. Other algorithms such as
RELNET (RELevance NETworks) [16] and ARACNE
(Algorithm for the Reverse engineering of Accurate Cellu-
lar NEtworks) [17] use mutual information as the rele-
vance scores. The CLR (Context Likelihood Relatedness)
[10] algorithm uses an adaptive background correction
method on the relevance scores to improve precisions
[18]. CLR significantly improved the performance of gene
regulatory network reconstruction, and is widely adopted
in the latest developed gene regulatory network recon-
struction algorithms. In the field well known conference
on Dialogue for Reverse Engineering Assessments and
Methods (DREAM) [19], many winning algorithms are
based on CLR. For examples, the best performer algorithm
in DREAM2 Challenge 5, synergy augmented CLR (SA-
CLR), introduced three way mutual information instead of
the pair-wise mutual information in the original CLR [20].
Madar et al. developed a ordinary differential equation
(ODE) based dynamic model extension of CLR (mixed-
CLR/tl(time-lagged) CLR integrated with Inferelator 1.0)
to treat steady-state data and time-series data separately
and had an outstanding performance on DREAM3 and
DREAM4 100-gene in silico network challenge [21,22].
Huynh-Thu et al. developed a regression and tree based
algorithm to reconstruct gene regulatory networks and
awarded the best performer in DREAM4 in silico Multi-
factorial challenge [23]. Pinna et al. developed a graph ana-
lysis based algorithm to predict directed gene regulatory
network from gene knockout experiments [24].

Many gene regulatory network reconstruction algo-
rithms focus only on time series transcriptome data to
develop dynamic models [25]. These include network
identification by multiple regression [26], microarray
network identification [27] and multi-scale time-correla-
tion estimation [28]. time-series network identification
[29], directed information-based CLR [30]. Dynamic
Bayesian network models use a Bayesian Framework to
reconstruct gene regulatory networks [31,32].

Time-series based algorithms and dynamic Bayesian
networks models can provide realistic models to recon-
struct gene regulatory networks. However, due to a lack
of closely spaced time-series data and computational
power, these algorithms are difficult to apply on a gen-
ome-wide scale. Relevance score based algorithms are
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more efficient computationally and can integrate many
different types of transcriptome data.

The standard simplified two-layer (TF-gene) model
assumes a gene regulatory network model in which
expressed TFs affect their target genes directly, despite
the fact that TFA plays an important role in gene regu-
lation. This simplification may lead to large false positive
detection rates. Recently, the problem that TF gene
expression does not necessarily correlate with target
gene expression was noted in [33]. This discrepancy was
addressed using a knowledge base representation of a
TF expression by averaging the expressions of its target
genes [33]. In our GTRNetwork model, we introduce a
hidden layer of TFAs into relevance score approaches
which connects TFs and their target genes. The three
layer model (Figure 1) is more realistic than the two-
layer model, and more biologically reasonable than the
knowledge base representation model. The GTRNet-
work model results in an approach to reconstruct large
scale genome-wide gene regulatory networks that is
both biologically more meaningful and computationally
feasible.

The proposed Gene expression and Transcription
factor activity based Relevance Network (GTRNet-
work) is a novel gene regulatory network reconstruc-
tion algorithm. It introduces a hidden layer of TFAs
into relevance score based network reconstruction
algorithms (Figure 2). The GTRNetwork combines
relevance score based algorithms and TFA prediction
algorithms, and generally follows two major steps. In
Step 1, TFA ratios are predicted from transcriptome
data and a specified TF-gene network topology. Tran-
script abundance ratios can be obtained from ¢cDNA
microarray or short read sequencing technology data.
TE-gene network topologies can be assembled from
online databases, such as RegulonDB [34]. However,
TFA prediction algorithms are only based on the
known TF-gene network topology and not able to pre-
dict new regulatory links. In Step 2 of GTRNetwork,
gene regulatory networks are reconstructed from the
gene expression ratio data and the predicted TFAs.
Instead of using gene expression level as the only
input to detect relationships between TFs and genes,
GTRNetwork uses the relevancies between TFs and
genes estimated based on the TFA and gene expression
ratios. A check operon step can be used to improve
the sensitivity of regulatory link detection. When gene
operon information is available, it can be integrated
after obtaining the reconstructed gene regulatory net-
works. By using gene operon information, when one
gene in the operon is detected as a TF target, other
genes in the same operon are automatically linked to
the same TF.
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Figure 2 Gene expression and Transcription factor activity based gene Regulatory Network (GTRNetwork) framework. GTRNetwork
algorithm has two steps. Step 1 (Yellow) take input of transctriptome data, predict transcription factor activities (TFAs) of TFs from known TF-
Gene Network Topology. Step 2 (Purple) take the input of trancriptome data and introduce the predicted TFAs from step 1 to reconstruct gene
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Results

Selection of TFA prediction algorithms and network
reconstruction algorithms

Different TFA prediction algorithms and network recon-
struction algorithms affect the performance of the
GTRNetwork method. In this research, the task is to
reconstruct gene regulatory networks of E. coli in the
whole genome scale, which includes over 4000 genes
and 160 TFs. In TFA prediction algorithms, only the
algorithms using matrix decomposition and regression
approaches could fit the computational requirements
and scale needs of GTRNetwork algorithm for a whole
genome. Three major approaches to predict TFAs are:
gNCA-r which uses expectation maximization (EM) [3],
FastNCA which uses singular value decomposition
(SVD) [4], and SIMPLS which uses partial least square
(PLS) regression [7].

Similar scale and computational power requirements
as the TFA prediction algorithms exist in regulatory net-
work reconstruction algorithms using TFAs and gene
expression levels. The relevance scores are calculated by
either Pearson correlation coefficients or adaptive

partitioning mutual information (APMI) [35]. While
using relevance scores approach on microarray experi-
ments, different genes may have different background
noise in different patterns and scales. For example, rele-
vance scores may fail to distinguish direct interaction
from indirect influences when the experimental condi-
tions are unevenly sampled, or when the microarray
normalization fails to remove false background correla-
tions [18]. Research by Faith et al. [18] showed that
using a background correction in the relevance score
based network reconstruction process reduces the false
positive detection rate of regulatory links and signifi-
cantly improves the performance of the network recon-
struction. The Context Likelihood Relatedness (CLR)
[18] algorithm provides background correction on rele-
vance scores in GTRNetwork.

GTRNetwork Algorithm Testing

The performance of the GTRNetwork algorithm using
different combinations of TFA prediction algorithm and
relevance score based network inference algorithms
have been tested. Three TFA prediction algorithms
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(EM-based gNCA-r, SVD-based FastNCA, and regres-
sion-based SIMPLS) and two relevance score functions
(Pearson correlation coefficient and adaptive partitioning
mutual information) have been tested with or without
using CLR background correction. The GTRNetwork
algorithm using the expression level of TFs as TFAs was
also tested to demonstrate its performance without
including the TFA layer. Detailed information on the
tested algorithms can be found in Table 1.

To test the performance of the GTRNetwork algo-
rithm using TF-gene network topologies providing dif-
ferent levels of information as inputs, the training
datasets of input initial TF-gene network topologies are
obtained by randomly knocking out 70%, 50%, 30% or
10% of links from the TF-gene regulatory links dataset
of RegulonDB 7.0 [34]. The testing datasets of TF-gene
networks are the links that have been removed from the
training datasets respectively. Thus, the ability of the
algorithm to predict the removed regulatory links is
tested. The transcriptome data input for testing the
GTRNetwork algorithm is an E. coli gene expression
data set integrating 466 transcriptome experimental
conditions on 4279 gene probes from the M3D database
[36]. The operon information was downloaded from the
RegulonDB 7.0 database [34] and used in the check
operon step to find more regulatory links. GTRNetwork
algorithms were applied to the input training datasets to
reconstruct gene regulatory networks with different net-
work sizes. The results are compared with the testing
datasets described above and the precision and recall
(sensitivity) values are calculated for each network:

Table 1 GTRNetwork Algorithm Combinations
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Number of testing data set verified new links
Total predicted new links

1)

Precision =

Number of testing dataset verified new links

Recall =
Total number of links in the testing dataset

On each percentage level of input training dataset, the
test is repeated five times to estimate the stability of
GTRNetwork algorithms. In the Precision-Recall plots,
all algorithm combinations show the same trend: as
recall value increases, precision decreases. (Figures 3, 4,
5 and 6). At the same recall level, higher precision sug-
gests better performance of the algorithm; while at the
same precision, the larger recall value shows better per-
formance of the algorithm. And the area under preci-
sion-recall curve (AUPRC) for each test are calculated
(Figure 7). The larger AUPRC value tells us the better
performance. The test results for all combinations of the
GTRNetwork algorithm are shown in Additional file 1.

There are four factors which affect the performance of
GTRNetwork: the TFA prediction algorithm, the rele-
vance score function, the background correction effect,
and the network sizes of initial TF-gene network topol-
ogy. Figure 7 shows that using predicted TFA informa-
tion from EM or SVD-based method significantly
improved the performance of the gene regulatory net-
work reconstruction. (Two sample t-test p-value <
0.0001). The APMI relevance score function gives
slightly better performance than the correlation rele-
vance score function. (Paired two sample t-test p-value
< 0.0001). However, there is no clear difference between

GTRNetwork Algorithm Variant TFA prediction

Relevance score CLR Background correction

E-A-C EM
E-A-N EM
E-C-C EM
E-C-N EM
P-A-C PLS
P-A-N PLS
P-C-C PLS
P-C-N PLS
S-A-C SVD
S-A-N SVD
S-C-C SVD
S-C-N SVD
N-A-C None
N-A-N None
N-C-C None
N-C-N None

APMI Yes
APMI No
Cor Yes
Cor No
APMI Yes
APMI No
Cor Yes
Cor No
APMI Yes
APMI No
Cor Yes
Cor No
APMI Yes
APMI No
Cor Yes
Cor No

GTRNetwork algorithms using different combination of TFA prediction algorithm and relevance score based network inference algorithms.
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Figure 3 GTRNetwork algorithm combinations on input initial
network of 30% RegulonDB 7.0 data. 70% of links are randomly
deleted. Five runs were made for each recall level. The trend lines of
data points are fitted by polynomial functions. Under this condition
the combination E-A-C (EM-based TFA prediction, APMI relevance
score with CLR background correction) and E-A-N (EM-based TFA
prediction, APMI relevance score without CLR background correction)
give the best performances. All the TFA based algorithms except the
SIMPLS based TFA prediction show significantly better performance
than the algorithms not using TFA information.

J

using or not using the background correction of CLR.
(Paired two sample t-test p-value = 0.8342). The perfor-
mance of most algorithm combinations is relatively con-
sistent while using different level of known knowledge
of the initial TF-gene network topologies. However,
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Figure 4 GTRNetwork algorithm combinations on input initial
network of 50% RegulonDB 7.0 data. 50% of links are randomly
deleted. Five runs were made for each recall level. The trend lines
of data points are fitted by polynomial functions. Under this
condition the combination E-A-C (EM-based TFA prediction, APMI
relevance score with CLR background correction) and E-A-N (EM-
based TFA prediction, APMI relevance score without CLR
background correction) give the best performances. All the TFA
based algorithms except the SIMPLS based TFA prediction show
significantly better performance than the algorithms not using TFA
information. At the low recall levels, the regression based TFA
prediction algorithms (P-C-C and P-A-C) have better performance
than the algorithms not using TFA information while.
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Figure 5 GTRNetwork algorithm combinations on input initial
network of 70% RegulonDB 7.0 data. 30% of links randomly
deleted. Five runs were made for each recall level. The trend lines of
data points are fitted by polynomial functions. Under this condition
the combination E-A-C (EM-based TFA prediction, APMI relevance
score with CLR background correction) and E-A-N (EM-based TFA
prediction, APMI relevance score without CLR background correction)
give the best performances. All the TFA based algorithms except the
SIMPLS based TFA prediction show significantly better performance
than the algorithms not using TFA information. At the low recall levels,
the regression based TFA prediction algorithms (P-C-C and P-A-C) have

better performance than the algorithms not using TFA information.
.

when using the 90% of known TF-gene links as the
initial network topology, the performances drops signifi-
cantly. This performance drop is expected because as
the training data (the portion of known TF-gene links)
increases, the testing data is reduced. Many predicted
links are already known, and only few links can be
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Figure 6 GTRNetwork algorithm combinations on input initial
network of 90% RegulonDB 7.0 data. 10% of links are randomly
deleted. Five runs were made for each recall level. The trend lines
of data points are fitted by polynomial functions. Under this
condition the combination E-A-C (EM-based TFA prediction, APMI
relevance score with CLR background correction) and E-A-N (EM-
based TFA prediction, APMI relevance score without CLR
background correction) give the best performances. All the TFA
based algorithms show significantly better performance than the
algorithms not using TFA information.
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Figure 7 Area under curve of precision-recall (AUCPR) of
GTRNetwork algorithm combinations with different input TF-
gene network topologies. The performance of GTRNetwork is
relatively consistent while using input TF-gene network topologies
containing different percentages of known regulatory links, except
using the 90% of known regulatory links as the input TF-gene
network topology. EM-based or SVD-based TFA prediction
algorithms (E/S-C-C, E/S-C-N, E/S-A-C, E/S-A-N) give significantly
better performance than algorithms without using TFA information
(N-X-X) or algorithms using PLS based TFA prediction (P-X-X). The
algorithms using APMI relevance score function (the right half of
the plot) show slightly better performance than the algorithms
using Pearson correlation relevance score function (the left half).
And there are no significant differences due to the use of the CLR
background correction (X-X-C or X-X-N).

identified as new predicted links. Also many new pre-
dicted links might not be included in the testing dataset
thus not being verified as a true positive prediction.
However, the unverified prediction could still be true
since the testing dataset is not a complete dataset; our
knowledge of the complete biology of this system is still
incomplete. When the portion of the known TF-gene
links is increased in the training data, the total number
of predicted new links decreases. At the same time, the
number of unknown regulatory links in prediction
would not change, or even increase because of more
complete training information. Thus, the portion of
unknown regulatory links in the prediction is increased.
In this case, the testing is closer to a prediction. The
verification based only on known knowledge cannot
reflect the real performance of identifying potential new
gene regulatory targets (Figure 8).

In conclusion, the algorithms using EM-based or SVD-
based TFA prediction methods along with the APMI
relevance score gave the best performance. In general,
using or not using CLR background correction does not
give significant differences in performance, but since
CLR has low computational requirements (See the dis-
cussion session) and has been shown helpful in gene reg-
ulatory reconstruction algorithms [18], we suggest the
use of CLR background correction in the GTRNetwork

Training

Testing
A 1

50% of known
links as training
B c data

Prediction
——

Il J
T T

Precision=

Known links Unknown links A+B+C
Training Testing Recall =
L L A+D
5 90% of known
k] c links as training
? data
[N

L

Y Y
Known links Unknown links

A: Predicted true links which can be verified by testing data
B: Predicted true links which cannot be verified by testing data
C: False positive prediction D: Unpredicted testing data

Figure 8 Demonstration of TF-Gene regulatory links data. The
prediction (the area in red line) includes a part of the training data,
a part of the testing data, a part of currently unknown links and
some false positive predictions. When the percentage of known
links as training data increases, since more training data is used, at
the same recall level, the false positive decreases, and the precision
(portion of area A in the area A+B+C) decreases.

algorithm. Thus, the E-A-C (EM-based TFA prediction,
APMI relevance score function and using the CLR back-
ground correction) combination is used as the default
GTRNetwork algorithm in the testing and application
below.

A comparison between the original CLR [18] and
GTRNetwork algorithm is also applied on the M3D E.
coli data (Figure 9). Comparisons between CLR algo-
rithm and many other gene regulatory network recon-
struction algorithms have been done in the CLR paper
[18]. And many DREAM winning algorithms, e.g.
SACLR [20] and GENEI3 [23], have compared them-
selves with CLR on the M3D E. coli data and found
comparable performance with CLR [20,23]. GTRNet-
work outperforms CLR significantly when we use the
full TE-gene regulatory information from RegulonDB
7.0 as the initial TF-gene network topology (Figure 9A).
However, the result is predictable since GTRNetwork
uses the additional information of TF-gene links as
input, and all other algorithms only use the list of TFs
as input. While using a 50% randomly knocked out TE-
gene regulatory links from RegulonDB 7.0 as the train-
ing initial TF-gene network topology, and the removed
regulatory links in the training dataset as the testing
data, this situation would be more relative to a real bio-
logical application. In most biological cases, only limited
TE-gene regulatory information is known, and the task
of gene regulatory network reconstruction algorithms is
to identify new regulatory links. The result still shows
stronger performance of the GTRNetwork algorithm on
the task of identifying new regulatory networks based



Fu et al. BMC Bioinformatics 2011, 12:233
http://www.biomedcentral.com/1471-2105/12/233

Page 8 of 14

O.; \ = GTRNetwork
- Sy TN —ar
o b \

5 o6 R \

2 o5 0, 'Y

E o A hn
0.3 \
0.2 \'-
0.1 \\\.,
0 ; : .

0 0.05 0.1 0.15
A Recall

03
RS WA TR

= GTRNetwork|

o,
..

Ses sl te,
. .

09

.
g 3 o tegs o &, e
S & % Ty % At X NG
0.8 . ~ L
o
0.7 L7 s4%

0.6 *

0.5
0.4
0.3

Precision

0.2
0.1

0

B

Recall

lines are fitted by polynomial functions.

Figure 9 Comparison between GTRNetwork and CLR on E. coli data. (A) Precision-recall curve of testing results of GTRNetwork and CLR
algorithms using transcriptome data from M3D database [36] and the input training TF-Gene topology of the full set of RegulonDB 7.0 [34]. (B)
Precision-recall plot of testing results of GTRNetwork and CLR algorithms using transcriptome data from M3D database [36] and the input
training TF-Gene topology of 50% links randomly knocked out RegulonDB 7.0 [34] data. Five random replications are applied on the test. The
precision and recall are calculated based on the testing data of the knocked out RegulonDB 7.0 [34] on each replication respectively. The trend

on known knowledge of gene regulatory networks
(Figure 9B).

Application of GTRNetwork Algorithm
According to the test results above, the E-A-C algorithm
combination best fits the current known gene regulatory
network topology from RegulonDB 7.0. This algorithm
combination was applied using the full set of Regu-
lonDB 7.0 TF-gene links as the initial network topology.
The gene expression data of E. coli integrating 466 tran-
scriptome experiment conditions on 4279 gene probes
from the M3D database was used as the transcriptome
data input. Resulting gene regulatory networks with
sizes ranging from 100 links to 600 links were recon-
structed. Different relevance score thresholds were set
to reconstruct gene regulatory networks with different
sizes. Higher thresholds result in smaller regulatory net-
works with fewer false positives. Lower thresholds give
more complete networks, but with more false positives.
A check operon step using operon information from
RegulonDB 7.0 was applied to improve the sensitivity of
the reconstructed regulatory networks. The complete
detailed predicted results are shown in Additional file 2.
In the reconstructed 100-link regulatory network,
there are three new predicted regulatory links: DicA-
insD, DicA-intQ, DidA-ydfE. These new links are biolo-
gically verifiable since insD, intQ and ydfE are in the
same operon with a TF binding site of regulator DicA,
according to the binding-site information obtained from
RegulonDB 7.0 [34]. In the reconstructed 200-link regu-
latory network, besides the three new links predicted in
the 100-links network, another 13 new regulatory links

were predicted (Table 2). Evidence of biological validity
of 8 of these 12 new links can be found in the literature
or in databases such as EcoCyc [37]. For example, IscR
is an iron-sulfur cluster regulator [38] and fdx, hscA,
hscB and iscX are all involved in the iron-sulfur cluster
assembly process.

The 600-link reconstructed gene regulatory network
contains 381 new predicted gene regulatory links,
including links predicted by checking operon informa-
tion. These 381 predicted links appear biologically
meaningful. For instance, the ferric uptake regulator,
Fur, is predicted to have links with many ferrous iron
transporters and storage related genes (efell, bfd, bfr,
efeB, efeO, ybdB (entH), ydiE, ygjH). Many of these new
predicted targets have unknown biological function,
such as inner membrane protein gene, ybaN, and
secreted protein gene, yncE. The fact that these genes
may be part of the Fur regulon suggests that their func-
tion may be related to iron uptake (Table 3).

Despite the fact that E. coli is so well-characterized,
there are still many genes that have no known regula-
tors. The GTRNetwork predictions help discover the
regulators of those genes still have no known regulators.
In the 381 predicted links, there are 171 predicted target
genes which previously had no known regulators (Addi-
tional File 2).

The reconstructed gene regulatory networks with
potential new gene regulatory links can be used again in
the application of predicting TFAs and identify more
significantly changed TFAs in response to the experi-
ment condition changes. For example, Brynildsen et al.
used the gene regulatory network obtained from
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Table 2 Valid search of 12 predicted new links using literature

TF Gene Supporting Evidence

DicA insD TF binding site verified (RegulonDB) [34]

DicA intQ TF binding site verified (RegulonDB) [34]

DicA ydfE TF binding site verified (RegulonDB) [34]
DcuR pepE Involved in anaerobic respiration related process (EcoCyc [37])

Fur ybdB ybdB (entH) is proposed to be regulated by Fur (EcoCyc [37])

Fur yncE yncE is de-repressed by Fur [41]

IscR fax Some evidence that the Fdx functions as an intermediate site for Fe-S cluster assembly [42]
IscR hscA HscA is required for the assembly of Fe-S clusters [43,44]

IscR hscB HscB is a co-chaperone that stimulates HscA (Hsc66) ATPase activity [44]
IscR iscX Possibly involved in Fe-S cluster biogenesis [43]
SgrR SIoA TF binding site verified (RegulonDB)[34]

New regulatory links of E. coli predicted in a reconstructed gene regulatory network of size of 200 links (includes 16 potential new regulatory links).

RegulonDB and NCA to predict TFAs of E. coli under
isobutanol stress from transcriptome data and identified
16 significantly changed TFAs in response to the isobu-
tanol condition [39]. We reanalyzed their transcriptome
data using our reconstructed gene regulatory network,
including the 381 predicted new links. This additional of
the new regulatory links resulted in another 7 signifi-
cantly changed TFAs in response to the isobutanol con-
dition (Table 4).

Discussion

In the result section, the tests of combinations of algo-
rithms for GTRNetwork focused on finding the best
algorithm combination to give the most precise predic-
tion and maximum recall. The test results showed that
the introduction of TFA improved the prediction preci-
sion and recall rate of relevance score based gene regu-
latory network reconstruction significantly. The best
combinations of TFA predict algorithm and relevance
score functions, in terms of precision and recall depend
on the sizes of the known initial TF-gene network
topologies.

Table 3 Predicted Fur target genes

Besides precision and recall of predictions, other prop-
erties such as the run times of algorithms are important.
Among the TFA prediction algorithms, the SVD-based,
FastNCA algorithm is the fastest one. FastNCA (SVD) is
280 to 440 times faster than SIMPLS (PLS) and gNCA-r
(EM) (Table 5). APMI takes about 1740 seconds to gen-
erate the relevance score matrix, while using correlation
as the relevance score gets the score matrix over 1000
times faster (Table 5). Applying CLR background correc-
tion finishes in seconds but can improve the precision of
the reconstructed network [18]. Thus, the most time effi-
cient algorithm combination of GTRNetwork is the
SVD-Correlation-CLR background correction (S-C-C)
combination. Although under some conditions, S-C-C
does not perform as well as other combinations, it pro-
vides a quick estimation with relatively reliable results.
This algorithm combination could be used to quickly
generate a general view of the network.

The algorithm combinations that use regression-based
SIMPLS to predict TFAs are not as precise as the other
combinations. However, SIMPLS does not have as
many restrictions as NCA algorithms have, such as the

Gene Gene function

efeU Ferrous iron permease component of the EfeUOB ferrous iron transporter.

ybdB Thioesterase that is involved in the biosynthesis of enterobactin.

(entH)

bfd Bacterioferritin-associated ferredoxin; predicted redox component complexing with Bfr in iron storage and mobility [2Fe-2S]

bfr Iron storage protein.

efeB Deferrrochelatase, periplasmic; inactive acid inducible low-pH ferrous ion transporter EfeUOB; periplasmic acid peroxidase; heme
cofactor.

efeO Inactive acid-inducible low-pH ferrous ion transporter EfeUOB; acid-inducible periplasmic protein.

ybaN Inner membrane protein, DUF454 family, function unknown.

ydiE Function unknown, hemin uptake protein HemP homolog

yncE Secreted protein, possible role in iron acquisition.

yqjH NADPH-dependent ferric reductase containing FAD, covalently bound to a cysteine sidechain.

Genes predicted as the targets of regulator Fur in the reconstructed regulatory network of size of 600 links. Gene function information is downloaded from the

EcoGene database [45].
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Table 4 Significantly changed TFAs under isobutanol condition predicted by GTRNetwork reconstructed gene
regulatory network The reconstructed gene regulatory network includes 381 potential new regulatory links, the 16
significantly changed TFAs predicted by original RegulonDB data from Brynildsen’s paper [39] are not included

TF Function

Target Genes

ArgR Arginine catabolism

argA, gltF, argk, argH, rimP, rbfA, truB, rpsO, pnp, nusA, infB, hisP, gltD, gltB, carB, artP, artl,

artQ, artM, artJ, hisJ, hisQ, metY, astE, astB, astD, astA, astC, hisM, argB, argC, argD, argF, argG,

argl, argR, carA

AscG Arbutin-salicin-cellibiose transport and

utilization

CysB  Novobiocin resistance, sulfur utilization, and
sulfonate-sulfur catabolism

Lrp Leucine-responsive regulatory protein

ascB, ascF, ascG, htpG, prpR, clpB, dnaJ, dnakK, tpkell, groL, groS, grpE, hslU, hslV, ybbN, lipB,
ybeD, Int, ybeX, ybeY, ybeZ

tauA, tauB, tauC, ssuC, ssub, ssuA, ssuk, hslJ, cbl, tauD, ssuB, cysP, cysU, cysW, cysN, cysM, cysK,
cysJ, cysl, cysH, cysD, cysC, cysB, cysA, gsiA, gsiB, gsiC, gsiD, iaaA, ycilV, ydjN, yeeD, yeeE

IhgO, alaT, alaU, alaV, gitT, gltU, gitV, gltW, ileT, ileU, ileV, micF, rrfA, rrfB, rfC, rrfD, rrft, rrfG, rrfH,

A, rrlB, rrlC, rrD, rrlE, rrlG, rrlH, rrsA, rrsB, rrsC, rrsD, rrsE, rrsG, rrsH, rifF, thrV, csiD, ilvX, adhk,
aroA, fimA, fimC, fimD, fimE, fimF, fimG, fimH, gabT, gcvH, gltB, gltD, ilvA, ilvD, ilvE, ilvH, ilvH,
ilvl, itlvM, kbl, livF, livG, livH, livJ, livK, livM, Irp, lysU, malT, ompC, ompF, oppA, oppB, oppC,
oppD, oppF, osmC, sdaA, serA, serC, tdh, argO, ilvl, gabD, gabP, osmY, hdeA, hdeB, yhiD,
dadA, dadX, gevT, gltF, stpA, gcvP, aidB, fiml, yeil, yojl, gdhA, ilvG_1, ilvG_2, thrA, thrB, thrC

thrl

MarA Multiple antibiotic resistance

pqiB, pgiA, ybaO, nfsB, micF, slp, dctR, acrB, acrA, marB, marR, marA, inaA, rfaY, rfaZ, yhiD,

hdeB, hdeA, rob, zwf, fumC, fpr, nfo, poxB, purA, putA, sodA, tolC, ygiA, ygiB, ygiC, Itaf, ybjT,
talA, tktB, phr, ybgA, yhoW/

MetJ
NadR

Methionine biosynthesis and transport
NAD biosynthesis

metf, metK, metl, metR, yeiB, folE, ahpC, ahpF, metQ, metN, met|, metA, metB, metC, metk
nadA, pnuC, pncB, nadB

Bolded genes have significant changes in expression according to Brynildson’s paper [39]. Underlined genes are predicted new regulatory target genes of the TF

from GTRNetwork.

non-redundancy and full column and row rank of the initial
network topology. Thus, SIMPLS does not discard as much
information while preprocessing data to fit the input cri-
teria. Studies show that it can predict regulatory links that
gNCA-r and FastNCA could not [7]. This property of
SIMPLS is especially important when there are some regu-
lators or genes of interest, but other TFA prediction algo-
rithms delete these interesting regulators or genes to fit the
NCA criteria (detail in Methods session). There is no opti-
mal combination of algorithms for GTRNetwork; instead,
the user needs to choose the appropriate algorithm combi-
nation based on their input data and other requirements.

The TFA prediction model does not need any biological
knowledge on the detailed mechanisms of the activation of
TFs. The model assumes that all of the complex effects
that contribute to the change of TFA are included in the
predicted TFAs and the control strengths. Thus, the
GTRNetwork algorithm is not limited to prokaryotes, but
can also be applied to eukaryotes. We plan to apply this
method to eukaryotes such as yeast and plants in the near
future.

Table 5 Algorithm run time tests
Algorithm PLS EM SVD
2750 1750  6.2107

APMI
1740

Correlation
1.4086

Run time (seconds)

The run times of the three TFA prediction algorithms PLS, EM, SVD, and the
two relevance score functions: APMI and Correlation.

Input: Gene expression data: M3D E. Coli microarray experiments. 466
experiment conditions and 4279 gene probes. TF-gene network topology:
RegulonDB 6.7 gene regulatory network with 3989 regulatory links.

Machine: CPU Intel(R) Core(TM) i7 950 @3.07GHz. RAM: 6.00 GB. OS: Windows
7 Professional 64-bit.

While most relevance score based gene regulatory net-
work reconstruction algorithms are not able to identify
the self regulation of TFs, because the gene expression
data is directly used as the only input to represent both
the regulators and the targets, there are always high
relevance scores to connect the TF and its gene. In
GTRNetwork, since the representation of the regulators
(TFAs) and the representation of the targets (expression
of genes, including TF genes) are well separated, the
relevance score between the TF and its gene is meaning-
ful, and the self regulation of TFs can also be identified.
The prediction of self regulation of TFs improves inter-
pretation of the cyclic structures of gene regulatory net-
works. Further analysis of the effect of feedforward and
feedback loops is not carried out in this work but will
be applied on the reconstructed networks in our future
work.

TFA prediction methods are all based on a linear sta-
tic model of experimental conditions, and treat dynamic
time series data as static data of each time point. Thus,
although time series transcriptome data can be used as
an input of GTRNetwork, the algorithm does not take
advantage of dependencies in time series data.

Conclusion

The algorithm GTRNetwork introduces the hidden layer
TFA into classic gene regulatory network reconstruction
networks. A comparison of the performances of several
algorithmic variants of this algorithm showed that the
E-A-C variant of the GTRNetwork use EM-based TFA
prediction method, adaptive partitioning mutual
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information as the relevance score function and CLR
background correction method. This is the variant best
fits the current known TF-gene regulatory networks
from RegulonDB. The application on the E-A-C variant
on E. coli data shows a promising amount of biological
significance. It would be interesting and meaningful to
verify more predicted result biologically and try other
alternative TFA prediction such as the SIMPLS based
methods and network reconstruction algorithms compu-
tationally. The application on other organisms such as
yeast is also highly recommended to be applied in the
future research.

Methods
TFA prediction

TFA prediction is based on the following biological
approximation [1]:

Cs;
Eri=T]] TFArj J (3)

Er; is the gene expression ratio between two experi-
ment conditions of the i-th gene, TFAr;, j = 1,...,L, is a
set of TFA ratios of TF j, which regulate gene i, between
the same two conditions, and CS;; represents the control
strength of transcription factor j on gene i. After taking
the logarithm of Eq. (3) [1]:

log ([Er]) = [CS] log ([TFAT]) (4)

where N x M matrix [Er] is the relative gene expres-
sion level matrix and L x M matrix [TFAr] is the rela-
tive transcription factor activities, the elements Er;(t) =
E;(t)/E;(0) and TFAr(t)/ TFAr;(0), N x L matrix [CS] is
the control strength matrix of transcription factors and
genes. The gene expression model in Eq. (4) can be
decomposed into matrix [CS] and matrix log([TFAr])
using different algorithms.

The relative gene expression level matrix [Er] can be
obtained from transcriptome experiments such as DNA
microarrays or RNAseq, and the control strength infor-
mation must be initialized from the literature e.g. Regu-
lonDB [34], Chip-on-chip experiments, and motif
information (mNCA [40]). The initial matrix, CS is con-
verted from the known database of gene regulatory links
between TFs and genes, e.g., RegulonDB [34]. Each row
represents a gene and each column represents a TF.
When there is a known regulatory link between gene i
and TF j, CS;=1, otherwise CSij = 0.

With the input of [Er] and [CS], transcription factor
activities log([TFAr]) can be estimated. There are three
major approaches to estimate log ([TFAr]) expectation
maximization (EM) approach (e.g. gNCA-r) [3], singular
value decomposition (SVD) approach (e.g. FastNCA) [4]
and regression approach (e.g., SIMPLS) [7].
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Note: When using gNCA-r or FastNCA to estimate
log ([TFAr]) matrix, log ([Er), [CS] and log ([TFAr])
need to fit three criteria given below to ensure the
uniqueness of the decomposition [1,3,4].

(i) The connectivity matrix [CS] must have full-col-
umn rank.

(i) When a node in the regulatory layer is removed along
with all of the output nodes Er; connected to it, the result-
ing network must be characterized by a connectivity matrix
that still has full-column rank. This condition implies that
each column of [CS] must have at least L-1 zeros.

(iii) The matrix, log [TFAr], must have full row rank.
In other words, each regulatory signal cannot be
expressed as a linear combination of the other regula-
tory signals.

Relevance Scores
Instead of calculating relevance scores between the
expression levels of two genes GTRNetwork calculates
the relevance score between each TFA and each gene.
Pearson correlation coefficient and mutual information
are chosen as the relevance score functions:

Pearson Correlation Coefficient:

5ij = > (X — X)) (X — X)
\/Zk (Xik - )_(i)z\/zk (X]k _ }_(])2

where X;; is the k-th observation of variable i. and S;;
is the Pearson Correlation Coefficient score between
variable i and j.

(5)

Mutual Information
- p(i.j)
izl ) log(——————— 6
S] T P(l]) Og(pl (l)Pz(])) ( )

Where p(i,)) is the joint probability of i and j, p;(i) and p,
(é) are the marginal probabilities of i and j respectively, S;
is the Mutual Information score between variable i and .

The Pearson Correlation (Eq. 4) performs extremely
well in detecting linear relationships between two vari-
ables (genes in a set of microarray experiments), and
Mutual Information (MI) (Eq. 5) has a relatively
balanced performance in detecting both linear and non-
linear relationships. However, most MI applications only
work for discrete variables, and in this problem, both
the gene expression ratio and TFA ratio are continuous
variables. Adaptive partitioning [35] adjustments are
applied to calculate mutual information between TFA
ratios and gene expression ratios.

Background correction
In the relevance score based network reconstruction
approaches; there are tradeoffs between the link
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detection sensitivities and false positive detection rates
[10]. One reason for the false positive detection is the
simplification of the two layer gene regulatory network
model. Adding the TFA layer to the classic two layer
regulatory network model may solve this problem.
Another reason for the false positive detections is due
to the noise of gene expression data and different relat-
edness behaviors of TFs and genes. For example, the
expression of some genes may be more stable than
other genes and not tend to change much in response
of different conditions, the relevance score of these
genes are tend to lower, and regulatory relationships
between these genes and TFs are hard to be detected,
the same to TFAs. Thus, a background correction
method such as context likelihood relatedness (CLR)
[18] is needed.

In the CLR algorithm, along with the relevance score,
the statistical likelihood of each relevance score is calcu-
lated within each variable by:

Sij — Si
S 7

where Z;; is the z-score of relevance score between
variable i and j within all relevance scores with i, S;; is
the relevance score between variable i and j, §; is the
average of all relevance scores with i. And a joint likeli-
hood between two variables is calculated from the z-
scores from Eq. (6). The methods to calculate the
pseudo-z-score Z; vary and the CLR algorithm use the
following method as default [18]:

Zi]' =

Zii = zizj + zjzi (8)

By putting different thresholds on the matrix [Z] with
elements Z;; gene regulatory networks with different
sensitivities can be reconstructed by searching for gene
regulatory links containing TF genes with the Z score
larger than the threshold. The information of TF genes
(which genes encode TFs) can be found from database
such as RegulonDB [34] and EcoCyc [37].

Integration of operon information

In the reconstructed gene regulatory network, when
gene A is predicted to be regulated by some TFs, the
other genes in the same operon as gene A are not
always predicted to be regulated by the same TFs regu-
lating gene A. However, in real gene regulatory net-
works, all the genes in the same operon tend to have
similar behavior. The GTRNetwork algorithm uses an
optional check operon step. When the operon informa-
tion is available, the algorithm searches for genes in the
same operon as the target gene and links these genes to
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the regulators of the target gene. This integration of
operon information improves the detection sensitivity of
regulatory links.

GTRNetwork algorithm
The GTRNetwork algorithm is implemented using
Matlab and the source code is available at:
http://vrac.iastate.edu/~afu/GTRNetwork/GTRNet-
work_1.2.1.zip.
Inputs: a) Log 2 ratio transcriptome data in matrix
[Err]

b) Initial TF-gene network topology in adjacency
matrix [C]
c) Desired size of reconstructed regulatory network S
d) List of operons and the genes contained in them
(Optional)

Outputs: A list of predicted regulatory links

The GTRNetwork algorithm uses the TFA prediction
algorithm to predict TFAs from input a) and b). It then
uses relevance score functions such as correlation coeffi-
cient function or APMI to calculate the relevance score
between TFAs of TFs and the expression levels of all
genes. A CLR background correction is applied on the
relevance score matrix. And then according to the
desired size of reconstructed regulatory network (input
¢), a threshold based on the background corrected rele-
vance score is calculated and the gene regulatory net-
work is reconstructed filtered by the threshold. Finally,
an optional check operon step is applied to add missing
predicted regulatory links in the same operon of the
predicted target genes.

1. Match the genes between the matrix [Er] and
matrix [C].

Remove unmatched genes in [Er] and store the reduce
matrix as [Er0].

Remove unmatched TFs and genes in [C] and store
the reduced matrix in [CO].

2. If the TFA prediction algorithm is gNCA-r or Fas-
tNCA, check the three criteria described in TFA predic-
tion section and reduce the matrix [Er0] and [CO] to fit
the criteria.

3. Apply TFA prediction algorithm to predict the log,
ratio TFA matrix [TFA] from matrix [Er0O] and [CO].

4. Calculate the relevance score matrix [M] between
TFAs and all expression levels of all genes from matrix
[TFA] and [Er].

5. Calculate the joint statistical likelihood matrix [Z]
of relevance score matrix [M] using CLR algorithm.

6. Set a threshold T for matrix [Z] so that there are S ele-
ments in [Z] greater than 7. For all the TF-gene pairs hav-
ing a Z score greater than 7, construct a regulatory link.


http://vrac.iastate.edu/~afu/GTRNetwork/GTRNetwork_1.2.1.zip
http://vrac.iastate.edu/~afu/GTRNetwork/GTRNetwork_1.2.1.zip
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7. If the operon list is available, check and add all
genes in the same operon of TF target genes to the reg-
ulatory target set of the TF.

Additional material

Additional file 1: Test results of GTRNetwork Algorithm
combinations, GTRNetwork algorithm using TF-gene network
topologies providing different level of information as input, the
input initial TF-gene network topologies are obtained by randomly
deleting 70%, 50%, 30% or 10% links of the TF-gene links data
from RegulonDB 7.0 [34].

Additional file 2: Potential new regulatory links of E. coli predicted
using GTRNetwork. Gene expression data is obtained from M3D
database [36] and contains 466 transcriptome experiment conditions on
4279 gene probes. TF-gene regulatory network from RegulonDB 7.0 [34] is
used as the initial known TF-gene regulatory topology input. 381 potential
new gene regulatory links are predicted. The reconstructed network size
can be used as a reference of confidence of the predicted links. Smaller
reconstructed network sizes indicate more confidential predictions. Gene
functions information is downloaded from EcoGene database [45]
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