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Abstract: Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with
core deficits in social communication and manifestation of restricted, repetitive, and stereotyped
behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to
the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all
large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by
stratifying ASD probands from simplex families according to the severity of behavioral scores on
the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing
DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their
respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification
of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and
DMR-associated genes (DAGs) between cases and controls, compared to that identified when all
cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities
that are enriched among DAGs in each phenotypic subgroup but not in the combined case group.
Moreover, relational gene networks constructed with the DAGs reveal signaling pathways associated
with specific functions and comorbidities. In addition, a network comprised of DAGs shared among
all ASD subgroups and the combined case group is enriched in genes involved in inflammatory
responses, suggesting that neuroinflammation may be a common theme underlying core features of
ASD. These findings demonstrate the value of phenotype definition in methylomic analyses of ASD
and may aid in the development of subtype-directed diagnostics and therapeutics.

Keywords: phenotypic subgroups stratified by ASD severity; simplex families; DNA methylation;
subgroup-associated genes and biological functions

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized
by impaired social communication and repetitive behaviors [1]. Tremendous phenotypic and
symptomatic heterogeneity exists within the ASD population, thereby presenting a challenge to
diagnosis and treatment. The wide range of clinical presentation in ASD is attributed to different
underlying etiologies, which include both genetic and environmental influences. One area that bridges
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the genetics–environment gap is epigenetic variation, which has been proposed to play a role in
ASD [2–6]. It has been shown that DNA methylation is dysregulated in ASD in multiple studies
involving both peripheral and brain tissues, principally from individuals with ASD from the multiplex
population [7–15]. However, published DNA methylation studies of ASD have produced inconsistent
findings, including variable reporting of differentially methylated sites. This inconsistency may be
explained not only by the different tissues used but also in part by the wide phenotypic heterogeneity
intrinsic to ASD.

Previous findings from our laboratory showed that reduction of ASD clinical heterogeneity by
classifying patients into subphenotypes based on cluster analyses of severity scores from the Autism
Diagnostic Interview-Revised (ADI-R) diagnostic instrument [16] results in increased ability to detect
statistically significant subphenotype-specific transcriptomic as well as genetic differences, which were
otherwise undetectable in an aggregate analysis of all individuals with ASD [17–20]. Based on these
previous studies that demonstrate the value of subphenotyping in genome-wide omics analyses
and the growing body of evidence implicating a link between ASD and epigenetic modification,
we hypothesized that the stratification of individuals with ASD by phenotypic severity will result
in the identification of subphenotype-dependent DNA methylation differences between cases and
controls that achieve statistical significance.

The present study involves re-analyzing existing Illumina HumanMethylation27K BeadChip data
from lymphoblastoid cell lines (LCLs) derived from blood lymphocytes of 292 male ASD probands
from the Simons Simplex Collection (SSC) after stratification into three distinct subgroups based on
ADI-R symptom severity profiles (mild, intermediate, and severely language-impaired). The main
goals of this research are to: (1) identify statistically significant differences in DNA methylation between
cases and typically developing sibling controls for each of the three ASD subphenotypes, (2) examine
the impact of decreasing phenotypic heterogeneity on the ability to detect statistically significant
differentially methylated regions and associated genes (DAGs) by comparing results with and without
subphenotyping, and (3) identify biological functions, signaling pathways, and disorders associated
with DAGs from each subgroup analysis.

2. Results and Discussion

2.1. DAGs Associated with ASD Subphenotypes and the Combined Case Group

Hierarchical clustering (HCL) and principal components analysis (PCA) using scores on the
ADI-R diagnostic scoresheets from each of the probands were performed as previously described [16].
These cluster analyses confirmed that the 292 cases in this methylation study could be separated into
three phenotypic subgroups based on their severity scores from the ADI-R. A heatmap depicting
clinical severity across 123 scores on 63 ADI-R items for individuals in each subgroup is shown in
Figure 1, together with PCA plots from the data reduction analysis confirming the separation of cases
into three distinguishable subgroups according to integrated severity profiles. Notably, the first three
principal components (represented by the x, y, and z-axes of the 3-d PCA plot) account for 85.72% of
the variability among all probands based on the 123 ADI-R scores.
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Figure 1. Separation of probands into three phenotypic subgroups based on cluster analyses of 123 scores
on 63 Autism Diagnostic Interview-Revised (ADI-R) items for each individual. (A) Hierarchical
clustering (HCL) analysis, (B–D) Principal components analysis (PCA) in 3-d (B) and 2-d projections
showing PC-1 and PC-2 (C) and PC-1 and PC-3 (D). For the heatmap in (A), each row represents an
individual, while each column represents a score from the ADI-R diagnostic. The range of severity scores
(1–3) for each ADI-R item is represented in the color bar above the heatmap, with light blue indicating
a score of 1, green-yellow indicating a score of 2, and red indicating a score of 3, which represents the
most severe autism spectrum disorder (ASD) manifestation. The three ASD subgroups are identified
by the vertical colored bars along the right side of the heatmap, with red indicating the severely
language-impaired subgroup, yellow indicating the intermediate subgroup, and turquoise indicating
the mild subgroup. This latter set of colors also applies to the subgroups shown in the PCA plots in
which each point represents an individual. Note: In the heatmap (A), the large block of red columns
associated with the severely language-impaired subgroup primarily corresponds to items involving
spoken language on the ADI-R diagnostic.

Using GenomeStudio Methylation Module software, CpG sites across the genome were identified
that exhibited statistically significant differential methylation with False Discovery Rate (FDR)-adjusted
p-values < 0.05. For the severely language-impaired subgroup (n = 22 cases and 22 controls),
266 unique DAGs were mapped to the CpGs (Table S1). The intermediate subgroup (n = 121 cases
and 121 controls) exhibited 360 unique DAGs (Table S2), and the mild subgroup (n = 149 cases and
149 controls) exhibited 4073 unique DAGs (Table S3). Among the three ASD subgroups, a total of
4155 unique DAGs with FDR-adjusted p-values < 0.05 were identified, with some DAGs shared among
the subgroups. The volcano plots for each subgroup illustrate distinct differences in the number,
distribution, and methylation profiles of significant DAGs in each subgroup (Figure 2). For example,
the majority of the DAGs in the severely language-impaired subgroup show reduced methylation
(negative delta β values), while the majority of the DAGs in the intermediate subgroup show increased
methylation (positive delta β values) (Figure 2A). Although the majority of DAGs in the mild subgroup
show decreased methylation as observed in the severely language-impaired subgroup, the mild
subgroup has a much greater number of significant DAGs (Figure 2B). In addition, while all the
DAGs in the mild subgroup exhibit delta β values < |±0.05|, a fraction of the DAGs associated with
the severely language-impaired subgroup exceeds these absolute delta β values, indicating larger
methylation differences between cases and controls, which are also reflected by larger fold-change
values (see Figure S1). These data suggest that the three ASD subgroups can be distinguished from
each other by their differential DNA methylation profiles.
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To examine the impact of decreasing phenotypic heterogeneity on the ability to detect statistically
significant DAGs, differential methylation analysis of the 27K BeadChip data using Illumina’s
GenomeStudio Methylation Module was also performed without stratification into phenotypic
subtypes, i.e., combined case group (n = 292 cases and 292 controls). Without subgrouping, a total of
2570 unique DAGs with FDR-adjusted p-values < 0.05 were identified in the combined case group
(Table S4). The volcano plot of DAGs for the combined case group is shown in
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Figure 2. Volcano plots of significant differentially methylated regions and associated genes (DAGs)
among subgroups and combined cases. |DiffScore| versus Delta β plots for significant DAGs in:
(A) severely language-impaired (blue) and intermediate (red) subgroups; (B) mild subgroup (blue) and
combined cases (red). Note: A |DiffScore| of 13 is roughly equivalent to a p-value of 0.05.

Figure 2B in comparison to that of the mild subgroup. It is notable that there are fewer significant
DAGs in the combined case group compared to that of the mild subgroup (2570 vs. 4073), despite the
larger number of individuals in the combined case group (292 vs. 149 case-control pairs). Figure 3
summarizes the location of the differentially methylated CpG sites relative to the transcription start
site (TSS) for each case group and also the proportion of hypermethylated or hypomethylated sites in
each group. In brief, more than 90% of CpG sites in all case groups were found within 1000 bp of the
TSS, with the remainder less than 1500 bp away, suggesting that the majority of these sites are likely to
be involved in the regulation of transcription. There are also noticeable quantitative differences in the
methylation profiles among the case groups. For example, the severely language-impaired subgroup
exhibits the greatest proportion of hypomethylated genes (86.8%) and the greatest proportion of CpGs
(72.4%) that are closest (≤500 bp) to the TSS. By contrast, the intermediate subgroup exhibits the
greatest proportion of hypermethylated genes (91.6%), while the location of the CpGs relative to the
TSS is very similar to that of the mild and combined subgroups. Table S5 lists the map positions of the
differentially methylated CpGs (and associated genes) in each subtype and the combined case group.
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Figure 3. Summary of the proportions of differentially methylated CpG sites at different distances
relative to the transcription start site (TSS) of the closest gene and the proportion of hypermethylated
and hypomethylated sites in each ASD case group.

The Venn diagram in Figure 4A shows that there are 67 significant DAGs shared among the three
subgroups and the combined case group, while Figure 4B shows volcano plots representing the relative
distribution of these 67 DAGs in each group’s differential methylation profile. The differences in the
distribution of these overlapping DAGs in each of the four groups reflect the differences that were
revealed in Figure 2, with the majority of DAGs in the intermediate subgroup showing increased
methylation, while these same DAGs in the severely language-impaired, mild, and combined groups
show decreased methylation, as shown quantitatively in Figure 3.
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Figure 4. Stratification of ASD patients (n = 292) into distinct subphenotypes results in increased
discovery of significant DAGs. (A) The Venn diagram shows unique significant DAGs that were
identified using GenomeStudio Methylation Module v1.8 software with subphenotyping into three
groups (mild, intermediate, and severely language-impaired) or without subphenotyping (combined
case group) (FDR-adjusted p-values < 0.05). (B) Volcano plots for the 67 overlapping DAGs from each
group, identified by color in the accompanying legend.

Not surprisingly, the |DiffScore| values (inversely related to p-values) for these DAGs are much
greater in the mild subgroup than those for the severely language-impaired subgroup, which is likely
the result of the larger number of samples in the mild subgroup (149 vs. 22 case-control pairs). On the
other hand, despite having the largest number of cases and controls, the combined case group has
smaller |DiffScore| and delta β values in comparison to the mild subgroup. This finding may reflect the
increased heterogeneity underlying the combined case group in which the conglomeration of disparate
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cases dampens the average methylation differences (i.e., delta β) between the cases and controls. Hence,
the present study demonstrates that phenotypic subtyping by clinical severity of ADI-R scores is a
productive path for discovering a greater number of statistically significant DAGs between ASD cases
and controls as well as differences in DNA methylation profiles among the subgroups.

2.2. Network Prediction Analyses of Subgroup-Associated DAGs

Ingenuity Pathway Analysis (IPA) was used to conduct functional analysis of the DAGs from
each of the ASD subgroups as well as from the combined case group. Neurological functions enriched
among DAGs in each subgroup and the combined case group are shown in Table 1. The specific DAGs
associated with each function are included in Table S6. As shown, the severely language-impaired
subgroup exhibits more functions known to be associated with ASD, such as: neuritogenesis, size and
branching of neurites, and maturation of synapse and dendritic spines [21–25]. Figure S2 shows that
axon guidance signaling and CXCR4 signaling are canonical pathways involved in the top network of
genes involved in neuritogenesis. The intermediate subgroup is notably enriched in DAGs associated
with the activation of neuroglia and astrocytes, suggesting inflammatory processes known to be
involved in ASD [26,27]. Figure S3 shows that the neuroinflammation signaling pathway as well as the
glucocorticoid signaling pathway are implicated by the genes involved in the abnormal morphology
of neurons in the intermediate subgroup.

Table 1. Significantly over-represented neurological functions among DAGs from three phenotypic
subgroups of ASD and a combined case group.

Nervous System Development and Function
Severely Language Impaired (n = 22) p-Value * Number of Genes

Abnormal morphology of neurons 2.21 × 10−4 19
Sensorimotor integration 3.39 × 10−3 2

Neuritogenesis 3.52 × 10−3 19
Maturation of synapse 4.25 × 10−3 3

Size of neurites 6.09 × 10−3 2
Branching of neurites 6.31 × 10−3 11

Maturation of dendritic spines 7.15 × 10−3 2
Development of neurons 9.24 × 10−3 22

Intermediate (n = 121)

Activation of neuroglia 7.35 × 10−5 11
Activation of astrocytes 4.77 × 10−4 6

Abnormal morphology of neurons 1.22 × 10−3 21
Abnormal morphology of axons 1.27 × 10−3 7

Abnormal morphology of neurites 1.48 × 10−3 9
Loss of neurites 2.91 × 10−3 4

Mild (n = 149)

Abnormal morphology of nervous system 4.34 × 10−15 297
Sensory system development 7.77 × 10−15 194

Combined (n = 292)

Abnormal morphology of nervous system 4.37 × 10−11 194
Sensory system development 6.17 × 10−9 121

Abnormal morphology of neurons 2.26 × 10−8 121
Activation of neuroglia 4.27 × 10−8 45

* Fisher exact p-value representing the probability that the indicated function is not over-represented among the
DAGs for each group, using all genes in IPA’s Knowledgebase as the reference gene set.

The mild subgroup is enriched in DAGs involved in sensory system development. Figure S4
shows that the top network of genes enriched for sensory system development is associated with axon
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guidance, transforming growth factor-β (TGFβ), and bone morphogenetic protein (BMP) signaling
pathways. Interestingly, many individuals with ASD exhibit abnormal sensory responses, such as
hypersensitivity to certain sounds, visual stimuli, taste, and textures [28–30]. Thus, it is not surprising
that many genes related to the sensory system are affected. The nervous system functions associated
with DAGs in the combined case group reflect those identified for the intermediate and mild subgroups
but not for the severely language-impaired subgroup, which comprises just 7.5% of the total number
of cases.

With respect to neurological disorders (see Table 2, Table S7), DAGs in the severely language-
impaired subgroup are enriched for genes contributing to comorbidities in ASD, such as cognitive
impairment [31–34] and motor dysfunction [35,36]. While axon guidance and synaptogenesis signaling
is implicated by the top network of genes associated with cognitive impairment (Figure S5), calcium
signaling and dendritic cell maturation are indicated by the top network of genes involved in motor
dysfunction (Figure S6). On the other hand, DAGs in the intermediate and mild subgroups as well as
the combined case group are over-represented with respect to schizophrenia genes. Figure S7 shows
that the neuroinflammation signaling pathway as well as the cAMP and G-protein coupled receptor
signaling pathways are involved in schizophrenia in the intermediate subgroup, while synaptogenesis,
GABA receptor, and CREB signaling in neurons are involved in the top network of genes in the
mild subgroup (Figure S8). Genes associated with motor dysfunction and movement disorders
are also over-represented among DAGs in the mild subgroup. Interestingly, only the severely
language-impaired subgroup exhibits DAGs explicitly enriched for ASD or intellectual disability (ID),
a comorbidity that presents more frequently in individuals with deficits in spoken language.

Table 2. Significantly over-represented neurological and developmental disorders among DAGs from
the three phenotypic subgroups of ASD and the combined case group.

Neurological Diseases p-Value * Number of Genes

Severely language impaired

Cognitive impairment 1.32 × 10−5 26
Syndromic X-linked mental retardation 2.99 × 10−4 6

Mental retardation 4.13 × 10−3 14
Motor dysfunction or movement disorder 7.75 × 10−3 29

Autosomal dominant mental retardation type 11 9.94 × 10−3 1

Intermediate

Schizophrenia 7.73 × 10−4 20
Demyelination of nerves 4.59 × 10−3 4

Mild

Schizophrenia 1.18 × 10−16 184
Motor dysfunction or movement disorder 5.98 × 10−14 393

Movement Disorders 3.93 × 10−13 384

Combined

Schizophrenia 1.81 × 10−7 106

Developmental Disorders (Severely Language
Impaired Only) p-Value * Number of Genes

Autism or intellectual disability 3.31 × 10−3 15
Autism spectrum disorder or intellectual disability 3.67 × 10−3 17

Dystrophy of muscle 5.51 × 10−3 10

* Fisher exact p-value representing the probability that the indicated disorder is not over-represented among the
DAGs for each group, using all genes in IPA’s Knowledgebase as the reference gene set.

Figure 5 shows that one of the two networks of genes that are associated with ASD/ID includes
FMR1, the gene responsible for fragile X syndrome, a genetic condition that is frequently associated
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with both intellectual disability and ASD. In a hierarchical layout of the network (Figure S9), FMR1
is placed at the top of the network, highlighting its influence on the downstream genes, which
include UBE3A, an E2 ubiquitin conjugating enzyme involved in cognitive disability, and SLC1A7,
a glutamate transporter that is involved in pervasive developmental disorder (also used to describe
ASD), social anxiety, and fragile X.
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involved in developmental disorder are outlined in purple. Genes colored red are hypermethylated
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between FMR1 and other genes in the network. Solid lines denote direct interactions; dashed lines
denote indirect interactions.

2.3. Proximity of Hypermethylated and Hypomethylated CpGs to the TSS of the DAGs

Aside from identifying DAGs in each subtype, we also separately investigated the genes associated
with hypermethylated and hypomethylated CpGs that were less than 500 bp from the TSS. Interestingly,
two of the top genes associated with ASD or intellectual disability in the severely language-impaired
subtype, FMR1 and UBE2A, were among the hypomethylated genes closest to the TSS in this
subgroup (Table 3). Other ASD-relevant genes within 500 bp of the TSS are PAX8 and SHANK1 (both
hypomethylated), and CADM1 and PAX6 (both hypermethylated). PAX6 and PAX8 are members of
the paired box (PAX) family of transcription factors. While PAX 6 is involved in modulating the fate
of neural progenitor cells [37], genetic variants in PAX8 are associated with sleep disturbance [38,39],
a frequent comorbidity of ASD. SHANK1 is a scaffolding protein at the postsynaptic density that has
been found to be involved in ASD [40]. Mutations in CADM1, which codes for a synaptic adhesion
molecule, are also associated with ASD [41].
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Table 3. Neurological functions and diseases enriched among DAGs implicated by CpGs within 500 bp
of the TSS in the severely language-impaired subgroup.

Nervous System Development & Function p-Value * DAGs (<500 bp from TSS)

Severely language-impaired subtype Hypermethylated

Cell-cell adhesion of neurons 2.29 × 10−4 CADM1, NINJ2
Induction of neural crest 2.37 × 10−3 TFAP2A

Scaffolding of postsynaptic region 3.55 × 10−3 CADM1
Corticogenesis 3.55 × 10−3 PAX6

Quantity of neurons 7.25 × 10−3 CADM1, NPTX2, PAX6, TFAP2A
Abnormal morphology of brain 7.37 × 10−3 CRMP1, EPB41L1, PAX6, TFAP2A

Size of growth cone 1.65 × 10−2 PAX6
Morphology of nervous system 3.71 × 10−2 CADM1, CRMP1, EPB41L1, PAX6, TFAP2A

Memory consolidation 3.73 × 10−2 PAX6
Quantity of nerve ending 3.73 × 10−2 CADM1

Development of sensory neurons 3.95 × 10−2 PAX6
Abnormal morphology of forebrain 4.58 × 10−2 PAX6, TFAP2A

Severely language-impaired subtype Hypomethylated

Abnormal morphology of sensory neurons 6.21 × 10−4 ATP2B2, CETN2, KCNQ1, OPN4, PAX8
Delay in initiation of maturation of interneurons 5.93 × 10−3 FMR1

Abnormal morphology of neurons 6.49 × 10−3
ATP2B2, CABP4, CCL11, CETN2, CORT,

FMR1, KCNQ1, NOS3, OPN4, PAX8,
SHANK1

Long term synaptic depression of hippocampal cells 9.57 × 10−3 FMR1, INS
Circadian phase shifting 1.18 × 10−2 OPN4
Remodeling of dendrites 1.18 × 10−2 FMR1

Density of GABAergic synapse 1.18 × 10−2 FMR1

Neurological Diseases p-Value * DAGs (<500 bp from TSS)

Severely language-impaired subtype Hypermethylated

Autosomal dominant mental retardation type 11 1.19 × 10−3 EPB41L1

Cognitive impairment 1.33 × 10−3 CRMP1, EPB41L1, GSTM1, NPTX2, PAX6,
TFAP2A

Epileptic seizure 3.70 × 10−2 CCN1, NPTX2
Mental retardation 4.09 × 10−2 EPB41L1, PAX6, TFAP2A

Abnormal morphology of forebrain 4.58 × 10−2 PAX6, TFAP2A

Severely language impaired subtype Hypomethylated

Syndromic X-linked mental retardation 2.20 × 10−5 BCAP31, FMR1, PHF8, SLC1A7, SLC9A6,
UBE2A

Cognitive impairment 1.65 × 10−3

BCAP31, FMR1, GRM4, INS, KCNQ1,
LRRN4, NOS3, PDZK1, PHF8, POLR3C,

SHANK1, SLC1A7, SLC9A6, UBE2A,
UHMK1

Fragile X-associated tremor ataxia syndrome 5.93 × 10−3 FMR1
Fragile X syndrome with Prader-Willi-like phenotype 5.93 × 10−3 FMR1

Movement Disorders 1.15 × 10−2

ATP2B2, ATP2B3, BCAP31, C9, CCL11,
CETN2, COL6A3, F8A1, FCGR3A/FCGR3B,

FMR1, KCNQ1, MYH7, OPN4, SDC4,
SGCG, SLC17A4, SLC1A7, SLC9A6, TGM6

* Fisher exact p-value indicating the probability that the function or disorder is not enriched among the DAGs for
this subgroup.
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Table 4. Neurological functions and diseases enriched among DAGs implicated by CpGs within 500 bp
of the TSS in the intermediate subgroup.

Nervous System Development & Function p-Value * DAGs (<500 bp from TSS)

Intermediate subtype Hypermethylated

Loss of neurites 4.64 × 10−4 CORT, GJB1, NTF3, SERPINA3

Activation of neuroglia 1.11 × 10−3 C1QA, CCL11, CCL22, FGF1, GJB1, NOS3,
SMPD3

Abnormal morphology of neurons 1.22 × 10−3
ATP2B2, C1QA, CABP4, CCL11, CORT,

GJB1, KCNQ1, NOS3, NTF3, OPN4, PAX8,
PLP1, RHO, SERPINA3, SORBS2

Abnormal morphology of nerve ending 1.66 × 10−3 C1QA, NTF3
Abnormal morphology of sensory neurons 2.16 × 10−3 ATP2B2, KCNQ1, NTF3, OPN4, PAX8

Loss of axons 2.38 × 10−3 CORT, GJB1, NTF3
Activation of astrocytes 3.04 × 10−3 C1QA, CCL11, FGF1, SMPD3

Formation of excitatory synapses 3.22 × 10−3 NTF3, SORBS2

Abnormal morphology of neurites 5.98 × 10−3 CORT, GJB1, NTF3, PLP1, SERPINA3,
SORBS2

Evoked potential 6.24 × 10−3 ATP2B2, KCNQ1, NTF3, PAX8

Abnormal morphology of nervous system 6.49 × 10−3

ATP2B2, C1QA, CABP4, CCL11, CNGA2,
CORT, FGF1, GJB1, KCNQ1, NOS3, NR5A1,

NTF3, OPN4, PAX8, PLP1, RHO,
SERPINA3, SMPD3, SORBS2

Intermediate subtype Hypomethylated

Morphology of brain 8.83 × 10−4 ARSA, CTNNB1, GBX2, GSX1, TFAP2A
Differentiation of sensory progenitor cells 9.40 × 10−4 CTNNB1
Neurogenesis of dopaminergic neurons 1.88 × 10−3 CTNNB1

Abnormal morphology of forebrain 2.42 × 10−3 ARSA, GSX1, TFAP2A
Abnormal morphology of brain 3.12 × 10−3 ARSA, GBX2, GSX1, TFAP2A

Auditory evoked potential 3.15 × 10−3 ARSA, KCNQ1
Cell survival of dopaminergic neurons 3.76 × 10−3 CTNNB1

Formation of forebrain 3.77 × 10−3 CTNNB1, GBX2, GSX1
Accumulation of microglia 7.50 × 10−3 CTNNB1

Lack of cerebellum 8.43 × 10−3 GBX2

Neurological Diseases p-Value * DAGs (<500 bp from TSS)

Intermediate subtype Hypermethylated

Abnormal morphology of mechanosensory neurons 8.56 × 10−4 ATP2B2, KCNQ1, NTF3, PAX8
Lack of muscle sensory neurons 7.85 × 10−3 NTF3

Intermediate subtype Hypomethylated

Early-onset neurological disorder 3.20 × 10−4 ARSA, GABRA3, KCNQ1, PDZRN3

Cognitive impairment 3.54 × 10−4 ARSA, CTNNB1, GABRA3, GSTM1,
KCNQ1, TFAP2A

Autosomal dominant mental retardation type 19 9.40 × 10−4 CTNNB1
Early-onset schizophrenia 1.13 × 10−3 GABRA3, PDZRN3

Lack of cerebellum 8.43 × 10−3 GBX2

* Fisher exact p-value indicating the probability that the function or disorder is not enriched among the DAGs for
this subgroup.

Table 4 shows the neurological functions and disorders enriched among the hyper- and
hypomethylated genes with CpGs closest (<500 bp) to the TSS in the intermediate subgroup. Notable
among this set of genes are the hypermethylated genes, CORT (corticostatin) and NTF3 (neurotrophin
3), which are both involved in the loss of neurites. CORT is a neuropeptide that is involved in
the depression of neuronal activity and the induction of slow-wave sleep, while NTF3 is a protein
that controls the survival and differentiation of mammalian neurons. Among the ASD-relevant
hypomethylated genes in this subgroup are CTNNB1 and GABRA3. CTNNB1 (catenin beta1) plays a
role in seizure susceptibility and cortical malformation as demonstrated in a Ctnnb1 knock-out mouse
model [42], and GABRA3, a GABA receptor that mediates fast inhibitory effects of GABA in the brain,
is reduced in the cerebellum of individuals with ASD [43].
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Among the top hypermethylated genes that are enriched in neurological functions and disorders
in the mild subgroup are ARX and CNTNAP2 (Table 5; Table 6). ARX (Aristaless related homeobox
gene) is involved in a number of neurological diseases, including mental retardation, autism, epilepsy,
and dystonia [44]. Its function as a homeobox gene is responsible for the wide range of neurological
disease phenotypes that result from its mutation or dysregulation. CNTNAP2, a member of the neurexin
family of proteins that serves as a cell adhesion molecule, is one of the most well-studied ASD risk
genes [45–49]. Like ARX, mutations in CNTNAP2 can lead to multiple neurological disease phenotypes,
including autism, epilepsy, intellectual disability, obsessive compulsive disorder, and schizophrenia [50].
Notable among the hypomethylated genes in this subgroup are a number of chemokine genes, including
CCL1, CCL11, CCL2, CCL22, CCL5, and CCL7. Not surprisingly, these DAGs are enriched among genes
that are involved in the activation of neuroglia and neuroinflammation that have been associated
with ASD [51,52]. Interestingly, hypomethylated genes associated with schizophrenia include a
number of neurotransmitter receptors (e.g., cholinergic, cannabinoid, dopamine, GABA, glutamate,
and serotonin) as well as ion channels and ion transporter proteins. These schizophrenia-associated
DAGs in the mild ASD subgroup are significantly enriched for GABA receptor signaling (Fisher’s
exact p-value = 1.98 × 10−6), neuroinflammation pathway signaling (p = 4.21 × 10−5, serotonin
receptor signaling (1.75 × 10−5), calcium signaling (1.29 × 10−3), G-protein coupled receptor signaling
(2.56 × 10−3), and glutamate receptor signaling (7.61 × 10−3) pathways. Overall, the proximity of the
differentially methylated CpGs to the TSS of the DAGs enriched for neurological functions and diseases
(as shown in Tables 3–6) suggests that these sites may play a role in the transcriptional regulation of
the associated genes.

Table 5. Neurological functions enriched among DAGs implicated by CpGs within 500 bp from the
TSS in the mild subgroup.

Nervous System Development & Function p-Value * DAGs (<500 bp from TSS)

Mild subtype Hypermethylated

Development of striatum 1.26 × 10−6 ARX, CNTNAP2, GSX1, PAX6

Abnormal morphology of nervous system 3.61 × 10−6
ARX, ATP8A2, CDH11, CNTNAP2, EDN3,

FOXB1, FST, GSX1, OSTM1, PAX6, RBP1, SYN2,
TFAP2A, TLX3, ZIC1

Abnormal morphology of glutamatergic neuron 4.96 × 10−5 PAX6,TLX3

Migration of neurons 5.84 × 10−5 ARX, CNTNAP2, ERRFI1, FLRT2, LRP12, PAX6,
TLX3

Development of neurons 9.20 × 10−5
ARX, ATP8A2, CADM1, CCN1, CDH1,

CNTNAP2, FLRT2, ITGA1, LRP12, PAX6,
SYN2, TLX3, TPBG

Quantity of neurons 1.19 × 10−4 ARX, CADM1, CNTNAP2, ENTPD3, FST,
PAX6, PTGER2, SYN2, TFAP2A

Abnormal morphology of brain 1.23 × 10−4 ARX, CNTNAP2, FOXB1, GSX1, OSTM1, PAX6,
SYN2, TFAP2A, ZIC1

Abnormal morphology of forebrain 1.94 × 10−4 ARX, CNTNAP2, FOXB1, GSX1, PAX6, TFAP2A
Growth of cerebellum 2.30 × 10−4 FOXB1, ZIC1

Cell cycle progression of neurons 9.71 × 10−4 PAX6, ZIC1
Growth of brain 1.22 × 10−3 ARX, FOXB1, PAX6, ZIC1

Developmental process of synapse 1.83 × 10−3 CADM1, CDH1,FLRT2, SYN2, TPBG
Initiation of migration of neurons 2.90 × 10−3 ARX

Formation of forebrain 3.02 × 10−3 ARX, CNTNAP2, GSX1, PAX6, ZIC1
Synaptic transmission of hippocampal CA1 region 4.14 × 10−3 CNTNAP2, SYN2

Development of sensory neurons 4.39 × 10−3 PAX6, TLX3
Association of synaptic vesicles 5.80 × 10−3 SYN2
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Table 5. Cont.

Nervous System Development & Function p-Value * DAGs (<500 bp from TSS)

Mild subtype Hypomethylated

Sensory system development 6.57 × 10−9

ABCA4, ADCY1, AIPL1, AIRE, ALDH1A2,
ALOX15, APOB, AQP1, ARSG, ASPA, ATP2B2,

BBS1, BBS7, BCL9L, BFSP2, BMPR1B, BRD1,
C5AR1, CABP4, CCL1, CDH5, CDK20, CNGA3,

COL18A1, COL1A1, COL8A2, CPLX4, CRX,
CRYAA/CRYAA2, CRYAB, CRYBA4, CRYBB2,
CRYGA, CRYGB, CRYGC, CXCR3, DNMT3A,

DPT, DSC1, EGFR, ELOVL4, EMX1, FABP7,
FASLG, FEZF2, FGF1, FGF7, FGFR2, FYCO1,

GDF3, GFRA1, GJA3, GNAT2, GRK1,
GUCA1A, GUCY2F, HCN1, HGF, HK2, HRG,

IL1R1, IRX3, KERA, KNG1, KRT12, KRT4, LCK,
LCTL, LHX2, LRAT, LRP8, LYVE1, MARCKSL1,

METRN, MFAP2, MFRP, MGAT5, MSX2,
NEUROD2, NEUROD4, NOTCH3, NRTN,

NTF3, NTF4, NXNL1, OLIG2, OPN4, PDCD1,
PDE6B, PDE6C, PF4V1, PLA2G3, POR,

POU4F2, POU4F3, PPT2, PRPH2, PTGS2,
PTPRS, PYGO1, RB1, RBP3, RDH8, RHO,

RPE65, RUNX3, S1PR3, SERPINF1, SIX3, SIX6,
SLC17A8, SLC39A5, SOX10, SOX11, SPI1,
TFB1M, TH, THBS1, TP63, TRPV4, TUB,

TULP1, TYRP1, USH2A, VCAM1, VSX2, WNT2

Activation of neuroglia 1.35 × 10−8

ABCA4, ADIPOQ, AGT, ALB, C1QA, C5AR1,
CCL1, CCL11, CCL21, CCL22, CCL5, CCL7,

CD40LG, CHGA, CNGA3, CSF3, DRD2, EGFR,
F2, FASLG, FGA, FGF1, FGG, GFAP, GJB1,

GJC2, GRK2, IL10, IL1R1, MC4R, MOG, MSTN,
MYOD1, NOS3, NR4A1, NRG1, PDE6B, PDK4,
PTGS2, RDH8, SERPINF2, SLC6A4, SST, TLR7,

TLR9, TREM2, TRPM2, VTN

* Fisher exact p-value indicating the probability that the function is not enriched among the DAGs for this subgroup.

Table 6. Neurological diseases enriched among DAGs implicated by CpGs within 500 bp from the TSS
in the mild subgroup.

Neurological Diseases p-Value * DAGs (<500 bp from TSS)

Mild subtype Hypermethylated

Cerebellar ataxia with intellectual disability 2.95 × 10−4 ATP8A2, PAX6

Movement Disorders 6.67 × 10−4
ARX, ATP8A2, CDH11, DKK3, ERRFI1, FGF12,
FLRT2, GABRE, GYPC, NKX6-2, PAX6, PDE4B,

SYN2, ZIC1

Epilepsy 7.73 × 10−4 ARX, CCN1, CNTNAP2, ERRFI1, FGF12,
GABRE, SYN2

Epilepsy or neurodevelopmental disorder 1.08 × 10−3 ARX, CCN1, CNTNAP2, EDN3, ERRFI1,
FGF12, GABRE, SYN2

ARX-related X-linked mental retardation 2.90 × 10−3 ARX
Moderate to severe stage mental retardation 2.90 × 10−3 ARX

Severe hypotonia 2.90 × 10−3 ARX
Susceptibility to autism type 15 2.90 × 10−3 CNTNAP2

Cerebellar ataxia, mental retardation,
and dysequilibrium syndrome type 4 2.90 × 10−3 ATP8A2

Autism 3.95 × 10−3 ARX, CNTNAP2, GABRE

Seizures 4.52 × 10−3 ARX, CCN1, CNTNAP2, ERRFI1, FGF12,
GABRE, SYN2

Familial pervasive developmental disorder 4.64 × 10−3 ARX, CNTNAP2
Ataxia 5.23 × 10−3 ARX, ATP8A2, NKX6-2, PAX6, ZIC1
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Table 6. Cont.

Neurological Diseases p-Value * DAGs (<500 bp from TSS)

Mild subtype Hypomethylated

Schizophrenia 9.17 × 10−11

ACSBG1, ADRA2B, APOA4, APOB, ATP1A4,
ATP2B2, ATP4A, ATP4B, BPIFC, CA1, CA5A,

CA7, CA9, CAD, CALY, CAP2, CCDC60, CCK,
CCKAR, CHI3L1, CHRM1, CHRNA1,
CHRNA2, CHRNA9, CHRNB4, CNR1,

COL3A1, CPLX2, CRHBP, CYP2D6, CYP2E1,
CYP3A5, DAB1, DAO, DDR1, DLG2, DRD1,
DRD2, DRD5, DRP2, EGFR, ERBB4, FABP7,

FAM3D, FCGR2A, FCGR3A/FCGR3B,
GABRA3, GABRA5, GABRA6, GABRG3,
GABRP, GABRR1, GFAP, GPR37, GRIK1,
GRIK5, GRIN1, GRIN3A, GRM4, GRM7,
HIPK3, HRH1, HTR2B, HTR3A, HTR3B,

HTR3C, HTR3D, HTR3E, HTR5A, HTR6, INS,
LAMA1, LGALS1, MAGEC1, MC4R, MEST,
MT2A, MTNR1B, NEFM, NELL1, NOTCH4,

NPAS3, NRG1, NRXN1, NTF3, NTNG2,
OFCC1, OXTR, PDZRN3, PLP1, PMP22, POMC,

PRL, PTGS2, RCAN2, RIT2, RPP21, SCG2,
SCG5, SCN2B, SCN3B, SCN4A, SCN9A,
SLC14A1, SLC18A1, SLC18A2, SLC31A2,
SLC5A7, SLC6A4, SLC7A11, SOX10, SST,

STON1, SYN3, SYT3, SYT4, TAC1, TF, THBS1,
TRAK1, TTR, UGT1A3, XDH

* Fisher exact p-value indicating the probability that the neurological disease is not enriched among the DAGs for
this subgroup.

2.4. Shared DAGs among Case Groups Converge on Inflammatory Responses

We also used IPA to analyze the 67 DAGs (from Figure 4) shared by all three subgroups and the
combined case group. Figure 6 shows the top network resulting from the network prediction analysis
of the shared DAGs. This network is enriched in genes associated with inflammatory responses,
suggesting that neuroinflammation may be a common theme underlying core features of ASD that are
manifested in all subtypes. These results collectively demonstrate the value of reducing heterogeneity
by subphenotyping individuals with ASD to maximize the ability to identify not only ASD-related
DAGs but also ASD-associated functions, pathways, and disorders over-represented within each
subgroup. Specifically, 1.62 times as many unique DAGs (4155) are identified among the three
subphenotypes in comparison to that of the combined case group (2570).



Int. J. Mol. Sci. 2020, 21, 6877 14 of 23

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  14  of  22 

 

 

Figure 6. Hierarchical layout of top network of DAGs shared among 3 subphenotypes of ASD and 

the combined case group. Genes outlined in purple are involved in inflammatory responses. 

2.5. Overlap of DAGs and Differentially Expressed Genes (DEGs) from Analogous Phenotypic Subgroups 

from the Simplex Population 

The subgroup‐associated DAGs from the present methylation study were compared with DEGs 

from a separate study investigating transcriptomic data on individuals from the SSC cohort who were 

divided into subphenotypes using cluster analyses of ADI‐R scores (Hu, V.W. and Bi, C., unpublished 

data). The overlapping genes  for each subgroup and  the combined case group  included 12 DEGs 

from the severely language‐impaired subgroup (hypergeometric cumulative q‐value = 0.30), 8 DEGs 

from the intermediate subgroup (q = 0.35), 76 DEGs from the mild subgroup (q = 7.14 × 10⁻4, and 68 

DEGs from the combined case group (q = 2.31 × 10⁻4) (Table 7). Thus, there is a significant overlap 

between DEGs  and DAGs  from  the mild  subgroup  and  combined  case  group  but  not  from  the 

severely  language‐impaired  subgroup  or  intermediate  subgroup,  suggesting  at  least  partial 

functional validation with  regard  to  regulation of  expression  for  the overlapping genes.  It  is not 

expected  that all of  the DEGs would be  regulated by methylation differences between  cases and 

controls. It should also be noted that there were fewer individuals in the transcriptomic investigation, 

with  7  case‐control  sibling  pairs  in  the  severely  language‐impaired  subgroup,  26  pairs  in  the 

intermediate subgroup, 41 pairs  in  the mild subgroup, and 74 pairs  in  the combined case group. 

Furthermore, although the cases from the transcriptomic analysis were phenotypically representative 

of those from the three subgroups in this methylation study, the samples were not the same as those 

included in the present study. 

Table 7. Overlapping genes among DAGs and Differentially Expressed Genes (DEGs) from the three 

phenotypic subgroups of ASD and the combined case group. 

Overlap between 

DAGs and DEGs in 

Language‐impaired 

subgroup (hypergeom. 

q=0.30) 

Overlap between 

DAGs and DEGs in 

Intermediate 

subgroup   

(q = 0.35) 

Overlap between 

DAGs and DEGs in 

Mild subgroup (q = 7.14 

× 10⁻4) 

Overlap between 

DAGs and DEGs in 

Combined case group 

(q = 2.31 × 10⁻4) 

ALOX15B  AIM2  AADAC  LIMS2  AIM2  LCN2 

CARD14  ARSA  AMPH  MATK  ASB10  LHX3 

Figure 6. Hierarchical layout of top network of DAGs shared among 3 subphenotypes of ASD and the
combined case group. Genes outlined in purple are involved in inflammatory responses.

2.5. Overlap of DAGs and Differentially Expressed Genes (DEGs) from Analogous Phenotypic Subgroups from
the Simplex Population

The subgroup-associated DAGs from the present methylation study were compared with DEGs
from a separate study investigating transcriptomic data on individuals from the SSC cohort who were
divided into subphenotypes using cluster analyses of ADI-R scores (Hu, V.W. and Bi, C., unpublished
data). The overlapping genes for each subgroup and the combined case group included 12 DEGs
from the severely language-impaired subgroup (hypergeometric cumulative q-value = 0.30), 8 DEGs
from the intermediate subgroup (q = 0.35), 76 DEGs from the mild subgroup (q = 7.14 × 10−4,
and 68 DEGs from the combined case group (q = 2.31 × 10−4) (Table 7). Thus, there is a significant
overlap between DEGs and DAGs from the mild subgroup and combined case group but not from the
severely language-impaired subgroup or intermediate subgroup, suggesting at least partial functional
validation with regard to regulation of expression for the overlapping genes. It is not expected that all of
the DEGs would be regulated by methylation differences between cases and controls. It should also be
noted that there were fewer individuals in the transcriptomic investigation, with 7 case-control sibling
pairs in the severely language-impaired subgroup, 26 pairs in the intermediate subgroup, 41 pairs in
the mild subgroup, and 74 pairs in the combined case group. Furthermore, although the cases from the
transcriptomic analysis were phenotypically representative of those from the three subgroups in this
methylation study, the samples were not the same as those included in the present study.
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Table 7. Overlapping genes among DAGs and Differentially Expressed Genes (DEGs) from the three phenotypic subgroups of ASD and the combined case group.

Overlap between DAGs and DEGs
in Language-Impaired Subgroup

(hypergeom. q=0.30)

Overlap between DAGs and
DEGs in Intermediate

Subgroup (q = 0.35)

Overlap between DAGs and DEGs in Mild
Subgroup (q = 7.14 × 10−4)

Overlap between DAGs and DEGs in Combined
Case Group (q = 2.31 × 10−4)

ALOX15B AIM2 AADAC LIMS2 AIM2 LCN2
CARD14 ARSA AMPH MATK ASB10 LHX3

CAV3 ATP8B1 APOB MEP1B ASCL2 LYST
CCL11 KCNQ1 BNC1 MMP10 BGN MAGEA11

COL6A3 LDHC C15orf32 MS4A12 BMP10 MAGEA8
CTRB1 NEFL C19orf18 MS4A6A BMX MEPE

FAM83A RGS3 C8B NKX6-2 BTNL2 MS4A12
HIPK4 SMPD3 CADPS NNAT C14orf39 MS4A6A
HSPB8 CCDC54 NR1I3 C15orf32 NR1I3
PSG4 CDH5 NR4A1 CARD14 NR5A1

SEMA3B CEACAM3 NRXN1 CCR9 OR10A4
WFDC8 CHI3L1 NRXN3 CHRNA1 OR10H1

COX4I2 OR10H1 CNKSR1 OR1N1
CPA6 P4HA3 CYP2C9 OR3A3
DCN PCDHB7 CYP4F3 P4HA3
DLK1 PHYHIP DEFB126 PABPC5

DNMT3L RGS12 EGFL7 PLAT
DOCK1 S100A3 FBLN1 PMCHL1
EDNRB SATB1 FLRT2 PNLIPRP1

FMR1NB SCARF1 GALR1 RASL12
FRMPD2 SCN3B GATA5 RGS13
FXYD3 SLC13A5 GKN1 RHOJ
GATA5 SLC35E4 GLIS1 SCGB1D1
GIPR SLC6A11 GRIK2 SLC6A11
GLIS1 SPATA3 GUCA2B SPATA21

GUCA2B SPINK4 GUCY2F SPRR3
HBE1 SPOCK3 HCRTR1 SPTB

IFNA16 SPTB IFNA17 TFAP2B
IQCF1 ST6GAL2 IGSF11 TRPM5

KLHDC7A SYN3 IQCF1 TTLL2
KLK3 SYNE2 KIF25 WFDC5
KLK9 TMEM119 KLK9 WWP1

KRTAP20-1 TMEM40 KRT1 ZBED2
LAD1 TNNI1 LCE3C ZDHHC11
LCE3C TRIM16
LCN2 USH2A
LHX3 ZDHHC11

LILRA5 ZPLD1
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2.6. Comparison with Other DNA Methylation Studies of ASD

DNA methylation has long been implicated as a contributor to the etiology of ASD-related
disorders, such as Rett syndrome and Fragile X [53–56]. With respect to idiopathic ASD, we were
the first to demonstrate that DNA methylation differences across multiple genes could be correlated
to dysregulated expression of those genes in LCLs from discordantly diagnosed monozygotic twins
and sibling pairs [7,57]. Since then, a number of other studies using blood-derived cells, buccal cells,
and brain tissues have confirmed aberrant DNA methylation as a likely contributory factor to ASD [7–15].
However, there has been relatively low consistency with respect to the specific DAGs identified among
the various studies, which is possibly due to the heterogeneity both within and among the cohorts
used for the different analyses.

To our knowledge, this is the first study to undertake methylation analysis of ASD probands and
unaffected siblings from the simplex population after dividing the cases into phenotypic subgroups
to lessen the clinical heterogeneity inherent to ASD. A recent study that involved a meta-analysis of
blood DNA methylation from two cohorts of individuals with ASD and controls did not find any
DAGs that were significant after Bonferroni correction for multiple testing despite having 796 cases
and 858 controls [58]. One of the cohorts included 343 probands and their respective sibling controls
from the SSC. Among the 7 genes that were suggestively associated with ASD with p-value < 1 × 10−5,
only one, DIO3, was found among DAGs from the mild subgroup tested here. Similarly, another recent
methylation study using neonatal bloodspots from 1263 infants (of whom 50% were later diagnosed
with ASD) concluded that ASD is not associated with robust differential methylation between the
diagnosed children and the unaffected ones [59]. Another large methylome-wide association study
(MWAS), which used cord blood from 701 8-year-olds and their respective scores on the Social and
Communication Disorders Checklist as a measure of autistic traits, found no significant CpGs associated
with the social traits [14]. Moreover, Massrali et al. [14] reported that a meta-analysis of the blood and
blood spot data from the previous two MWAS studies [58,59] did not reveal any significant concordance
in effect direction with their cord blood study; they therefore concluded that none of the MWAS studies
identified any significant DAGs. It should be noted that all of these studies used methylation data
collected on Illumina Infinium HumanMethylation450K BeadChip arrays, which offer greater potential
for identifying differentially methylated CpG sites in comparison to the HumanMethylation27K array
from which we derived the methylation data for our study. We therefore suggest that our ability to
identify a large number of significant DAGs—some of which are replicated in different subgroups
(or cohorts)—is due to the reduction in phenotypic or clinical heterogeneity among the cases in each
subgroup. This interpretation is borne out by the smaller delta β values for DAGs when all the cases
are combined into one group for methylation analysis. While we have used cluster analyses of ADI-R
scores for phenotypic subgrouping in this study, heterogeneity reduction by genetic subgrouping
(e.g., by CHD8 mutations or by 16p11.2 deletions) has also resulted in enhanced ability to detect
significant DAGs between ASD cases and controls [60]. In the same study, Siu et al. also reported no
significant DAGs with a heterogeneous group of cases with idiopathic ASD, thereby reaffirming the
value of heterogeneity reduction in genome-wide DNA methylation studies of ASD. Aside from the
subgrouping methods discussed above, heterogeneity reduction in ASD can also be accomplished by
subtyping individuals by associated comorbidities, such as intellectual disability, immune dysfunction,
or gastrointestinal disease.

2.7. Advantages and Limitations of Study Design and Future Considerations

This study examines the impact of applying clinical subtyping to methylation analyses of
males with ASD from the simplex population. While the inclusion of only males eliminates sex
as a confounding factor, future studies should also include females to investigate the potential for
sex-related differences in DNA methylation. The main limitation here is the relatively small number of
cases studied, particularly in the severely language-impaired subgroup, which represents the smallest
phenotypic subgroup identified by ADI-R cluster analyses of cases from simplex families. Despite this
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limitation, the severely language-impaired subgroup exhibited the largest differences in β values (and
fold-change) between cases and controls relative to that of the other groups, perhaps reflecting the
heightened clinical severity of this subgroup. Furthermore, network prediction analyses show that this
subgroup was most enriched in neurological functions and comorbidities associated with ASD and
was also the sole subgroup enriched for genes directly involved in autism and intellectual disability.

Another limitation is that we were not able to confirm the DAGs identified in each subgroup
inasmuch as this bioinformatics study focused on a re-analysis of existing methylation data, and we
did not have access to the samples for pyrosequencing analyses. Future studies should therefore
address the confirmation of these results not only with regard to methylation analyses of specific
DAGs, but also with respect to application of this subtyping method to methylation analyses of an
additional cohort of individuals with ASD from the simplex population, preferably with more CpG
sites interrogated. Nevertheless, the overlap of DAGs between and among the three phenotypic
subgroups represents replication of at least these specific DAGs in different cohorts, as there is no
overlap of individuals among the subgroups. In addition, the overlap of DAGs from this study
and DEGs from a separate transcriptomic study involving analogous subgroups from the simplex
population offers functional support for a fraction of the DAGs identified here. Finally, the Infinium
HumanMethylation27K BeadChip array, which was used to generate the methylation data analyzed in
this study, is also a limitation in terms of the relatively low number of CpGs interrogated. More recent
BeadChip arrays currently probe over 800K CpG sites, and whole genome bisulfite sequencing can
assess even more. Thus, in light of our study demonstrating increased discovery of significant DAGs
as well as ASD-associated neurological functions and disorders as a result of phenotypic subgrouping,
it will be of interest for future studies to analyze more comprehensive methylation data in the context
of ASD subtypes to confirm the main findings reported here.

3. Materials and Methods

3.1. Acquisition of Methylation Data for Individuals with ASD from the Simplex Population

DNA methylation data from a study of individuals with ASD and their unaffected siblings who
were included in the Simons Simplex Collection (SSC) (New York, NY, USA) were downloaded from
the National Database for Autism Research (NDAR). NDAR is a repository of clinical, omics, and brain
imaging data from autism studies that is maintained by the NIMH Data Archives (NDA) (Rockville,
MD, USA). The original data were deposited by Dr. Stephen Warren (Emory University, Atlanta,
GA, USA) for a methylation pilot study entitled “Epigenetic marks as peripheral biomarkers for
autism” (Study ID: #287). For the pilot study, DNA methylation for over 300 simplex cases and their
respective sibling controls was analyzed on Illumina Infinium HumanMethylation27K BeadChips
covering 27,578 CpG dinucleotides, with the raw data deposited into NDAR.

3.2. Phenotypic Subtyping for ASD Individuals from Simplex Families

The Autism Diagnostic Interview-Revised (ADI-R), which is considered a gold-standard diagnostic
tool for autism, is based on a series of questions posed to parents or primary caregivers that interrogate
a subject’s performance on a wide range of behaviors impacted by ASD [61]. These behaviors are scored
for severity by a trained neuropsychologist according to the parent/caregiver’s response. Raw ADI-R
scoresheets for 1900 individuals with ASD (i.e., probands) were obtained from the SSC. As described
previously for multiplex families [16], 123 severity scores on 63 ADI-R items (see Table S8) for each
individual were subjected to K-means cluster (KMC) analyses, which showed that K = 3 (representing
separation into 3 subgroups) resulted in an optimum separation of cases with distinguishable severity
profiles. Based on these profiles, the three subgroups were described as mild, intermediate, and severely
language impaired, which are similar to three of the four subgroups previously identified in multiplex
families [16]. The fourth subgroup in the multiplex population, which exhibited a noticeably higher
frequency of savant skills, was not clearly discernible within the simplex population.
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The sample identification numbers (IDs) of the probands from the Warren pilot methylation
study were then cross-referenced against the sample IDs associated with 1900 ADI-R scoresheets of
individuals with ASD from the SSC. Based on the severity profiles that resulted from the ADI-R cluster
analyses, 292 cases (all males) with available methylation data were stratified into three subphenotypes
as follows: mild (n = 149), intermediate (n = 121), and severely language impaired (n = 22). Differences
in the severity profiles of the 292 individuals selected for our study were verified by hierarchical
clustering (HCL) and principal components analyses (PCA) using open-access Multiexperiment Viewer
software [62]. The demographic information on individuals included in the current study is presented
in Table S9.

3.3. Identification of Differentially Methylated Regions (DMR) and DMR-Associated Genes (DAG)

Raw signal intensities were extracted from idat files derived from the Illumina Infinium
HumanMethylation27K BeadChip analyses using Illumina’s GenomeStudio Methylation Module v1.8
(Illumina, San Diego, CA, USA). The DNA methylation level of each interrogated CpG site is reported
in the GenomeStudio software as an average β value, ranging from 0 (completely unmethylated)
to 1 (100% methylated). The β value is defined as the ratio of signal from the methylated probe
(M) to the sum of the signals from the methylated probe (M) and unmethylated probe (U) plus
100, or β = M/(M + U + 100). Analysis of differential methylation between ASD cases and sibling
controls was performed in GenomeStudio using the Illumina Custom Model. This error model
developed by Illumina assumes a normal distribution of the β values among biological replicates
and results in a differential methylation score (DiffScore) for each interrogated CpG site. Using the
absolute value of DiffScores reported by the GenomeStudio software, p-values were calculated with
the following formula: p = 10−(|DiffScore|/10). |DiffScore| > 13.0103 is equivalent to a p-value < 0.05.
Correction for multiple comparisons was accomplished by computing the false discovery rate (FDR),
which is integrated into the GenomeStudio software. Interrogated CpG sites were annotated in
GenomeStudio with respect to their corresponding genes. DAGs with FDR-adjusted p < 0.05 were
classified as significant. The three ASD subgroups were analyzed separately as well as in combination
(i.e., combined case group) for DNA methylation differences when compared to their respective sibling
controls. Volcano plots showing the overall distribution of significant DAGs for each subgroup or
the combined case group were generated by plotting |DiffScore| against delta β, i.e., (βcase – βcontrol).
The distance of the differentially methylated CpGs to the TSS of the nearest gene was obtained from
Illumina’s content file for the HumanMethylation27K BeadChip array, which provides the mapping
information for each CpG as well as its location with respect to CpG islands. All of the CpG sites were
within 1500 bp of a TSS, suggesting their potential involvement in the regulation of gene expression.

3.4. Network Prediction Analyses of DAGs

Ingenuity Pathway Analysis (IPA) network prediction software (Qiagen, Germantown, MD, USA)
was used to identify enriched functions, pathways, and disorders associated with DAGs from the
methylation analyses based on Fisher exact p-values of p ≤ 0.05, using genes in IPA’s Knowledgebase
as the reference set of genes to determine enrichment in pathways or functions among the DAGs.

3.5. Hypergeometric Distribution Analyses

Hypergeometric distribution analyses were employed to identify the significance of overlap
between DAGs and differentially expressed genes (DEGs) from analogous phenotypic subgroups of
ASD from a separate study (Hu, V.W. and Bi, C., unpublished data), which involved re-analysis
of transcriptomic data from a previously published study that used LCLs from the SSC [63].
Theoverlapping genes were identified using an open-access Venn diagram software program called
Venny 2.1.0 (https://bioinfogp.cng.csic.es/tools/venny/) [64]. Significant overlap between the DAGs and
DEGs was determined by hypergeometric distribution analyses using the open-access CASIO Keisan
Online Calculator (http://keisan.casio.com/exec/system/1180573201), with significance determined

https://bioinfogp.cng.csic.es/tools/venny/
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by an upper cumulative q-value of ≤ 0.05. Venny 2.1.0 was also used to identify overlap among
subgroup-associated DAGs and those from the combined case group.

4. Conclusions

This is the first study to investigate differential methylation in individuals with ASD from the
simplex population who were divided into distinct phenotypic subgroups by cluster analyses of
ADI-R scores. This study is important because it demonstrates a link between DNA methylation
and the etiology of ASD in this population. We suggest that subphenotyping enables more efficient
identification of statistically significant DAGs which, in turn, reveal subphenotype-dependent functions
and comorbidities that are associated with each ASD subgroup. Such discrimination of the biological
differences between ASD subphenotypes is essential to our understanding of the complex pathobiology
of ASD as well as our ability to develop targeted ASD subtype-directed therapeutics.
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involved in neuritogenesis in the severely language-impaired subgroup; Figure S3. Gene network associated
with DAGs involved in abnormal morphology of neurons in the intermediate subgroup; Figure S4. Gene
network associated with DAGs involved in sensory system development in the mild subgroup; Figure S5. Gene
network associated with DAGs involved in cognitive impairment in the severely language-impaired subgroup;
Figure S6. Gene network associated with DAGs involved in motor dysfunction in the severely language-impaired
subgroup; Figure S7. Gene network associated with DAGs involved in schizophrenia in the intermediate
subgroup; Figure S8. Gene network associated with DAGs involved in schizophrenia in the mild subgroup;
Figure S9. Hierarchical layout of a top gene network of DAGs associated with ASD and ID in the severely
language-impaired subgroup; Table S1. Significant DAGs associated with the severely language-impaired
subgroup; Table S2. Significant DAGs associated with the intermediate subgroup; Table S3. Significant DAGs
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